Tissue contexture determines the pattern and density of tumor-infiltrating immune cells in HPV-associated squamous cell carcinomas of oropharynx and uterine cervix
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
PubMed
38242007
PubMed Central
PMC10831289
DOI
10.1016/j.tranon.2024.101884
PII: S1936-5233(24)00010-X
Knihovny.cz E-zdroje
- Klíčová slova
- Cervical cancer, HNSCC, MDSC, Tumor microenvironment,
- Publikační typ
- časopisecké články MeSH
The profile of the antitumor immune response is an important factor determining patient clinical outcome. However, the influence of the tissue contexture on the composition of the tumor microenvironments of virally induced tumors is not clearly understood. Therefore, we analyzed the immune landscape of two HPV-associated malignancies: oropharyngeal squamous cell carcinoma (OPSCC) and squamous cell carcinoma of uterine cervix (CESC). We employed multiplex immunohistochemistry and immunofluorescence to evaluate the density and spatial distribution of immune cells in retrospective cohorts of OPSCC and CESC patients. This approach was complemented by transcriptomic analysis of purified primary tumor cells and in silico analysis of publicly available RNA sequencing data. Transcriptomic analysis showed similar immune profiles in OPSCC and CESC samples. Interestingly, immunostaining of OPSCC tissues revealed high densities of immune cells in both tumor stroma and tumor epithelium, whereas CESC samples were mainly characterized by the lack of immune cells in the tumor epithelium. However, in contrast to other immune cell populations, polymorphonuclear myeloid-derived suppressor cells (PMN-MDSCs) were abundant in both segments of CESC samples and CESC-derived tumor cells expressed markedly higher levels of the PMN-MDSC chemoattractants CXCL1, CXCL5, and CXCL6 than OPSCC tumor cells. Taken together, despite their having the same etiologic agent, the immune infiltration pattern significantly differs between OPSCC and CESC, with a noticeable shift toward prominent MDSC infiltration in the latter. Our data thus present a rationale for a diverse approach to targeted therapy in patients with HPV-associated tumors of different tissue origins.
Zobrazit více v PubMed
de Martel C., Plummer M., Vignat J., Franceschi S. Worldwide burden of cancer attributable to HPV by site, country and HPV type. Int. J. Cancer. 2017;141(4):664–670. doi: 10.1002/ijc.30716. PubMed DOI PMC
Conarty J.P., Wieland A. The tumor-specific immune landscape in HPV+ head and neck cancer. Viruses. 2023;15(6) doi: 10.3390/v15061296. PubMed DOI PMC
Hildesheim A., Schiffman M., Bromley C., Wacholder S., Herrero R., Rodriguez A., et al. Human papillomavirus type 16 variants and risk of cervical cancer. J. Natl. Cancer Inst. 2001;93(4):315–318. doi: 10.1093/jnci/93.4.315. PubMed DOI
Doorbar J., Quint W., Banks L., Bravo I.G., Stoler M., Broker T.R., et al. The biology and life-cycle of human papillomaviruses. Vaccine. 2012;30(5):F55–F70. doi: 10.1016/j.vaccine.2012.06.083. Suppl. PubMed DOI
Faraji F., Zaidi M., Fakhry C., Gaykalova D.A. Molecular mechanisms of human papillomavirus-related carcinogenesis in head and neck cancer. Microbes Infect. 2017;19(9–10):464–475. doi: 10.1016/j.micinf.2017.06.001. PubMed DOI PMC
Cancer Genome Atlas Research N, Albert Einstein College of M, Analytical Biological S, Barretos Cancer H, Baylor College of M, Beckman Research Institute of City of H Integrated genomic and molecular characterization of cervical cancer. Nature. 2017;543(7645):378–384. 10.1038/nature21386. PubMed PMC
Nulton T.J., Olex A.L., Dozmorov M., Morgan I.M., Windle B. Analysis of The Cancer Genome Atlas sequencing data reveals novel properties of the human papillomavirus 16 genome in head and neck squamous cell carcinoma. Oncotarget. 2017;8(11):17684–17699. doi: 10.18632/oncotarget.15179. PubMed DOI PMC
Ramqvist T., Mints M., Tertipis N., Nasman A., Romanitan M., Dalianis T. Studies on human papillomavirus (HPV) 16 E2, E5 and E7 mRNA in HPV-positive tonsillar and base of tongue cancer in relation to clinical outcome and immunological parameters. Oral Oncol. 2015;51(12):1126–1131. doi: 10.1016/j.oraloncology.2015.09.007. PubMed DOI
Cabrita R., Lauss M., Sanna A., Donia M., Skaarup Larsen M., Mitra S., et al. Tertiary lymphoid structures improve immunotherapy and survival in melanoma. Nature. 2020;577(7791):561–565. doi: 10.1038/s41586-019-1914-8. PubMed DOI
Helmink B.A., Reddy S.M., Gao J., Zhang S., Basar R., Thakur R., et al. B cells and tertiary lymphoid structures promote immunotherapy response. Nature. 2020;577(7791):549–555. doi: 10.1038/s41586-019-1922-8. PubMed DOI PMC
Petitprez F., de Reynies A., Keung E.Z., Chen T.W., Sun C.M., Calderaro J., et al. B cells are associated with survival and immunotherapy response in sarcoma. Nature. 2020;577(7791):556–560. doi: 10.1038/s41586-019-1906-8. PubMed DOI
Mandal R., Senbabaoglu Y., Desrichard A., Havel J.J., Dalin M.G., Riaz N., et al. The head and neck cancer immune landscape and its immunotherapeutic implications. JCI Insight. 2016;1(17):e89829. doi: 10.1172/jci.insight.89829. PubMed DOI PMC
Nasman A., Romanitan M., Nordfors C., Grun N., Johansson H., Hammarstedt L., et al. Tumor infiltrating CD8+ and Foxp3+ lymphocytes correlate to clinical outcome and human papillomavirus (HPV) status in tonsillar cancer. PLoS One. 2012;7(6):e38711. doi: 10.1371/journal.pone.0038711. PubMed DOI PMC
Nordfors C., Grun N., Tertipis N., Ahrlund-Richter A., Haeggblom L., Sivars L., et al. CD8+ and CD4+ tumour infiltrating lymphocytes in relation to human papillomavirus status and clinical outcome in tonsillar and base of tongue squamous cell carcinoma. Eur. J. Cancer. 2013;49(11):2522–2530. doi: 10.1016/j.ejca.2013.03.019. PubMed DOI
Hladikova K., Koucky V., Boucek J., Laco J., Grega M., Hodek M., et al. Tumor-infiltrating B cells affect the progression of oropharyngeal squamous cell carcinoma via cell-to-cell interactions with CD8(+) T cells. J. Immunother Cancer. 2019;7(1):261. doi: 10.1186/s40425-019-0726-6. PubMed DOI PMC
Ruffin A.T., Cillo A.R., Tabib T., Liu A., Onkar S., Kunning S.R., et al. B cell signatures and tertiary lymphoid structures contribute to outcome in head and neck squamous cell carcinoma. Nat. Commun. 2021;12(1):3349. doi: 10.1038/s41467-021-23355-x. PubMed DOI PMC
Enwere E.K., Kornaga E.N., Dean M., Koulis T.A., Phan T., Kalantarian M., et al. Expression of PD-L1 and presence of CD8-positive T cells in pre-treatment specimens of locally advanced cervical cancer. Mod. Pathol. 2017;30(4):577–586. doi: 10.1038/modpathol.2016.221. PubMed DOI
Ohno A., Iwata T., Katoh Y., Taniguchi S., Tanaka K., Nishio H., et al. Tumor-infiltrating lymphocytes predict survival outcomes in patients with cervical cancer treated with concurrent chemoradiotherapy. Gynecol. Oncol. 2020;159(2):329–334. doi: 10.1016/j.ygyno.2020.07.106. PubMed DOI
Wang J., Li Z., Gao A., Wen Q., Sun Y. The prognostic landscape of tumor-infiltrating immune cells in cervical cancer. Biomed. Pharmacother. 2019;120 doi: 10.1016/j.biopha.2019.109444. PubMed DOI
Yang S., Wu Y., Deng Y., Zhou L., Yang P., Zheng Y., et al. Identification of a prognostic immune signature for cervical cancer to predict survival and response to immune checkpoint inhibitors. Oncoimmunology. 2019;8(12) doi: 10.1080/2162402X.2019.1659094. PubMed DOI PMC
Santegoets S.J., van Ham V.J., Ehsan I., Charoentong P., Duurland C.L., van Unen V., et al. The anatomical location shapes the immune infiltrate in tumors of same etiology and affects survival. Clin. Cancer Res. 2019;25(1):240–252. doi: 10.1158/1078-0432.CCR-18-1749. PubMed DOI
Fialova A., Koucky V., Hajduskova M., Hladikova K., Spisek R. Immunological network in head and neck squamous cell carcinoma-A prognostic tool beyond HPV status. Front. Oncol. 2020;10:1701. doi: 10.3389/fonc.2020.01701. PubMed DOI PMC
Galon J., Costes A., Sanchez-Cabo F., Kirilovsky A., Mlecnik B., Lagorce-Pages C., et al. Type, density, and location of immune cells within human colorectal tumors predict clinical outcome. Science. 2006;313(5795):1960–1964. doi: 10.1126/science.1129139. PubMed DOI
Chen H., Xia B., Zheng T., Lou G. Immunoscore system combining CD8 and PD-1/PD-L1: a novel approach that predicts the clinical outcomes for cervical cancer. Int. J. Biol. Markers. 2020;35(1):65–73. doi: 10.1177/1724600819888771. PubMed DOI
Galon J., Bruni D. Approaches to treat immune hot, altered and cold tumours with combination immunotherapies. Nat. Rev. Drug Discov. 2019;18(3):197–218. doi: 10.1038/s41573-018-0007-y. PubMed DOI
Someya M., Tsuchiya T., Fukushima Y., Hasegawa T., Hori M., Kitagawa M., et al. Prediction of treatment response from the microenvironment of tumor immunity in cervical cancer patients treated with chemoradiotherapy. Med. Mol. Morphol. 2021;54(3):245–252. doi: 10.1007/s00795-021-00290-w. PubMed DOI
Clark C.E., Hingorani S.R., Mick R., Combs C., Tuveson D.A., Vonderheide R.H. Dynamics of the immune reaction to pancreatic cancer from inception to invasion. Cancer Res. 2007;67(19):9518–9527. doi: 10.1158/0008-5472.CAN-07-0175. PubMed DOI
Bronte V., Brandau S., Chen S.H., Colombo M.P., Frey A.B., Greten T.F., et al. Recommendations for myeloid-derived suppressor cell nomenclature and characterization standards. Nat. Commun. 2016;7:12150. doi: 10.1038/ncomms12150. PubMed DOI PMC
Highfill S.L., Cui Y., Giles A.J., Smith J.P., Zhang H., Morse E., et al. Disruption of CXCR2-mediated MDSC tumor trafficking enhances anti-PD1 efficacy. Sci. Transl. Med. 2014;6(237):237. doi: 10.1126/scitranslmed.3007974. ra67. PubMed DOI PMC
Law A.M.K., Valdes-Mora F., Gallego-Ortega D. Myeloid-derived suppressor cells as a therapeutic target for cancer. Cells. 2020;9(3) doi: 10.3390/cells9030561. PubMed DOI PMC
Umansky V., Blattner C., Gebhardt C., Utikal J. The Role of myeloid-derived suppressor cells (MDSC) in cancer progression. Vaccines. 2016;4(4) doi: 10.3390/vaccines4040036. (Basel) PubMed DOI PMC
Kapanadze T., Gamrekelashvili J., Ma C., Chan C., Zhao F., Hewitt S., et al. Regulation of accumulation and function of myeloid derived suppressor cells in different murine models of hepatocellular carcinoma. J. Hepatol. 2013;59(5):1007–1013. doi: 10.1016/j.jhep.2013.06.010. PubMed DOI PMC
De Guillebon E., Dardenne A., Saldmann A., Seguier S., Tran T., Paolini L., et al. Beyond the concept of cold and hot tumors for the development of novel predictive biomarkers and the rational design of immunotherapy combination. Int. J. Cancer. 2020;147(6):1509–1518. doi: 10.1002/ijc.32889. PubMed DOI
Harlin H., Meng Y., Peterson A.C., Zha Y., Tretiakova M., Slingluff C., et al. Chemokine expression in melanoma metastases associated with CD8+ T-cell recruitment. Cancer Res. 2009;69(7):3077–3085. doi: 10.1158/0008-5472.CAN-08-2281. PubMed DOI PMC
Ostrand-Rosenberg S., Fenselau C. Myeloid-derived suppressor cells: immune-suppressive cells that impair antitumor immunity and are sculpted by their environment. J. Immunol. 2018;200(2):422–431. doi: 10.4049/jimmunol.1701019. PubMed DOI PMC
Gabrilovich D.I. Myeloid-derived suppressor cells. Cancer Immunol. Res. 2017;5(1):3–8. doi: 10.1158/2326-6066.CIR-16-0297. PubMed DOI PMC
Gabrilovich D.I., Ostrand-Rosenberg S., Bronte V. Coordinated regulation of myeloid cells by tumours. Nat. Rev. Immunol. 2012;12(4):253–268. doi: 10.1038/nri3175. PubMed DOI PMC
Mabuchi S., Sasano T. Myeloid-derived suppressor cells as therapeutic targets in uterine cervical and endometrial cancers. Cells. 2021;10(5) doi: 10.3390/cells10051073. PubMed DOI PMC
Molon B., Ugel S., Del Pozzo F., Soldani C., Zilio S., Avella D., et al. Chemokine nitration prevents intratumoral infiltration of antigen-specific T cells. J. Exp. Med. 2011;208(10):1949–1962. doi: 10.1084/jem.20101956. PubMed DOI PMC