• This record comes from PubMed

Involvement of Abscisic Acid in Transition of Pea (Pisum sativum L.) Seeds from Germination to Post-Germination Stages

. 2024 Jan 11 ; 13 (2) : . [epub] 20240111

Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic

Document type Journal Article

Grant support
20-16-00086 Russian Science Foundation

The transition from seed to seedling represents a critical developmental step in the life cycle of higher plants, dramatically affecting plant ontogenesis and stress tolerance. The release from dormancy to acquiring germination ability is defined by a balance of phytohormones, with the substantial contribution of abscisic acid (ABA), which inhibits germination. We studied the embryonic axis of Pisum sativum L. before and after radicle protrusion. Our previous work compared RNA sequencing-based transcriptomics in the embryonic axis isolated before and after radicle protrusion. The current study aims to analyze ABA-dependent gene regulation during the transition of the embryonic axis from the germination to post-germination stages. First, we determined the levels of abscisates (ABA, phaseic acid, dihydrophaseic acid, and neo-phaseic acid) using ultra-high-performance liquid chromatography-tandem mass spectrometry. Second, we made a detailed annotation of ABA-associated genes using RNA sequencing-based transcriptome profiling. Finally, we analyzed the DNA methylation patterns in the promoters of the PsABI3, PsABI4, and PsABI5 genes. We showed that changes in the abscisate profile are characterized by the accumulation of ABA catabolites, and the ABA-related gene profile is accompanied by the upregulation of genes controlling seedling development and the downregulation of genes controlling water deprivation. The expression of ABI3, ABI4, and ABI5, which encode crucial transcription factors during late maturation, was downregulated by more than 20-fold, and their promoters exhibited high levels of methylation already at the late germination stage. Thus, although ABA remains important, other regulators seems to be involved in the transition from seed to seedling.

See more in PubMed

Chahtane H., Kim W., Lopez-Molina L. Primary seed dormancy: A temporally multilayered riddle waiting to be unlocked. J. Exp. Bot. 2016;68:erw377. doi: 10.1093/jxb/erw377. PubMed DOI

Yan A., Chen Z. The control of seed dormancy and germination by temperature, light and nitrate. Bot. Rev. 2020;86:39–75. doi: 10.1007/s12229-020-09220-4. DOI

Bentsink L., Koornneef M. Seed dormancy and germination. Arab. B. 2008;6:e0119. doi: 10.1199/tab.0119. PubMed DOI PMC

Smolikova G., Strygina K., Krylova E., Vikhorev A., Bilova T., Frolov A., Khlestkina E., Medvedev S. Seed-to-seedling transition in Pisum sativum L.: A transcriptomic approach. Plants. 2022;11:1686. doi: 10.3390/plants11131686. PubMed DOI PMC

Smolikova G., Strygina K., Krylova E., Leonova T., Frolov A., Khlestkina E., Medvedev S. Transition from seeds to seedlings: Hormonal and epigenetic aspects. Plants. 2021;10:1884. doi: 10.3390/plants10091884. PubMed DOI PMC

Silva A.T., Ligterink W., Hilhorst H.W.M. Metabolite profiling and associated gene expression reveal two metabolic shifts during the seed-to-seedling transition in Arabidopsis thaliana. Plant Mol. Biol. 2017;95:481–496. doi: 10.1007/s11103-017-0665-x. PubMed DOI PMC

Carrera-Castaño G., Calleja-Cabrera J., Pernas M., Gómez L., Oñate-Sánchez L. An updated overview on the regulation of seed germination. Plants. 2020;9:703. doi: 10.3390/plants9060703. PubMed DOI PMC

Luján-Soto E., Dinkova T.D. Time to wake up: Epigenetic and small-RNA-mediated regulation during seed germination. Plants. 2021;10:236. doi: 10.3390/plants10020236. PubMed DOI PMC

Smolikova G., Medvedev S. Seed-to-seedling transition: Novel aspects. Plants. 2022;11:1988. doi: 10.3390/plants11151988. PubMed DOI PMC

Finkelstein R.R. The role of hormones during seed development and germination. In: Davies P.J., editor. Plant Hormones. Springer; Dordrecht, The Netherlands: 2010. pp. 549–573.

Shu K., Meng Y.J., Shuai H.W., Liu W.G., Du J.B., Liu J., Yang W.Y. Dormancy and germination: How does the crop seed decide? Plant Biol. 2015;17:1104–1112. doi: 10.1111/plb.12356. PubMed DOI

Ali F., Qanmber G., Li F., Wang Z. Updated role of ABA in seed maturation, dormancy, and germination. J. Adv. Res. 2022;35:199–214. doi: 10.1016/j.jare.2021.03.011. PubMed DOI PMC

Shu K., Liu X., Xie Q., He Z. Two faces of one seed: Hormonal regulation of dormancy and germination. Mol. Plant. 2016;9:34–45. doi: 10.1016/j.molp.2015.08.010. PubMed DOI

Yan A., Chen Z. The pivotal role of abscisic acid signaling during transition from seed maturation to germination. Plant Cell Rep. 2017;36:689–703. doi: 10.1007/s00299-016-2082-z. PubMed DOI

Hauvermale A.L., Steber C.M. GA signaling is essential for the embryo-to-seedling transition during Arabidopsis seed germination, a ghost story. Plant Signal. Behav. 2020;15:1705028. doi: 10.1080/15592324.2019.1705028. PubMed DOI PMC

Chen K., Li G., Bressan R.A., Song C., Zhu J., Zhao Y. Abscisic acid dynamics, signaling, and functions in plants. J. Integr. Plant Biol. 2020;62:25–54. doi: 10.1111/jipb.12899. PubMed DOI

Sano N., Marion-Poll A. ABA metabolism and homeostasis in seed dormancy and germination. Int. J. Mol. Sci. 2021;22:5069. doi: 10.3390/ijms22105069. PubMed DOI PMC

Finkelstein R. Abscisic acid synthesis and response. Arab. Book. 2013;11:e0166. doi: 10.1199/tab.0166. PubMed DOI PMC

Nambara E., Okamoto M., Tatematsu K., Yano R., Seo M., Kamiya Y. Abscisic acid and the control of seed dormancy and germination. Seed Sci. Res. 2010;20:55–67. doi: 10.1017/S0960258510000012. DOI

Gutierrez L., Van Wuytswinkel O., Castelain M., Bellini C. Combined networks regulating seed maturation. Trends Plant Sci. 2007;12:294–300. doi: 10.1016/j.tplants.2007.06.003. PubMed DOI

Finkelstein R., Reeves W., Ariizumi T., Steber C. Molecular aspects of seed dormancy. Annu. Rev. Plant Biol. 2008;59:387–415. doi: 10.1146/annurev.arplant.59.032607.092740. PubMed DOI

Finch-Savage W.E., Leubner-Metzger G. Seed dormancy and the control of germination. New Phytol. 2006;171:501–523. doi: 10.1111/j.1469-8137.2006.01787.x. PubMed DOI

Nambara E., Marion-Poll A. Abscisic acid biosynthesis and catabolism. Annu. Rev. Plant Biol. 2005;56:165–185. doi: 10.1146/annurev.arplant.56.032604.144046. PubMed DOI

Bai Y.-L., Yin X., Xiong C.-F., Cai B.-D., Wu Y., Zhang X.-Y., Wei Z., Ye T., Feng Y.-Q. Neophaseic acid catabolism in the 9′-hydroxylation pathway of abscisic acid in Arabidopsis thaliana. Plant Commun. 2022;3:100340. doi: 10.1016/j.xplc.2022.100340. PubMed DOI PMC

Kushiro T., Okamoto M., Nakabayashi K., Yamagishi K., Kitamura S., Asami T., Hirai N., Koshiba T., Kamiya Y., Nambara E. The Arabidopsis cytochrome P450 CYP707A encodes ABA 8′-hydroxylases: Key enzymes in ABA catabolism. EMBO J. 2004;23:1647–1656. doi: 10.1038/sj.emboj.7600121. PubMed DOI PMC

Okamoto M., Kuwahara A., Seo M., Kushiro T., Asami T., Hirai N., Kamiya Y., Koshiba T., Nambara E. CYP707A1 and CYP707A2, which encode abscisic acid 8′-hydroxylases, are indispensable for proper control of seed dormancy and germination in Arabidopsis. Plant Physiol. 2006;141:97–107. doi: 10.1104/pp.106.079475. PubMed DOI PMC

Carbonero P., Iglesias-Fernández R., Vicente-Carbajosa J. The AFL subfamily of B3 transcription factors: Evolution and function in angiosperm seeds. J. Exp. Bot. 2016;68:erw458. doi: 10.1093/jxb/erw458. PubMed DOI

Han J.-D., Li X., Jiang C.-K., Wong G.K.-S., Rothfels C.J., Rao G.-Y. Evolutionary analysis of the LAFL genes involved in the land plant seed maturation program. Front. Plant Sci. 2017;8:439. doi: 10.3389/fpls.2017.00439. PubMed DOI PMC

Roscoe T.T., Guilleminot J., Bessoule J.-J., Berger F., Devic M. Complementation of seed maturation phenotypes by ectopic expression of ABSCISIC ACID INSENSITIVE3, FUSCA3 and LEAFY COTYLEDON2 in Arabidopsis. Plant Cell Physiol. 2015;56:1215–1228. doi: 10.1093/pcp/pcv049. PubMed DOI

Cagliari A., Turchetto-Zolet A.C., Korbes A.P., Maraschin F.d.S., Margis R., Margis-Pinheiro M. New insights on the evolution of Leafy cotyledon1 (LEC1) type genes in vascular plants. Genomics. 2014;103:380–387. doi: 10.1016/j.ygeno.2014.03.005. PubMed DOI

Jia H., Suzuki M., McCarty D.R. Regulation of the seed to seedling developmental phase transition by the LAFL and VAL transcription factor networks. WIREs Dev. Biol. 2014;3:135–145. doi: 10.1002/wdev.126. PubMed DOI PMC

Lepiniec L., Devic M., Roscoe T.J., Bouyer D., Zhou D.-X., Boulard C., Baud S., Dubreucq B. Molecular and epigenetic regulations and functions of the LAFL transcriptional regulators that control seed development. Plant Reprod. 2018;31:291–307. doi: 10.1007/s00497-018-0337-2. PubMed DOI

Faria J.M.R., Buitink J., van Lammeren A.A.M., Hilhorst H.W.M. Changes in DNA and microtubules during loss and re-establishment of desiccation tolerance in germinating Medicago truncatula seeds. J. Exp. Bot. 2005;56:2119–2130. doi: 10.1093/jxb/eri210. PubMed DOI

Dekkers B.J.W., Costa M.C.D., Maia J., Bentsink L., Ligterink W., Hilhorst H.W.M. Acquisition and loss of desiccation tolerance in seeds: From experimental model to biological relevance. Planta. 2015;241:563–577. doi: 10.1007/s00425-014-2240-x. PubMed DOI

Smolikova G., Leonova T., Vashurina N., Frolov A., Medvedev S. Desiccation tolerance as the basis of long-term seed viability. Int. J. Mol. Sci. 2020;22:101. doi: 10.3390/ijms22010101. PubMed DOI PMC

Sano N., Lounifi I., Cueff G., Collet B., Clément G., Balzergue S., Huguet S., Valot B., Galland M., Rajjou L. Multi-omics approaches unravel specific features of embryo and endosperm in rice seed germination. Front. Plant Sci. 2022;13:867263. doi: 10.3389/fpls.2022.867263. PubMed DOI PMC

Buitink J., Ly Vu B., Satour P., Leprince O. The re-establishment of desiccation tolerance in germinated radicles of Medicago truncatula Gaertn. seeds. Seed Sci. Res. 2003;13:273–286. doi: 10.1079/SSR2003145. DOI

Tsukagoshi H., Saijo T., Shibata D., Morikami A., Nakamura K. Analysis of a sugar response mutant of Arabidopsis identified a novel B3 domain protein that functions as an active transcriptional repressor. Plant Physiol. 2005;138:675–685. doi: 10.1104/pp.104.057752. PubMed DOI PMC

Tsukagoshi H., Morikami A., Nakamura K. Two B3 domain transcriptional repressors prevent sugar-inducible expression of seed maturation genes in Arabidopsis seedlings. Proc. Natl. Acad. Sci. USA. 2007;104:2543–2547. doi: 10.1073/pnas.0607940104. PubMed DOI PMC

Zinsmeister J., Lalanne D., Ly Vu B., Schoefs B., Marchand J., Dang T.T., Buitink J., Leprince O. ABSCISIC ACID INSENSITIVE4 coordinates eoplast formation to ensure acquisition of seed longevity during maturation in Medicago truncatula. Plant J. 2023;113:934–953. doi: 10.1111/tpj.16091. PubMed DOI

Zinsmeister J., Lalanne D., Terrasson E., Chatelain E., Vandecasteele C., Vu B.L., Dubois-Laurent C., Geoffriau E., Signor C.L., Dalmais M., et al. ABI5 is a regulator of seed maturation and longevity in legumes. Plant Cell. 2016;28:2735–2754. doi: 10.1105/tpc.16.00470. PubMed DOI PMC

Molitor A.M., Bu Z., Yu Y., Shen W.-H. Arabidopsis AL PHD-PRC1 complexes promote seed germination through H3K4me3-to-H3K27me3 chromatin state switch in repression of seed developmental genes. PLoS Genet. 2014;10:e1004091. doi: 10.1371/journal.pgen.1004091. PubMed DOI PMC

Mozgova I., Köhler C., Hennig L. Keeping the gate closed: Functions of the polycomb repressive complex PRC2 in development. Plant J. 2015;83:121–132. doi: 10.1111/tpj.12828. PubMed DOI

Ding X., Jia X., Xiang Y., Jiang W. Histone modification and chromatin remodeling during the seed life cycle. Front. Plant Sci. 2022;13:865361. doi: 10.3389/fpls.2022.865361. PubMed DOI PMC

Xing M.-Q., Zhang Y.-J., Zhou S.-R., Hu W.-Y., Wu X.-T., Ye Y.-J., Wu X.-X., Xiao Y.-P., Li X., Xue H.-W. Global analysis reveals the crucial roles of DNA methylation during rice seed development. Plant Physiol. 2015;168:1417–1432. doi: 10.1104/pp.15.00414. PubMed DOI PMC

Michalak M., Plitta-Michalak B.P., Suszka J., Naskręt-Barciszewska M.Z., Kotlarski S., Barciszewski J., Chmielarz P. Identification of DNA methylation changes in European beech seeds during desiccation and storage. Int. J. Mol. Sci. 2023;24:3557. doi: 10.3390/ijms24043557. PubMed DOI PMC

An Y.C., Goettel W., Han Q., Bartels A., Liu Z., Xiao W. Dynamic changes of genome-wide DNA methylation during soybean seed development. Sci. Rep. 2017;7:12263. doi: 10.1038/s41598-017-12510-4. PubMed DOI PMC

Narsai R., Gouil Q., Secco D., Srivastava A., Karpievitch Y.V., Liew L.C., Lister R., Lewsey M.G., Whelan J. Extensive transcriptomic and epigenomic remodelling occurs during Arabidopsis thaliana germination. Genome Biol. 2017;18:172. doi: 10.1186/s13059-017-1302-3. PubMed DOI PMC

Bouyer D., Kramdi A., Kassam M., Heese M., Schnittger A., Roudier F., Colot V. DNA methylation dynamics during early plant life. Genome Biol. 2017;18:179. doi: 10.1186/s13059-017-1313-0. PubMed DOI PMC

Lee J., Lee S., Park K., Shin S.-Y., Frost J.M., Hsieh P.-H., Shin C., Fischer R.L., Hsieh T.-F., Choi Y. Distinct regulatory pathways contribute to dynamic CHH methylation patterns in transposable elements throughout Arabidopsis embryogenesis. Front. Plant Sci. 2023;14:1204279. doi: 10.3389/fpls.2023.1204279. PubMed DOI PMC

Li W.-Y., Chen B.-X., Chen Z.-J., Gao Y.-T., Chen Z., Liu J. Reactive oxygen species generated by NADPHoxidases promote radicle protrusion and root elongation during rice seed germination. Int. J. Mol. Sci. 2017;18:110. doi: 10.3390/ijms18010110. PubMed DOI PMC

Gomez-Cabellos S., Toorop P.E., Cañal M.J., Iannetta P.P.M., Fernández-Pascual E., Pritchard H.W., Visscher A.M. Global DNA methylation and cellular 5-methylcytosine and H4 acetylated patterns in primary and secondary dormant seeds of Capsella bursa-pastoris (L.) Medik. (shepherd’s purse) Protoplasma. 2022;259:595–614. doi: 10.1007/s00709-021-01678-2. PubMed DOI PMC

Dew-Budd K.J., Chow H.T., Kendall T., David B.C., Rozelle J.A., Mosher R.A., Beilstein M.A. Mating system is associated with seed phenotypes upon loss of RNA-directed DNA methylation in Brassicaceae. Plant Physiol. 2023:kiad622. doi: 10.1093/plphys/kiad622. PubMed DOI

Kawakatsu T., Nery J.R., Castanon R., Ecker J.R. Dynamic DNA methylation reconfiguration during seed development and germination. Genome Biol. 2017;18:171. doi: 10.1186/s13059-017-1251-x. PubMed DOI PMC

Bartels A., Han Q., Nair P., Stacey L., Gaynier H., Mosley M., Huang Q., Pearson J., Hsieh T.-F., An Y.-Q., et al. Dynamic DNA methylation in plant growth and development. Int. J. Mol. Sci. 2018;19:2144. doi: 10.3390/ijms19072144. PubMed DOI PMC

Kawakatsu T., Ecker J.R. Diversity and dynamics of DNA methylation: Epigenomic resources and tools for crop breeding. Breed. Sci. 2019;69:191–204. doi: 10.1270/jsbbs.19005. PubMed DOI PMC

Lin J.-Y., Le B.H., Chen M., Henry K.F., Hur J., Hsieh T.-F., Chen P.-Y., Pelletier J.M., Pellegrini M., Fischer R.L., et al. Similarity between soybean and Arabidopsis seed methylomes and loss of non-CG methylation does not affect seed development. Proc. Natl. Acad. Sci. USA. 2017;114:E9730–E9739. doi: 10.1073/pnas.1716758114. PubMed DOI PMC

Šimura J., Antoniadi I., Široká J., Tarkowská D., Strnad M., Ljung K., Novák O. Plant hormonomics: Multiple phytohormone profiling by targeted metabolomics. Plant Physiol. 2018;177:476–489. doi: 10.1104/pp.18.00293. PubMed DOI PMC

Ge S.X., Son E.W., Yao R. iDEP: An integrated web application for differential expression and pathway analysis of RNA-Seq data. BMC Bioinform. 2018;19:534. doi: 10.1186/s12859-018-2486-6. PubMed DOI PMC

Kreplak J., Madoui M., Cápal P., Novák P., Labadie K., Aubert G., Bayer P.E., Gali K.K., Syme R.A., Main D., et al. A reference genome for pea provides insight into legume genome evolution. Nat. Genet. 2019;51:1411–1422. doi: 10.1038/s41588-019-0480-1. PubMed DOI

Tian T., Liu Y., Yan H., You Q., Yi X., Du Z., Xu W., Su Z. agriGO v2.0: A GO analysis toolkit for the agricultural community, 2017 update. Nucleic Acids Res. 2017;45:W122–W129. doi: 10.1093/nar/gkx382. PubMed DOI PMC

Zhou W., Chen F., Luo X., Dai Y., Yang Y., Zheng C., Yang W., Shu K. A matter of life and death: Molecular, physiological, and environmental regulation of seed longevity. Plant. Cell Environ. 2020;43:293–302. doi: 10.1111/pce.13666. PubMed DOI

Graeber K., Nakabayashi K., Miatton E., Leubner-Metzger G., Soppe W.J.J. Molecular mechanisms of seed dormancy. Plant. Cell Environ. 2012;35:1769–1786. doi: 10.1111/j.1365-3040.2012.02542.x. PubMed DOI

Kanno Y., Jikumaru Y., Hanada A., Nambara E., Abrams S.R., Kamiya Y., Seo M. Comprehensive hormone profiling in developing Arabidopsis seeds: Examination of the site of ABA biosynthesis, ABA transport and hormone interactions. Plant Cell Physiol. 2010;51:1988–2001. doi: 10.1093/pcp/pcq158. PubMed DOI

Saito S., Hirai N., Matsumoto C., Ohigashi H., Ohta D., Sakata K., Mizutani M. Arabidopsis CYP707A s encode (+)-abscisic acid 8′-hydroxylase, a key enzyme in the oxidative catabolism of abscisic acid. Plant Physiol. 2004;134:1439–1449. doi: 10.1104/pp.103.037614. PubMed DOI PMC

Milborrow B.V., Vaughan G.T. Characterization of dihydrophaseic acid 4′-O-β-D-glucopyranoside as a major metabolite of abscisic acid. Funct. Plant Biol. 1982;9:361–372. doi: 10.1071/PP9820361. DOI

Cai W.-J., Zeng C., Zhang X.-Y., Ye T., Feng Y.-Q. A structure–guided screening strategy for the discovery and identification of potential gibberellins from plant samples using liquid chromatography–mass spectrometry assisted by chemical isotope labeling. Anal. Chim. Acta. 2021;1163:338505. doi: 10.1016/j.aca.2021.338505. PubMed DOI

Zeevaart J.A.D., Milborrow B. V Metabolism of abscisic acid and the occurrence of epi-dihydrophaseic acid in Phaseolus vulgaris. Phytochemistry. 1976;15:493–500. doi: 10.1016/S0031-9422(00)88955-4. DOI

Sharkey T.D., Raschke K. Effects of phaseic acid and dihydrophaseic acid on stomata and the photosynthetic apparatus. Plant Physiol. 1980;65:291–297. doi: 10.1104/pp.65.2.291. PubMed DOI PMC

Walker-Simmons M.K., Holappa L.D., Abrams G.D., Abrams S.R. ABA metabolites induce group 3 LEA mRNA and inhibit germination in wheat. Physiol. Plant. 1997;100:474–480. doi: 10.1111/j.1399-3054.1997.tb03051.x. DOI

Msanne J., Lin J., Stone J.M., Awada T. Characterization of abiotic stress-responsive Arabidopsis thaliana RD29A and RD29B genes and evaluation of transgenes. Planta. 2011;234:97–107. doi: 10.1007/s00425-011-1387-y. PubMed DOI

Liu W., Thapa P., Park S.-W. RD29A and RD29B rearrange genetic and epigenetic markers in priming systemic defense responses against drought and salinity. Plant Sci. 2023;337:111895. doi: 10.1016/j.plantsci.2023.111895. PubMed DOI

Medvedev S.S. Principles of calcium signal generation and transduction in plant cells. Russ. J. Plant Physiol. 2018;65:771–783. doi: 10.1134/S1021443718060109. DOI

Li J., Yang Y. How do plants maintain pH and ion homeostasis under saline-alkali stress? Front. Plant Sci. 2023;14:1217193. doi: 10.3389/fpls.2023.1217193. PubMed DOI PMC

Dyla M., Basse Hansen S., Nissen P., Kjaergaard M. Structural dynamics of P-type ATPase ion pumps. Biochem. Soc. Trans. 2019;47:1247–1257. doi: 10.1042/BST20190124. PubMed DOI

Sim S.I., Park E. P5-ATPases: Structure, substrate specificities, and transport mechanisms. Curr. Opin. Struct. Biol. 2023;79:102531. doi: 10.1016/j.sbi.2023.102531. PubMed DOI

Aguilar-Martínez J.A., Sinha N. Analysis of the role of Arabidopsis class I TCP genes AtTCP7, AtTCP8, AtTCP22, and AtTCP23 in leaf development. Front. Plant Sci. 2013;4:406. doi: 10.3389/fpls.2013.00406. PubMed DOI PMC

Ferrero L.V., Gastaldi V., Ariel F.D., Viola I.L., Gonzalez D.H. Class I TCP proteins TCP14 and TCP15 are required for elongation and gene expression responses to auxin. Plant Mol. Biol. 2021;105:147–159. doi: 10.1007/s11103-020-01075-y. PubMed DOI

Cubas P., Lauter N., Doebley J., Coen E. The TCP domain: A motif found in proteins regulating plant growth and development. Plant J. 1999;18:215–222. doi: 10.1046/j.1365-313X.1999.00444.x. PubMed DOI

Alem A.L., Ariel F.D., Cho Y., Hong J.C., Gonzalez D.H., Viola I.L. TCP15 interacts with GOLDEN2-LIKE1 to control cotyledon opening in Arabidopsis. Plant J. 2022;110:748–763. doi: 10.1111/tpj.15701. PubMed DOI

Reeves W.M., Lynch T.J., Mobin R., Finkelstein R.R. Direct targets of the transcription factors ABA-Insensitive(ABI)4 and ABI5 reveal synergistic action by ABI4 and several bZIP ABA response factors. Plant Mol. Biol. 2011;75:347–363. doi: 10.1007/s11103-011-9733-9. PubMed DOI PMC

Feng C., Chen Y., Wang C., Kong Y., Wu W., Chen Y. Arabidopsis RAV1 transcription factor, phosphorylated by SnRK2 kinases, regulates the expression of ABI3, ABI4, and ABI5 during seed germination and early seed development. Plant J. 2014;80:654–668. doi: 10.1111/tpj.12670. PubMed DOI

Li X., Zhong M., Qu L., Yang J., Liu X., Zhao Q., Liu X., Zhao X. AtMYB32 regulates the ABA response by targeting ABI3, ABI4 and ABI5 and the drought response by targeting CBF4 in Arabidopsis. Plant Sci. 2021;310:110983. doi: 10.1016/j.plantsci.2021.110983. PubMed DOI

Skubacz A., Daszkowska-Golec A., Szarejko I. The role and regulation of ABI5 (ABA-insensitive 5) in plant development, abiotic stress responses and phytohormone crosstalk. Front. Plant Sci. 2016;7:1884. doi: 10.3389/fpls.2016.01884. PubMed DOI PMC

Hu Y., Han X., Yang M., Zhang M., Pan J., Yu D. The transcription factor INDUCER OF CBF EXPRESSION1 interacts with ABSCISIC ACID INSENSITIVE5 and DELLA proteins to fine-tune abscisic acid signaling during seed germination in Arabidopsis. Plant Cell. 2019;31:1520–1538. doi: 10.1105/tpc.18.00825. PubMed DOI PMC

Zhao H., Nie K., Zhou H., Yan X., Zhan Q., Zheng Y., Song C. ABI5 modulates seed germination via feedback regulation of the expression of the PYR/PYL/RCAR ABA receptor genes. New Phytol. 2020;228:596–608. doi: 10.1111/nph.16713. PubMed DOI

Wei J., Li X., Song P., Wang Y., Ma J. Studies on the interactions of AFPs and bZIP transcription factor ABI5. Biochem. Biophys. Res. Commun. 2022;590:75–81. doi: 10.1016/j.bbrc.2021.12.046. PubMed DOI

Shu K., Chen Q., Wu Y., Liu R., Zhang H., Wang P., Li Y., Wang S., Tang S., Liu C., et al. ABI4 mediates antagonistic effects of abscisic acid and gibberellins at transcript and protein levels. Plant J. 2016;85:348–361. doi: 10.1111/tpj.13109. PubMed DOI

Maymon T., Eisner N., Bar-Zvi D. The ABCISIC ACID INSENSITIVE (ABI) 4 transcription factor is stabilized by stress, ABA and phosphorylation. Plants. 2022;11:2179. doi: 10.3390/plants11162179. PubMed DOI PMC

Gregorio J., Hernández-Bernal A.F., Cordoba E., León P. Characterization of evolutionarily conserved motifs involved in activity and regulation of the ABA-INSENSITIVE (ABI) 4 transcription factor. Mol. Plant. 2014;7:422–436. doi: 10.1093/mp/sst132. PubMed DOI

Shu K., Zhang H., Wang S., Chen M., Wu Y., Tang S., Liu C., Feng Y., Cao X., Xie Q. ABI4 regulates primary seed dormancy by regulating the biogenesis of abscisic acid and gibberellins in Arabidopsis. PLoS Genet. 2013;9:e1003577. doi: 10.1371/journal.pgen.1003577. PubMed DOI PMC

Tian R., Wang F., Zheng Q., Niza V.M.A.G.E., Downie A.B., Perry S.E. Direct and indirect targets of the Arabidopsis seed transcription factor ABSCISIC ACID INSENSITIVE3. Plant J. 2020;103:1679–1694. doi: 10.1111/tpj.14854. PubMed DOI

Yang Z., Liu X., Wang K., Li Z., Jia Q., Zhao C., Zhang M. ABA-INSENSITIVE 3 with or without FUSCA3 highly up-regulates lipid droplet proteins and activates oil accumulation. J. Exp. Bot. 2022;73:2077–2092. doi: 10.1093/jxb/erab524. PubMed DOI

Parcy F., Valon C., Kohara A., Misera S., Giraudat J. The ABSCISIC ACID-INSENSITIVE3, FUSCA3, AND LEAFY COTYLEDON1 loci act in concert to control multiple aspects of Arabidopsis seed development. Plant Cell. 1997;9:1265–1277. PubMed PMC

Dietz K.-J. Peroxiredoxins in plants and cyanobacteria. Antioxid. Redox Signal. 2011;15:1129–1159. doi: 10.1089/ars.2010.3657. PubMed DOI PMC

Chen H., Chu P., Zhou Y., Ding Y., Li Y., Liu J., Jiang L., Huang S. Ectopic expression of NnPER1, a Nelumbo nucifera 1-cysteine peroxiredoxin antioxidant, enhances seed longevity and stress tolerance in Arabidopsis. Plant J. 2016;88:608–619. doi: 10.1111/tpj.13286. PubMed DOI

Chen H., Ruan J., Chu P., Fu W., Liang Z., Li Y., Tong J., Xiao L., Liu J., Li C., et al. AtPER1 enhances primary seed dormancy and reduces seed germination by suppressing the ABA catabolism and GA biosynthesis in Arabidopsis seeds. Plant J. 2020;101:310–323. doi: 10.1111/tpj.14542. PubMed DOI

Haslekås C., Viken M.K., Grini P.E., Nygaard V., Nordgard S.H., Meza T.J., Aalen R.B. Seed 1-cysteine peroxiredoxin antioxidants are not involved in dormancy, but contribute to inhibition of germination during stress. Plant Physiol. 2003;133:1148–1157. doi: 10.1104/pp.103.025916. PubMed DOI PMC

Abdul Aziz M., Sabeem M., Mullath S.K., Brini F., Masmoudi K. Plant group II LEA proteins: Intrinsically disordered structure for multiple functions in response to environmental stresses. Biomolecules. 2021;11:1662. doi: 10.3390/biom11111662. PubMed DOI PMC

Jia F., Qi S., Li H., Liu P., Li P., Wu C., Zheng C., Huang J. Overexpression of Late Embryogenesis Abundant 14 enhances Arabidopsis salt stress tolerance. Biochem. Biophys. Res. Commun. 2014;454:505–511. doi: 10.1016/j.bbrc.2014.10.136. PubMed DOI

Weng J.-K., Ye M., Li B., Noel J.P. Co-evolution of hormone metabolism and signaling networks expands plant adaptive plasticity. Cell. 2016;166:881–893. doi: 10.1016/j.cell.2016.06.027. PubMed DOI

Song L., Huang S.C., Wise A., Castanon R., Nery J.R., Chen H., Watanabe M., Thomas J., Bar-Joseph Z., Ecker J.R. A transcription factor hierarchy defines an environmental stress response network. Science. 2016;354 doi: 10.1126/science.aag1550. PubMed DOI PMC

O’Malley R.C., Huang S.C., Song L., Lewsey M.G., Bartlett A., Nery J.R., Galli M., Gallavotti A., Ecker J.R. Cistrome and Epicistrome Features Shape the Regulatory DNA Landscape. Cell. 2016;165:1280–1292. doi: 10.1016/j.cell.2016.04.038. PubMed DOI PMC

Merelo P., Xie Y., Brand L., Ott F., Weigel D., Bowman J.L., Heisler M.G., Wenkel S. Genome-Wide Identification of KANADI1 Target Genes. PLoS One. 2013;8:e77341. doi: 10.1371/journal.pone.0077341. PubMed DOI PMC

Serrano-Mislata A., Bencivenga S., Bush M., Schiessl K., Boden S., Sablowski R. DELLA genes restrict inflorescence meristem function independently of plant height. Nat. Plants. 2017;3:749–754. doi: 10.1038/s41477-017-0003-y. PubMed DOI PMC

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...