Concept and Evolution in 3D Printing for Excellence in Healthcare
Jazyk angličtina Země Spojené arabské emiráty Médium print
Typ dokumentu časopisecké články, přehledy
Grantová podpora
2216/2023-2024
Excellence project PrF UHK
1/0387/22
VEGA
050TUKE-4/2022
KEGA
ITMS2014+: 313011V358
CEMBAM
PubMed
38265395
DOI
10.2174/0109298673262300231129102520
PII: CMC-EPUB-137638
Knihovny.cz E-zdroje
- Klíčová slova
- 3D bioprinting., 3D printed equipment, 3D printing techniques, COVID-19 treatment, DOP, EHD, EMP, SLS, drug delivery system, inkjet, personalized medicines, vat photopolymerization,
- MeSH
- 3D tisk * trendy MeSH
- bioprinting MeSH
- COVID-19 MeSH
- farmaceutický průmysl MeSH
- lidé MeSH
- poskytování zdravotní péče * MeSH
- SARS-CoV-2 MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Three-dimensional printing (3DP) has gained popularity among scientists and researchers in every field due to its potential to drastically reduce energy costs for the production of customized products by utilizing less energy-intensive machines as well as minimizing material waste. The 3D printing technology is an additive manufacturing approach that uses material layer-by-layer fabrication to produce the digitally specified 3D model. The use of 3D printing technology in the pharmaceutical sector has the potential to revolutionize research and development by providing a quick and easy means to manufacture personalized one-off batches, each with unique dosages, distinct substances, shapes, and sizes, as well as variable release rates. This overview addresses the concept of 3D printing, its evolution, and its operation, as well as the most popular types of 3D printing processes utilized in the health care industry. It also discusses the application of these cutting-edge technologies to the pharmaceutical industry, advancements in various medical fields and medical equipment, 3D bioprinting, the most recent initiatives to combat COVID-19, regulatory frameworks, and the major challenges that this technology currently faces. In addition, we attempt to provide some futuristic approaches to 3DP applications.
Zobrazit více v PubMed
Gebhardt A.; Understanding Additive Manufacturing 2011,I-IX DOI
Rui Y.; Gang X.; Shuang-Shuang M.; Hua-Yu Y.; Xin-Ting S.; Wei S.; Yi-Lei M.; Three-dimensional printing: review of application in medicine and hepatic surgery. Cancer Biol Med 2016,13(4),443-451 PubMed DOI
Davim J.P.; Machining: Fundamentals and recent advances 2008,i-xiii
Hull C.W.; Arcadia C.; Apparatus for production of three- dimensional objects by stereolithography. 1984
Chuck Hull and Stereolithography Available from: https://spie.org/news/spie-professional-magazine-arc hive/2013-january/chuck-hull?SSO=1 (Accessed on : 04 Aug 2023). 2023
Pandey M.; Choudhury H.; Fern J.L.C.; Kee A.T.K.; Kou J.; Jing J.L.J.; Her H.C.; Yong H.S.; Ming H.C.; Bhattamisra S.K.; Gorain B.; 3D printing for oral drug delivery: A new tool to customize drug delivery. Drug Deliv Transl Res 2020,10(4),986-1001 PubMed DOI
Fitzgerald S.; FDA approves first 3D-printed epilepsy drug experts assess the benefits and caveats. Neurol Today 2015,15(18),26-27 DOI
Chen G.; Xu Y.; Chi Lip Kwok P.; Kang L.; Pharmaceutical applications of 3D printing. Addit Manuf 2020,34,101209 DOI
Kalkal A.; Allawadhi P.; Kumar P.; Sehgal A.; Verma A.; Pawar K.; Pradhan R.; Paital B.; Packirisamy G.; Sensing and 3D printing technologies in personalized healthcare for the management of health crises including the COVID-19 outbreak. Sensors Int 2022,3,100180 PubMed DOI
Agarwal R.; The personal protective equipment fabricated via 3D printing technology during COVID-19. Ann 3D Print Med 2022,5,100042
Nazir A.; Azhar A.; Nazir U.; Liu Y.F.; Qureshi W.S.; Chen J.E.; Alanazi E.; The rise of 3D printing entangled with smart computer aided design during COVID-19 era. J Manuf Syst 2021,60,774-786 PubMed DOI
Ishack S.; Lipner S.R.; Applications of 3D printing technology to address COVID-19-related supply shortages. Am J Med 2020,133(7),771-773 PubMed DOI
El Aita I.; Ponsar H.; Quodbach J.; A critical review on 3D-printed dosage forms. Curr Pharm Des 2019,24(42),4957-4978 PubMed DOI
Litman T.; Personalized medicine-concepts, technologies, and applications in inflammatory skin diseases. Acta Pathol Microbiol Scand Suppl 2019,127(5),386-424 PubMed DOI
Raijada D.; Wac K.; Greisen E.; Rantanen J.; Genina N.; Integration of personalized drug delivery systems into digital health. Adv Drug Deliv Rev 2021,176,113857 PubMed DOI
Zhu X.; Li H.; Huang L.; Zhang M.; Fan W.; Cui L.; 3D printing promotes the development of drugs. Biomed Pharmacother 2020,131,110644 PubMed DOI
Zheng Y.; Deng F.; Wang B.; Wu Y.; Luo Q.; Zuo X.; Liu X.; Cao L.; Li M.; Lu H.; Cheng S.; Li X.; Melt extrusion deposition (MED™) 3D printing technology - A paradigm shift in design and development of modified release drug products. Int J Pharm 2021,602,120639 PubMed DOI
Raju S.; Reddy P.S.; Kumar V.A.; Deepthi A.; Reddy K.S.; Reddy P.M.J.J.C.P.R.; Flash release oral films of metoclopramide hydrochloride for pediatric use: Formulation and in-vitro evaluation. J Chem Pharm Res 2011,3(4),636-646
Hsu M.N.; Luo R.; Kwek K.Z.; Por Y.C.; Zhang Y.; Chen C.H.; Sustained release of hydrophobic drugs by the microfluidic assembly of multistage microgel/poly (lactic-co-glycolic acid) nanoparticle composites. Biomicrofluidics 2015,9(5),052601 PubMed DOI
Kalepu S.; Nekkanti V.; Insoluble drug delivery strategies: Review of recent advances and business prospects. Acta Pharm Sin B 2015,5(5),442-453 PubMed DOI
Fuhrmann K.; Schulz J.D.; Gauthier M.A.; Leroux J.C.; PEG nanocages as non-sheddable stabilizers for drug nanocrystals. ACS Nano 2012,6(2),1667-1676 PubMed DOI
Larrañeta E.; Stewart S.; Ervine M.; Al-Kasasbeh R.; Donnelly R.F.; Hydrogels for hydrophobic drug delivery. Classification, synthesis and applications. J Funct Biomater 2018,9(1),13
González K.; Larraza I.; Berra G.; Eceiza A.; Gabilondo N.; 3D printing of customized all-starch tablets with combined release kinetics. Int J Pharm 2022,622,121872 PubMed DOI
Mathur S.; Sutton J.; Personalized medicine could transform healthcare. Biomed Rep 2017,7(1),3-5 PubMed DOI
Savini A.; Savini G.G.; A short history of 3D printing, a technological revolution just started. 2015 ICOHTEC/IEEE International History of High-Technologies and their Socio-Cultural Contexts Conference (HISTELCON) 2015,1-8
Su A.; Al’Aref S.J.; 3D Printing Applications in Cardiovascular Medicine 2018,1-10
Prasad L.K.; Smyth H.; 3D Printing technologies for drug delivery: A review. Drug Dev Ind Pharm 2016,42(7),1019-1031 PubMed DOI
Vaz V.M.; Kumar L.; 3D printing as a promising tool in personalized medicine. AAPS PharmSciTech 2021,22(1),49 PubMed DOI
Mohapatra S.; Kar R.K.; Biswal P.K.; Bindhani S.; Approaches of 3D printing in current drug delivery. Sensors Int 2022,3,100146 DOI
Jiménez M.; Romero L.; Domínguez I.A.; Espinosa M.M.; Domínguez M.; Additive manufacturing technologies: An overview about 3D printing methods and future prospects. Complexity 2019,2019,1-30 DOI
Water J.J.; Bohr A.; Boetker J.; Aho J.; Sandler N.; Nielsen H.M.; Rantanen J.; Three-dimensional printing of drug-eluting implants: Preparation of an antimicrobial polylactide feedstock material. J Pharm Sci 2015,104(3),1099-1107 PubMed DOI
Ballard D.H.; Trace A.P.; Ali S.; Hodgdon T.; Zygmont M.E.; DeBenedectis C.M.; Smith S.E.; Richardson M.L.; Patel M.J.; Decker S.J.; Lenchik L.; Clinical applications of 3D printing: Primer for radiologists. Acad Radiol 2018,25(1),52-65 PubMed DOI
ISO/ASTM 52900:2015 - Additive manufacturing - General principles - Terminology Available from: https://www.iso.org/standard/69669.html
Trenfield S.J.; Madla C.M.; Basit A.W.; Gaisford S.; Binder jet printing in pharmaceutical manufacturing. 3D Printing of Pharmaceuticals 2018,41-54 DOI
Hsiao W.K.; Lorber B.; Reitsamer H.; Khinast J.; 3D printing of oral drugs: A new reality or hype? Expert Opin Drug Deliv 2018,15(1),1-4 PubMed DOI
Chia H.N.; Wu B.M.; Recent advances in 3D printing of biomaterials. J Biol Eng 2015,9(1),4 PubMed DOI
Tabriz A.G.; Douroumis D.; Recent advances in 3D printing for wound healing: A systematic review. J Drug Deliv Sci Technol 2022,74,103564 DOI
Peterson G.I.; Larsen M.B.; Ganter M.A.; Storti D.W.; Boydston A.J.; 3D-printed mechanochromic materials. ACS Appl Mater Interfaces 2015,7(1),577-583 PubMed DOI
Anciaux S.K.; Geiger M.; Bowser M.T.; 3D printed micro free-flow electrophoresis device. Anal Chem 2016,88(15),7675-7682 PubMed DOI
Ventola C.L.; Medical applications for 3D printing: Current and projected uses. Pharm Ther 2014,39(10),704-711 PubMed
Cho H-W.; Baek S-H.; Lee B-J.; Jin H-E.; Orodispersible polymer films with the poorly water-soluble drug, olanzapine: Hot-melt pneumatic extrusion for single-process 3D printing. Pharmaceutics 2020,12(8),692
Ambrosi A.; Pumera M.; 3D-printing technologies for electrochemical applications. Chem Soc Rev 2016,45(10),2740-2755 PubMed DOI
Mendibil X.; Tena G.; Duque A.; Uranga N.; Campanero M.Á.; Alonso J.; Direct powder extrusion of paracetamol loaded mixtures for 3D printed pharmaceutics for personalized medicine via low temperature thermal processing. Pharmaceutics 2021,13(6),907
Gültekin H.E.; Tort S.; Acartürk F.; An effective technology for the development of immediate release solid dosage forms containing low-dose drug: Fused deposition modeling 3D printing. Pharm Res 2019,36(9),128 PubMed DOI
Bhusnure, O.G.; Gholve, S.V.; Sugave, B.K.; Dongre, R.C.; Gore, S.A.; Giram, P.S 3D printing and pharmaceutical manufacturing: Opportunities and challenges. Int J Bioassays 2016,5(1),4723 DOI
Zhao Z.; Kuang X.; Yuan C.; Qi H.J.; Fang D.; Hydrophilic/hydrophobic composite shape-shifting structures. ACS Appl Mater Interfaces 2018,10(23),19932-19939 PubMed DOI
Wang J.; Zhang Y.; Aghda N.H.; Pillai A.R.; Thakkar R.; Nokhodchi A.; Maniruzzaman M.; Emerging 3D printing technologies for drug delivery devices: Current status and future perspective. Adv Drug Deliv Rev 2021,174,294-316 PubMed DOI
Bloomquist C.J.; Mecham M.B.; Paradzinsky M.D.; Janusziewicz R.; Warner S.B.; Luft J.C.; Mecham S.J.; Wang A.Z.; DeSimone J.M.; Controlling release from 3D printed medical devices using CLIP and drug-loaded liquid resins. J Control Release 2018,278,9-23 PubMed DOI
Xu X.; Awad A.; Robles-Martinez P.; Gaisford S.; Goyanes A.; Basit A.W.; Vat photopolymerization 3D printing for advanced drug delivery and medical device applications. J Control Release 2021,329,743-757 PubMed DOI
Awad A.; Trenfield S.J.; Goyanes A.; Gaisford S.; Basit A.W.; Reshaping drug development using 3D printing. Drug Discov Today 2018,23(8),1547-1555 PubMed DOI
Voet V.S.D.; Strating T.; Schnelting G.H.M.; Dijkstra P.; Tietema M.; Xu J.; Woortman A.J.J.; Loos K.; Jager J.; Folkersma R.; Biobased acrylate photocurable resin formulation for stereolithography 3D printing. ACS Omega 2018,3(2),1403-1408 PubMed DOI
Lamichhane S.; Bashyal S.; Keum T.; Noh G.; Seo J.E.; Bastola R.; Choi J.; Sohn D.H.; Lee S.; Complex formulations, simple techniques: Can 3D printing technology be the Midas touch in pharmaceutical industry? Asian J Pharmaceut Sci 2019,14(5),465-479 PubMed DOI
Robles Martinez P.; Basit A.W.; Gaisford S.; The history, developments and opportunities of stereolithography. 3D Printing of Pharmaceuticals 2018,Vol. 31,55-79 DOI
Martinez P.R.; Goyanes A.; Basit A.W.; Gaisford S.; Fabrication of drug-loaded hydrogels with stereolithographic 3D printing. Int J Pharm 2017,532(1),313-317 PubMed DOI
Melchels F.P.W.; Feijen J.; Grijpma D.W.; A review on stereolithography and its applications in biomedical engineering. Biomaterials 2010,31(24),6121-6130 PubMed DOI
Healy A.V.; Fuenmayor E.; Doran P.; Geever L.M.; Higginbotham C.L.; Lyons J.G.; Additive manufacturing of personalized pharmaceutical dosage forms via stereolithography. Pharmaceutics 2019,11(12),645
Martinez P.R.; Goyanes A.; Basit A.W.; Gaisford S.; Influence of geometry on the drug release profiles of stereolithographic (SLA) 3D-printed tablets. AAPS PharmSciTech 2018,19(8),3355-3361 PubMed DOI
Economidou S.N.; Lamprou D.A.; Douroumis D.; 3D printing applications for transdermal drug delivery. Int J Pharm 2018,544(2),415-424 PubMed DOI
Yeung C.; Chen S.; King B.; Lin H.; King K.; Akhtar F.; Diaz G.; Wang B.; Zhu J.; Sun W.; Khademhosseini A.; Emaminejad S.; A 3D-printed microfluidic-enabled hollow microneedle architecture for transdermal drug delivery. Biomicrofluidics 2019,13(6),064125 PubMed DOI
Wang P.; Berry D.; Moran A.; He F.; Tam T.; Chen L.; Chen S.; Controlled growth factor release in 3D-printed hydrogels. Adv Healthc Mater 2020,9(15),1900977 PubMed DOI
Wang Z.; Kumar H.; Tian Z.; Jin X.; Holzman J.F.; Menard F.; Kim K.; Visible light photoinitiation of cell-adhesive gelatin methacryloyl hydrogels for stereolithography 3D bioprinting. ACS Appl Mater Interfaces 2018,10(32),26859-26869 PubMed DOI
Liu S.; Yeo D.C.; Wiraja C.; Tey H.L.; Mrksich M.; Xu C.; Peptide delivery with poly(ethylene glycol) diacrylate microneedles through swelling effect. Bioeng Transl Med 2017,2(3),258-267 PubMed DOI
Goole J.; Amighi K.; 3D printing in pharmaceutics: A new tool for designing customized drug delivery systems. Int J Pharm 2016,499(1-2),376-394 PubMed DOI
Ligon S.C.; Liska R.; Stampfl J.; Gurr M.; Mülhaupt R.; Polymers for 3D printing and customized additive manufacturing. Chem Rev 2017,117(15),10212-10290 PubMed DOI
Yang Y.; Zhou Y.; Lin X.; Yang Q.; Yang G.; Printability of external and internal structures based on digital light processing 3D printing technique. Pharmaceutics 2020,12(3),207
Zhang J.; Hu Q.; Wang S.; Tao J.; Gou M.; Digital light processing based three-dimensional printing for medical applications. Int J Bioprint 1970,6(1),242 PubMed DOI
DeSimone J.M.; Samulski E.T.; Rolland J.P.; Methods and apparatus for continuous liquid interface production with rotation. 2020
Taki K.; A simplified 2D numerical simulation of photopolymerization kinetics and oxygen diffusion-reaction for the continuous liquid interface production (CLIP) system. Polymers 2020,12(4),875 PubMed DOI
Janusziewicz R.; Tumbleston J.R.; Quintanilla A.L.; Mecham S.J.; DeSimone J.M.; Layerless fabrication with continuous liquid interface production. Proc Natl Acad Sci 2016,113(42),11703-11708 PubMed DOI
Caudill C.L.; Perry J.L.; Tian S.; Luft J.C.; DeSimone J.M.; Spatially controlled coating of continuous liquid interface production microneedles for transdermal protein delivery. J Control Release 2018,284,122-132 PubMed DOI
Geng Q.; Wang D.; Chen P.; Chen S.C.; Ultrafast multi- focus 3-D nano-fabrication based on two-photon polymerization. Nat Commun 2019,10(1),2179 PubMed DOI
Xing J.F.; Zheng M.L.; Duan X.M.; Two-photon polymerization microfabrication of hydrogels: an advanced 3D printing technology for tissue engineering and drug delivery. Chem Soc Rev 2015,44(15),5031-5039 PubMed DOI
Shavkuta B.; Bardakova K.; Khristidis Y.; Minaev N.V.; Frolova A.; Kotova S.; Aksenova N.; Heydari Z.; Semenova E.; Khlebnikova T.; Golubeva E.N.; Kostjuk S.; Vosough M.; Timashev P.S.; Shpichka A.I.; Approach to tune drug release in particles fabricated from methacrylate functionalized polylactides. Mol Syst Des Eng 2021,6(3),202-213 DOI
Cordeiro A.S.; Tekko I.A.; Jomaa M.H.; Vora L.; McAlister E.; Volpe-Zanutto F.; Nethery M.; Baine P.T.; Mitchell N.; McNeill D.W.; Donnelly R.F.; Two-photon polymerisation 3D printing of microneedle array templates with versatile designs: Application in the development of polymeric drug delivery systems. Pharm Res 2020,37(9),174 PubMed DOI
Do A.V.; Worthington K.S.; Tucker B.A.; Salem A.K.; Controlled drug delivery from 3D printed two-photon polymerized poly(ethylene glycol) dimethacrylate devices. Int J Pharm 2018,552(1-2),217-224 PubMed DOI
Giri B.R.; Song E.S.; Kwon J.; Lee J-H.; Park J-B.; Kim D.W.; Fabrication of intragastric floating, controlled release 3D printed theophylline tablets using hot-melt extrusion and fused deposition modeling. Pharmaceutics 2020,12(1),77
Awad A.; Fina F.; Goyanes A.; Gaisford S.; Basit A.W.; 3D printing: Principles and pharmaceutical applications of selective laser sintering. Int J Pharm 2020,586,119594 PubMed DOI
Jamróz W.; Szafraniec J.; Kurek M.; Jachowicz R.; 3D printing in pharmaceutical and medical applications - Recent achievements and challenges. Pharm Res 2018,35(9),176 PubMed DOI
Leong K.F.; Chua C.K.; Gui W.S.; Verani ; Building porous biopolymeric microstructures for controlled drug delivery devices using selective laser sintering. Int J Adv Manuf Technol 2006,31(5-6),483-489 DOI
Fina F.; Goyanes A.; Gaisford S.; Basit A.W.; Selective laser sintering (SLS) 3D printing of medicines. Int J Pharm 2017,529(1-2),285-293 PubMed DOI
Tolochko N.; Mozzharov S.; Laoui T.; Froyen L.; Selective laser sintering of single- and two-component metal powders. Rapid Prototyping J 2003,9(2),68-78 DOI
Williams J.M.; Adewunmi A.; Schek R.M.; Flanagan C.L.; Krebsbach P.H.; Feinberg S.E.; Hollister S.J.; Das S.; Bone tissue engineering using polycaprolactone scaffolds fabricated via selective laser sintering. Biomaterials 2005,26(23),4817-4827 PubMed DOI
Shi Y.; Pan T.; Zhu W.; Yan C.; Xia Z.; Artificial bone scaffolds of coral imitation prepared by selective laser sintering. J Mech Behav Biomed Mater 2020,104,103664 PubMed DOI
Shuai C.; Gao C.; Nie Y.; Hu H.; Zhou Y.; Peng S.; Structure and properties of nano-hydroxypatite scaffolds for bone tissue engineering with a selective laser sintering system. Nanotechnology 2011,22(28),285703 PubMed DOI
Bertrand P.; Bayle F.; Combe C.; Goeuriot P.; Smurov I.; Ceramic components manufacturing by selective laser sintering. Appl Surf Sci 2007,254(4),989-992 DOI
Hamed R.; Mohamed E.M.; Rahman Z.; Khan M.A.; 3D-printing of lopinavir printlets by selective laser sintering and quantification of crystalline fraction by XRPD-chemometric models. Int J Pharm 2021,592,120059 PubMed DOI
Cui M.; Pan H.; Su Y.; Fang D.; Qiao S.; Ding P.; Pan W.; Opportunities and challenges of three-dimensional printing technology in pharmaceutical formulation development. Acta Pharm Sin B 2021,11(8),2488-2504 PubMed DOI
Thakkar R.; Pillai A.R.; Zhang J.; Zhang Y.; Kulkarni V.; Maniruzzaman M.; Novel on-demand 3-dimensional (3-D) printed tablets using fill density as an effective release-controlling tool. Polymers 2020,12(9),1872
Beck R.C.R.; Chaves P.S.; Goyanes A.; Vukosavljevic B.; Buanz A.; Windbergs M.; Basit A.W.; Gaisford S.; 3D printed tablets loaded with polymeric nanocapsules: An innovative approach to produce customized drug delivery systems. Int J Pharm 2017,528(1-2),268-279 PubMed DOI
Melocchi A.; Parietti F.; Loreti G.; Maroni A.; Gazzaniga A.; Zema L.; 3D printing by fused deposition modeling (FDM) of a swellable/erodible capsular device for oral pulsatile release of drugs. J Drug Deliv Sci Technol 2015,30,360-367 DOI
Goyanes A.; Buanz A.B.M.; Basit A.W.; Gaisford S.; Fused-filament 3D printing (3DP) for fabrication of tablets. Int J Pharm 2014,476(1-2),88-92 PubMed DOI
Khorasani M.; Edinger M.; Raijada D.; Bøtker J.; Aho J.; Rantanen J.; Near-infrared chemical imaging (NIR-CI) of 3D printed pharmaceuticals. Int J Pharm 2016,515(1-2),324-330 PubMed DOI
Melocchi A.; Parietti F.; Maroni A.; Foppoli A.; Gazzaniga A.; Zema L.; Hot-melt extruded filaments based on pharmaceutical grade polymers for 3D printing by fused deposition modeling. Int J Pharm 2016,509(1-2),255-263 PubMed DOI
Shaqour B.; Reigada I.; Górecka Ż.; Choińska E.; Verleije B.; Beyers K.; Święszkowski W.; Fallarero A.; Cos P.; 3D-printed drug delivery systems: The effects of drug incorporation methods on their release and antibacterial efficiency. Materials 2020,13(15),3364
Zhang J.; Feng X.; Patil H.; Tiwari R.V.; Repka M.A.; Coupling 3D printing with hot-melt extrusion to produce controlled-release tablets. Int J Pharm 2017,519(1-2),186-197 PubMed DOI
Verstraete G.; Samaro A.; Grymonpré W.; Vanhoorne V.; Van Snick B.; Boone M.N.; Hellemans T.; Van Hoorebeke L.; Remon J.P.; Vervaet C.; 3D printing of high drug loaded dosage forms using thermoplastic polyurethanes. Int J Pharm 2018,536(1),318-325 PubMed DOI
Awad A.; Trenfield S.J.; Gaisford S.; Basit A.W.; 3D printed medicines: A new branch of digital healthcare. Int J Pharm 2018,548(1),586-596 PubMed DOI
Araújo M.R.P.; Sa-Barreto L.L.; Gratieri T.; Gelfuso G.M.; Cunha-Filho M.; The digital pharmacies era: How 3D printing technology using fused deposition modeling can become a reality. Pharmaceutics 2019,11(3),128
Goyanes A.; Buanz A.B.M.; Hatton G.B.; Gaisford S.; Basit A.W.; 3D printing of modified-release aminosalicylate (4-ASA and 5-ASA) tablets. Eur J Pharm Biopharm 2015,89,157-162 PubMed DOI
Kollamaram G.; Croker D.M.; Walker G.M.; Goyanes A.; Basit A.W.; Gaisford S.; Low temperature fused deposition modeling (FDM) 3D printing of thermolabile drugs. Int J Pharm 2018,545(1-2),144-152 PubMed DOI
Pereira B.C.; Isreb A.; Forbes R.T.; Dores F.; Habashy R.; Petit J.B.; Alhnan M.A.; Oga E.F.; ‘Temporary Plasticiser’: A novel solution to fabricate 3D printed patient-centred cardiovascular ‘Polypill’ architectures. Eur J Pharm Biopharm 2019,135,94-103 PubMed DOI
Kempin W.; Domsta V.; Grathoff G.; Brecht I.; Semmling B.; Tillmann S.; Weitschies W.; Seidlitz A.; Immediate release 3D-printed tablets produced via fused deposition modeling of a thermo-sensitive drug. Pharm Res 2018,35(6),124 PubMed DOI
Fanous M.; Gold S.; Muller S.; Hirsch S.; Ogorka J.; Imanidis G.; Simplification of fused deposition modeling 3D-printing paradigm: Feasibility of 1-step direct powder printing for immediate release dosage form production. Int J Pharm 2020,578,119124 PubMed DOI
El Aita I.; Breitkreutz J.; Quodbach J.; On-demand manufacturing of immediate release levetiracetam tablets using pressure-assisted microsyringe printing. Eur J Pharm Biopharm 2019,134,29-36 PubMed DOI
Cheng Y.; Qin H.; Acevedo N.C.; Jiang X.; Shi X.; 3D printing of extended-release tablets of theophylline using hydroxypropyl methylcellulose (HPMC) hydrogels. Int J Pharm 2020,591,119983 PubMed DOI
Khaled S.A.; Burley J.C.; Alexander M.R.; Roberts C.J.; Desktop 3D printing of controlled release pharmaceutical bilayer tablets. Int J Pharm 2014,461(1-2),105-111 PubMed DOI
Zema L.; Melocchi A.; Maroni A.; Gazzaniga A.; Three- dimensional printing of medicinal products and the challenge of personalized therapy. J Pharm Sci 2017,106(7),1697-1705 PubMed DOI
Dores F.; Kuźmińska M.; Soares C.; Bohus M.; A Shervington L.; Habashy R.; Pereira B.C.; Peak M.; Isreb A.; Alhnan M.A.; Temperature and solvent facilitated extrusion based 3D printing for pharmaceuticals. Eur J Pharm Sci 2020,152,105430 PubMed DOI
Kotta S.; Nair A.; Alsabeelah N.; 3D printing technology in drug delivery: Recent progress and application. Curr Pharm Des 2019,24(42),5039-5048 PubMed DOI
Azizi Machekposhti S.; Mohaved S.; Narayan R.J.; Inkjet dispensing technologies: Recent advances for novel drug discovery. Expert Opin Drug Discov 2019,14(2),101-113 PubMed DOI
Daly R.; Harrington T.S.; Martin G.D.; Hutchings I.M.; Inkjet printing for pharmaceutics - A review of research and manufacturing. Int J Pharm 2015,494(2),554-567 PubMed DOI
Içten E.; Giridhar A.; Taylor L.S.; Nagy Z.K.; Reklaitis G.V.; Dropwise additive manufacturing of pharmaceutical products for melt-based dosage forms. J Pharm Sci 2015,104(5),1641-1649 PubMed DOI
Alomari M.; Mohamed F.H.; Basit A.W.; Gaisford S.; personalized dosing: Printing a dose of one’s own medicine. Int J Pharm 2015,494(2),568-577 PubMed DOI
Acosta-Vélez G.F.; Wu B.; 3D pharming: Direct printing of personalized pharmaceutical tablets. Polym Sci 2016,2(1),11
Vadodaria S.; Mills T.; Jetting-based 3D printing of edible materials. Food Hydrocoll 2020,106,105857 DOI
Kollamaram G.; Hopkins S.C.; Glowacki B.A.; Croker D.M.; Walker G.M.; Inkjet printing of paracetamol and indomethacin using electromagnetic technology: Rheological compatibility and polymorphic selectivity. Eur J Pharm Sci 2018,115,248-257 PubMed DOI
Ehtezazi T.; Dempster N.M.; Martin G.D.; Hoath S.D.; Hutchings I.M.; Development of high-throughput glass inkjet devices for pharmaceutical applications. J Pharm Sci 2014,103(11),3733-3742 PubMed DOI
Clark E.A.; Alexander M.R.; Irvine D.J.; Roberts C.J.; Wallace M.J.; Sharpe S.; Yoo J.; Hague R.J.M.; Tuck C.J.; Wildman R.D.; 3D printing of tablets using inkjet with UV photoinitiation. Int J Pharm 2017,529(1-2),523-530 PubMed DOI
Yuan S.; Shen F.; Chua C.K.; Zhou K.; Polymeric composites for powder-based additive manufacturing: Materials and applications. Prog Polym Sci 2019,91,141-168 DOI
Aulton M.E.; Taylor K.; Aulton’s pharmaceutics: The design and manufacture of medicines 2013,894
Yu D.G.; Zhu L.M.; Branford-White C.J.; Yang X.L.; Three-dimensional printing in pharmaceutics: Promises and problems. J Pharm Sci 2008,97(9),3666-3690 PubMed DOI
Vithani K.; Goyanes A.; Jannin V.; Basit A.W.; Gaisford S.; Boyd B.J.; An overview of 3D printing technologies for soft materials and potential opportunities for lipid-based drug delivery systems. Pharm Res 2019,36(1),4 PubMed DOI
Wang C-C.; Tejwani Motwani M.R.; Roach W.J.; Kay J.L.; Yoo J.; Surprenant H.L.; Monkhouse D.C.; Pryor T.J.; Development of near zero-order release dosage forms using three-dimensional printing (3-DP) technology. Drug Dev Ind Pharm 2006,32(3),367-376 PubMed DOI
Kolakovic R.; Viitala T.; Ihalainen P.; Genina N.; Peltonen J.; Sandler N.; Printing technologies in fabrication of drug delivery systems. Expert Opin Drug Deliv 2013,10(12),1711-1723 PubMed DOI
Buanz A.B.M.; Saunders M.H.; Basit A.W.; Gaisford S.; Preparation of personalized-dose salbutamol sulphate oral films with thermal ink-jet printing. Pharm Res 2011,28(10),2386-2392 PubMed DOI
Wilts E.M.; Ma D.; Bai Y.; Williams C.B.; Long T.E.; Comparison of linear and 4-Arm star poly(vinyl pyrrolidone) for aqueous binder jetting additive manufacturing of personalized dosage tablets. ACS Appl Mater Interfaces 2019,11(27),23938-23947 PubMed DOI
Infanger S.; Haemmerli A.; Iliev S.; Baier A.; Stoyanov E.; Quodbach J.; Powder bed 3D-printing of highly loaded drug delivery devices with hydroxypropyl cellulose as solid binder. Int J Pharm 2019,555,198-206 PubMed DOI
Trenfield S.J.; Awad A.; Madla C.M.; Hatton G.B.; Firth J.; Goyanes A.; Gaisford S.; Basit A.W.; Shaping the future: Recent advances of 3D printing in drug delivery and healthcare. Expert Opin Drug Deliv 2019,16(10),1081-1094 PubMed DOI
Elele E.; Shen Y.; Susarla R.; Khusid B.; Keyvan G.; Michniak-Kohn B.; Electrodeless electrohydrodynamic drop-on-demand encapsulation of drugs into porous polymer films for fabrication of personalized dosage units. J Pharm Sci 2012,101(7),2523-2533 PubMed DOI
Meléndez P.A.; Kane K.M.; Ashvar C.S.; Albrecht M.; Smith P.A.; Thermal inkjet application in the preparation of oral dosage forms: Dispensing of prednisolone solutions and polymorphic characterization by solid-state spectroscopic techniques. J Pharm Sci 2008,97(7),2619-2636 PubMed DOI
Goodall S.; Chew N.; Chan K.; Auriac D.; Waters M.J.; Aerosolization of protein solutions using thermal inkjet technology. J Aerosol Med 2002,15(3),351-357 PubMed DOI
Lee K.J.; Kang A.; Delfino J.J.; West T.G.; Chetty D.; Monkhouse D.C.; Yoo J.; Evaluation of critical formulation factors in the development of a rapidly dispersing captopril oral dosage form. Drug Dev Ind Pharm 2003,29(9),967-979 PubMed DOI
Wang B.; Wu S.; Ahmad Z.; Li J.; Chang M.W.; Co-printing of vertical axis aligned micron-scaled filaments via simultaneous dual needle electrohydrodynamic printing. Eur Polym J 2018,104,81-89 DOI
Wu S.; Ahmad Z.; Li J.S.; Chang M.W.; Fabrication of flexible composite drug films via foldable linkages using electrohydrodynamic printing. Mater Sci Eng C 2020,108,110393 PubMed DOI
Yao Z.C.; Wang J.C.; Ahmad Z.; Li J.S.; Chang M.W.; Fabrication of patterned three-dimensional micron scaled core-sheath architectures for drug patches. Mater Sci Eng C 2019,97,776-783 PubMed DOI
Li X.; Zhang C.; Wu S.; Chen X.; Mai J.; Chang M.W.; Precision printing of customized cylindrical capsules with multifunctional layers for oral drug delivery. ACS Appl Mater Interfaces 2019,11(42),39179-39191 PubMed DOI
Wang B.; Chen X.; Ahmad Z.; Huang J.; Chang M.W.; Engineering on-demand magnetic core-shell composite wound dressing matrices via electrohydrodynamic micro-scale printing. Adv Eng Mater 2019,21(10),1900699 DOI
Muwaffak Z.; Goyanes A.; Clark V.; Basit A.W.; Hilton S.T.; Gaisford S.; Patient-specific 3D scanned and 3D printed antimicrobial polycaprolactone wound dressings. Int J Pharm 2017,527(1-2),161-170 PubMed DOI
Wang B.; Chen X.; Ahmad Z.; Huang J.; Chang M.W.; 3D electrohydrodynamic printing of highly aligned dual- core graphene composite matrices. Carbon 2019,153,285-297 DOI
Wang J.C.; Zheng H.; Chang M.W.; Ahmad Z.; Li J.S.; Preparation of active 3D film patches via aligned fiber electrohydrodynamic (EHD) printing. Sci Rep 2017,7(1),43924 PubMed DOI
Yao Z.C.; Wang J.C.; Wang B.; Ahmad Z.; Li J.S.; Chang M.W.; A novel approach for tailored medicines: Direct writing of Janus fibers. J Drug Deliv Sci Technol 2019,50,372-379 DOI
Choonara Y.E.; du Toit L.C.; Kumar P.; Kondiah P.P.D.; Pillay V.; 3D-printing and the effect on medical costs: A new era? Expert Rev Pharmacoecon Outcomes Res 2016,16(1),23-32 PubMed DOI
Palo M.; Holländer J.; Suominen J.; Yliruusi J.; Sandler N.; 3D printed drug delivery devices: perspectives and technical challenges. Expert Rev Med Devices 2017,14(9),685-696 PubMed DOI
Mertz L.; Dream it, design it, print it in 3D: what can 3D printing do for you? IEEE Pulse 2013,4(6),15-21 PubMed DOI
Ku M.S.; Dulin W.; A biopharmaceutical classification-based Right-First-Time formulation approach to reduce human pharmacokinetic variability and project cycle time from First-in-human to clinical Proof-of-Concept. Pharm Dev Technol 2012,17(3),285-302 PubMed DOI
Hay M.; Thomas D.W.; Craighead J.L.; Economides C.; Rosenthal J.; Clinical development success rates for investigational drugs. Nat Biotechnol 2014,32(1),40-51 PubMed DOI
Kwong E.; Oral formulation roadmap from early drug discovery to development 2017,272 DOI
Guvendiren M.; Molde J.; Soares R.M.D.; Kohn J.; Designing biomaterials for 3D printing. ACS Biomater Sci Eng 2016,2(10),1679-1693 PubMed DOI
Gioumouxouzis C.I.; Karavasili C.; Fatouros D.G.; Recent advances in pharmaceutical dosage forms and devices using additive manufacturing technologies. Drug Discov Today 2019,24(2),636-643 PubMed DOI
Alhnan M.A.; Okwuosa T.C.; Sadia M.; Wan K.W.; Ahmed W.; Arafat B.; Emergence of 3D printed dosage forms: Opportunities and challenges. Pharm Res 2016,33(8),1817-1832 PubMed DOI
Gross B.C.; Erkal J.L.; Lockwood S.Y.; Chen C.; Spence D.M.; Evaluation of 3D printing and its potential impact on biotechnology and the chemical sciences. Anal Chem 2014,86(7),3240-3253 PubMed DOI
Pravin S.; Sudhir A.; Integration of 3D printing with dosage forms: A new perspective for modern healthcare. Biomed Pharmacother 2018,107,146-154 PubMed DOI
Alam M.S.; Akhtar A.; Ahsan I.; Shafiq-un-Nabi S.; Pharmaceutical product development exploiting 3D printing technology: Conventional to novel drug delivery system. Curr Pharm Des 2019,24(42),5029-5038 PubMed DOI
Warsi M.H.; Yusuf M.; Al Robaian M.; Khan M.; Muheem A.; Khan S.; 3D printing methods for pharmaceutical manufacturing: Opportunity and challenges. Curr Pharm Des 2019,24(42),4949-4956 PubMed DOI
Robles-Martinez P.; Xu X.; Trenfield S.J.; Awad A.; Goyanes A.; Telford R.; Basit A.W.; Gaisford S.; 3D printing of a multi-layered polypill containing six drugs using a novel stereolithographic method. Pharmaceutics 2019,11(6),274
Lim S.H.; Kathuria H.; Tan J.J.Y.; Kang L.; 3D printed drug delivery and testing systems - A passing fad or the future? Adv Drug Deliv Rev 2018,132,139-168 PubMed DOI
Norman J.; Madurawe R.D.; Moore C.M.V.; Khan M.A.; Khairuzzaman A.; A new chapter in pharmaceutical manufacturing: 3D-printed drug products. Adv Drug Deliv Rev 2017,108,39-50 PubMed DOI
Ameeduzzafar ; Alruwaili N.K.; Rizwanullah M.; Abbas Bukhari S.N.; Amir M.; Ahmed M.M.; Fazil M.; 3D printing technology in design of pharmaceutical products. Curr Pharm Des 2019,24(42),5009-5018 PubMed DOI
Wang X.; Zhou J.; Yang W.; Pang J.; Zhang W.; Chen G.; Dong X.; Zheng Z.; Lin W.; Feng W.; Zhou G.; Zhu W.; Yang F.; Warpage optimization and influence factors analysis of 3D printing personalized JJY tablets. Drug Dev Ind Pharm 2020,46(3),388-394 PubMed DOI
Karavasili C.; Gkaragkounis A.; Moschakis T.; Ritzoulis C.; Fatouros D.G.; Pediatric-friendly chocolate-based dosage forms for the oral administration of both hydrophilic and lipophilic drugs fabricated with extrusion-based 3D printing. Eur J Pharm Sci 2020,147,105291 PubMed DOI
Sandler N.; Preis M.; Printed drug-delivery systems for improved patient treatment. Trends Pharmacol Sci Rep 2016,37(12),1070-1080
Haleem A.; Javaid M.; Khan R.H.; Suman R.; 3D printing applications in bone tissue engineering. J Clin Orthop Trauma 2020,11(Suppl. 1),S118-S124 PubMed DOI
Huang W.; Zhang X.; 3D Printing: Print the future of ophthalmology. Invest Ophthalmol Vis Sci 2014,55(8),5380-5381 PubMed DOI
Jammalamadaka U.; Tappa K.; Recent advances in biomaterials for 3D printing and tissue engineering. J Funct Biomater 2018,9(1),22 PubMed DOI
Souto E.B.; Campos J.C.; Filho S.C.; Teixeira M.C.; Martins-Gomes C.; Zielinska A.; Carbone C.; Silva A.M.; 3D printing in the design of pharmaceutical dosage forms. Pharm Dev Technol 2019,24(8),1044-1053 PubMed DOI
Khatri P.; Shah M.K.; Vora N.; Formulation strategies for solid oral dosage form using 3D printing technology: A mini-review. J Drug Deliv Sci Technol 2018,46,148-155 DOI
Kempin W.; Franz C.; Koster L.C.; Schneider F.; Bogdahn M.; Weitschies W.; Seidlitz A.; Assessment of different polymers and drug loads for fused deposition modeling of drug loaded implants. Eur J Pharm Biopharm 2017,115,84-93 PubMed DOI
Allen E.A.; O’Mahony C.; Cronin M.; O’Mahony T.; Moore A.C.; Crean A.M.; Dissolvable microneedle fabrication using piezoelectric dispensing technology. Int J Pharm 2016,500(1-2),1-10 PubMed DOI
Arshad M.S.; Shahzad A.; Abbas N.; AlAsiri A.; Hussain A.; Kucuk I.; Chang M.W.; Bukhari N.I.; Ahmad Z.; Preparation and characterization of indomethacin loaded films by piezoelectric inkjet printing: A personalized medication approach. Pharm Dev Technol 2020,25(2),197-205 PubMed DOI
Donnelly R.F.; Singh T.R.R.; Woolfson A.D.; Microneedle-based drug delivery systems: Microfabrication, drug delivery, and safety. Drug Deliv 2010,17(4),187-207 PubMed DOI
van Riet-Nales D.A.; de Neef B.J.; Schobben A.F.A.M.; Ferreira J.A.; Egberts T.C.G.; Rademaker C.M.A.; Acceptability of different oral formulations in infants and preschool children. Arch Dis Child 2013,98(9),725-731 PubMed DOI
Goyanes A.; Madla C.M.; Umerji A.; Duran Piñeiro G.; Giraldez Montero J.M.; Lamas Diaz M.J.; Gonzalez Barcia M.; Taherali F.; Sánchez-Pintos P.; Couce M.L.; Gaisford S.; Basit A.W.; Automated therapy preparation of isoleucine formulations using 3D printing for the treatment of MSUD: First single-centre, prospective, crossover study in patients. Int J Pharm 2019,567,118497 PubMed DOI
Scoutaris N.; Ross S.A.; Douroumis D.; 3D printed “starmix” drug loaded dosage forms for paediatric applications. Pharm Res 2018,35(2),34 PubMed DOI
Wang H.; Dumpa N.; Bandari S.; Durig T.; Repka M.A.; Fabrication of taste-masked donut-shaped tablets via fused filament fabrication 3D printing paired with hot-melt extrusion techniques. AAPS PharmSciTech 2020,21(7),243 PubMed DOI
Boateng J.; Drug delivery innovations to address global health challenges for pediatric and geriatric populations (through improvements in patient compliance). J Pharm Sci 2017,106(11),3188-3198 PubMed DOI
Fastø M.M.; Genina N.; Kaae S.; Kälvemark Sporrong S.; Perceptions, preferences and acceptability of patient designed 3D printed medicine by polypharmacy patients: A pilot study. Int J Clin Pharm 2019,41(5),1290-1298 PubMed DOI
Lee C.; Abelseth E.; de la Vega L.; Willerth S.M.; Bioprinting a novel glioblastoma tumor model using a fibrin-based bioink for drug screening. Mater Today Chem 2019,12,78-84 DOI
Hao W.; Zheng Z.; Zhu L.; Pang L.; Ma J.; Zhu S.; Du L.; Jin Y.; 3D printing-based drug-loaded implanted prosthesis to prevent breast cancer recurrence post-conserving surgery. Asian J Pharmaceut Sci 2021,16(1),86-96 PubMed DOI
Chen J.; Liu C.Y.; Wang X.; Sweet E.; Liu N.; Gong X.; Lin L.; 3D printed microfluidic devices for circulating tumor cells (CTCs) isolation. Biosens Bioelectron 2020,150,111900 PubMed DOI
Bhuskute H.; Shende P.; Prabhakar B.; 3D printed personalized medicine for cancer: Applications for betterment of diagnosis, prognosis and treatment. AAPS PharmSciTech 2021,23(1),8 PubMed DOI
Haleem A.; Javaid M.; 3D printed medical parts with different materials using additive manufacturing. Clin Epidemiol Glob Health 2020,8(1),215-223 DOI
Roberts S.; Peyman S.; Speirs V.; Current and emerging 3D models to study breast cancer. Breast Cancer Metastasis and Drug Resistance: Challenges and Progress 2019,413-427 DOI
Tagami T.; Goto E.; Kida R.; Hirose K.; Noda T.; Ozeki T.; Lyophilized ophthalmologic patches as novel corneal drug formulations using a semi-solid extrusion 3D printer. Int J Pharm 2022,617,121448 PubMed DOI
Tan G.; Ioannou N.; Mathew E.; Tagalakis A.D.; Lamprou D.A.; Yu-Wai-Man C.; 3D printing in Ophthalmology: From medical implants to personalized medicine. Int J Pharm 2022,625,122094 PubMed DOI
Awad A.; Yao A.; Trenfield S.J.; Goyanes A.; Gaisford S.; Basit A.W.; 3D printed tablets (printlets) with braille and moon patterns for visually impaired patients. Pharmaceutics 2020,12(2),172
Sorkio A.; Koch L.; Koivusalo L.; Deiwick A.; Miettinen S.; Chichkov B.; Skottman H.; Human stem cell based corneal tissue mimicking structures using laser-assisted 3D bioprinting and functional bioinks. Biomaterials 2018,171,57-71 PubMed DOI
Temirel M.; Hawxhurst C.; Tasoglu S.; Shape fidelity of 3D-bioprinted biodegradable patches. Micromachines 2021,12(2),195
Milojević M.; Harih G.; Vihar B.; Vajda J.; Gradišnik L.; Zidarič T.; Stana Kleinschek K.; Maver U.; Maver T.; Hybrid 3D printing of advanced hydrogel-based wound dressings with tailorable properties. Pharmaceutics 2021,13(4),564
Wang S.; Xiong Y.; Chen J.; Ghanem A.; Wang Y.; Yang J.; Sun B.; Biotechnology, Three dimensional printing bilayer membrane scaffold promotes wound healing. Front Bioeng Biotechnol 2019,7,348 PubMed DOI
Dodziuk H.; Applications of 3D printing in healthcare. Kardiochir Torakochirurgia Pol 2016,3(3),283-293 PubMed DOI
Kattadiyil M.T.; Mursic Z.; AlRumaih H.; Goodacre C.J.; Intraoral scanning of hard and soft tissues for partial removable dental prosthesis fabrication. J Prosthet Dent 2014,112(3),444-448 PubMed DOI
Sevenson B.; Stratasys Announces Two New Dental Wax Based 3D Printers, CrownWorx and FrameWorx. Available from: https://3dprint.com/3711/stratasys-crownworx-frameworx/
Singh Malik D.; Mital N.; Kaur G.; Topical drug delivery systems: A patent review. Expert Opin Ther Pat 2016,26(2),213-228 PubMed DOI
Rzhevskiy A.S.; Singh T.R.R.; Donnelly R.F.; Anissimov Y.G.; Microneedles as the technique of drug delivery enhancement in diverse organs and tissues. J Control Release 2018,270,184-202 PubMed DOI
Farias C.; Lyman R.; Hemingway C.; Chau H.; Mahacek A.; Bouzos E.; Mobed-Miremadi M.; Three-dimensional (3D) printed microneedles for microencapsulated cell extrusion. Bioengineering 2018,5(3),59
Economidou S.N.; Pere C.P.P.; Reid A.; Uddin M.J.; Windmill J.F.C.; Lamprou D.A.; Douroumis D.; 3D printed microneedle patches using stereolithography (SLA) for intradermal insulin delivery. Mater Sci Eng C 2019,102,743-755 PubMed DOI
Han D.; Morde R.S.; Mariani S.; La Mattina A.A.; Vignali E.; Yang C.; Barillaro G.; Lee H.; 4D printing of a bioinspired microneedle array with backward-facing barbs for enhanced tissue adhesion. Adv Funct Mater 2020,30(11),1909197 DOI
Kärrholm J.; The swedish hip arthroplasty register. Acta Orthop 2010,81(1),3-4 PubMed DOI
Wu W.; Zheng Q.; Guo X.; Sun J.; Liu Y.; A programmed release multi-drug implant fabricated by three-dimensional printing technology for bone tuberculosis therapy. Biomed Mater 2009,4(6),065005 PubMed DOI
Herbert N.; Simpson D.; Spence W.D.; Ion W.; A preliminary investigation into the development of 3D printing of prosthetic sockets. J Rehabil Res Dev 2005,42(2),141-146 PubMed DOI
Banks J.; Adding value in additive manufacturing: Researchers in the United Kingdom and Europe look to 3D printing for customization. IEEE Pulse 2013,4(6),22-26 PubMed DOI
Nawroth J.C.; Lee H.; Feinberg A.W.; Ripplinger C.M.; McCain M.L.; Grosberg A.; Dabiri J.O.; Parker K.K.; A tissue-engineered jellyfish with biomimetic propulsion. Nat Biotechnol 2012,30(8),792-797 PubMed DOI
Feinberg A.W.; Biological soft robotics. Annu Rev Biomed Eng 2015,17(1),243-265 PubMed DOI
Phillips R.; Purohit P.K.; Kondev J.; Nanotribology and Nanomechanics: An Introduction 2005,693-729 DOI
Williams B.J.; Anand S.V.; Rajagopalan J.; Saif M.T.A.; A self-propelled biohybrid swimmer at low Reynolds number. Nat Commun 2014,5(1),3081 PubMed DOI
Zhang Y.F.; Zhang N.; Hingorani H.; Ding N.; Wang D.; Yuan C.; Zhang B.; Gu G.; Ge Q.; Fast-response, stiffness-tunable soft actuator by hybrid multimaterial 3D printing. Adv Funct Mater 2019,29(15),1806698 DOI
Katseli V.; Thomaidis N.; Economou A.; Kokkinos C.; Miniature 3D-printed integrated electrochemical cell for trace voltammetric Hg(II) determination. Sens Actuators B Chem 2020,308,127715 DOI
Dias A.A.; Chagas C.L.S.; Silva-Neto H.A.; Lobo-Junior E.O.; Sgobbi L.F.; de Araujo W.R.; Paixão T.R.L.C.; Coltro W.K.T.; Environmentally friendly manufacturing of flexible graphite electrodes for a wearable device monitoring zinc in sweat. ACS Appl Mater Interfaces 2019,11(43),39484-39492 PubMed DOI
Silva A.L.; Salvador G.M.d.S.; Castro S.V.F.; Carvalho N.M.F.; Munoz R.A.A.; A 3D printer guide for the development and application of electrochemical cells and devices. Front Chem 2021,9,684256
Krejcova L.; Nejdl L.; Rodrigo M.A.M.; Zurek M.; Matousek M.; Hynek D.; Zitka O.; Kopel P.; Adam V.; Kizek R.; 3D printed chip for electrochemical detection of influenza virus labeled with CdS quantum dots. Biosens Bioelectron 2014,54,421-427 PubMed DOI
Tasoglu S.; Cumhur Tekin H.; Inci F.; Knowlton S.; Wang S.Q.; Wang-Johanning F.; Johanning G.; Colevas D.; Demirci U.; Advances in nanotechnology and microfluidics for human papillomavirus diagnostics. Proc IEEE 2015,103(2),161-178 DOI
Jo B.H.; Van Lerberghe L.M.; Motsegood K.M.; Beebe D.J.; Three-dimensional micro-channel fabrication in polydimethylsiloxane (PDMS) elastomer. J Microelectromech Syst 2000,9(1),76-81 DOI
Chen C.; Mehl B.T.; Munshi A.S.; Townsend A.D.; Spence D.M.; Martin R.S.; 3D-printed microfluidic devices: Fabrication, advantages and limitations - A mini review. Anal Methods 2016,8(31),6005-6012 PubMed DOI
Beebe D.J.; Mensing G.A.; Walker G.M.; Physics and applications of microfluidics in biology. Annu Rev Biomed Eng 2002,4(1),261-286 PubMed DOI
Choong Y.Y.C.; Tan H.W.; Patel D.C.; Choong W.T.N.; Chen C.H.; Low H.Y.; Tan M.J.; Patel C.D.; Chua C.K.; The global rise of 3D printing during the COVID-19 pandemic. Nat Rev Mater 2020,5(9),637-639 PubMed DOI
Davies A.; Thompson K.A.; Giri K.; Kafatos G.; Walker J.; Bennett A.; Testing the efficacy of homemade masks: would they protect in an influenza pandemic? Disaster Med Public Health Prep 2013,7(4),413-418 PubMed DOI
Ahmed A.; Azam A.; Aslam Bhutta M.M.; Khan F.A.; Aslam R.; Tahir Z.; Discovering the technology evolution pathways for 3D printing (3DP) using bibliometric investigation and emerging applications of 3DP during COVID-19. Cleaner Environmen Syst 2021,3,100042 DOI
Shokrani A.; Loukaides E.G.; Elias E.; Lunt A.J.G.; Exploration of alternative supply chains and distributed manufacturing in response to COVID-19; A case study of medical face shields. Mater Des 2020,192,108749 PubMed DOI
Petsiuk A.; Tanikella N.G.; Dertinger S.; Pringle A.; Oberloier S.; Pearce J.M.; Partially RepRapable automated open source bag valve mask-based ventilator. HardwareX 2020,8,e00131 PubMed DOI
Mandrycky C.; Wang Z.; Kim K.; Kim D.H.; 3D bioprinting for engineering complex tissues. Biotechnol Adv 2016,34(4),422-434 PubMed DOI
Freedman B.R.; Mooney D.J.; Biomaterials to mimic and heal connective tissues. Adv Mater 2019,31(19),1806695 PubMed DOI
Lutolf M.P.; Hubbell J.A.; Synthetic biomaterials as instructive extracellular microenvironments for morphogenesis in tissue engineering. Nat Biotechnol 2005,23(1),47-55 PubMed DOI
Robb K.P.; Shridhar A.; Flynn L.E.; Decellularized matrices as cell-instructive scaffolds to guide tissue-specific regeneration. ACS Biomater Sci Eng 2018,4(11),3627-3643 PubMed DOI
Gonzalez-Fernandez T.; Sikorski P.; Leach J.K.; Bio-instructive materials for musculoskeletal regeneration. Acta Biomater 2019,96,20-34 PubMed DOI
Viswanathan P.; Chirasatitsin S.; Ngamkham K.; Engler A.J.; Battaglia G.; Cell instructive microporous scaffolds through interface engineering. J Am Chem Soc 2012,134(49),20103-20109 PubMed DOI
Mierke C.T.; Mechanical cues affect migration and invasion of cells from three different directions. Front Cell Dev Biol 2020,8,583226 DOI
Higuchi A.; Ling Q.D.; Chang Y.; Hsu S.T.; Umezawa A.; Physical cues of biomaterials guide stem cell differentiation fate. Chem Rev 2013,113(5),3297-3328 PubMed DOI
Castilho M.; van Mil A.; Maher M.; Metz C.H.G.; Hochleitner G.; Groll J.; Doevendans P.A.; Ito K.; Sluijter J.P.G.; Malda J.; Melt electrowriting allows tailored microstructural and mechanical design of scaffolds to advance functional human myocardial tissue formation. Adv Funct Mater 2018,28(40),1803151 DOI
Das S.; Kim S.W.; Choi Y.J.; Lee S.; Lee S.H.; Kong J.S.; Park H.J.; Cho D.W.; Jang J.; Decellularized extracellular matrix bioinks and the external stimuli to enhance cardiac tissue development in vitro. Acta Biomater 2019,95,188-200 PubMed DOI
Castilho M.; Feyen D.; Flandes-Iparraguirre M.; Hochleitner G.; Groll J.; Doevendans P.A.F.; Vermonden T.; Ito K.; Sluijter J.P.G.; Malda J.; Melt electrospinning writing of poly-hydroxymethylglycolide-co-ε-caprolactone-based scaffolds for cardiac tissue engineering. Adv Healthc Mater 2017,6(18),1700311 DOI
Ji S.; Guvendiren M.; 3D printed wavy scaffolds enhance mesenchymal stem cell osteogenesis. Micromachines 2020,11(1),31
Kim Y.B.; Kim G.H.; PCL/alginate composite scaffolds for hard tissue engineering: Fabrication, characterization, and cellular activities. ACS Comb Sci 2015,17(2),87-99 PubMed DOI
Teixeira B.N.; Aprile P.; Mendonça R.H.; Kelly D.J.; Thiré R.M.S.M.; Evaluation of bone marrow stem cell response to PLA scaffolds manufactured by 3D printing and coated with polydopamine and type I collagen. J Biomed Mater Res B Appl Biomater 2019,107(1),37-49 PubMed DOI
He F.L.; Li D.W.; He J.; Liu Y.Y.; Ahmad F.; Liu Y.L.; Deng X.; Ye Y.J.; Yin D.C.; A novel layer-structured scaffold with large pore sizes suitable for 3D cell culture prepared by near-field electrospinning. Mater Sci Eng C 2018,86,18-27 PubMed DOI
Zhang B.; Wang L.; Song P.; Pei X.; Sun H.; Wu L.; Zhou C.; Wang K.; Fan Y.; Zhang X.; 3D printed bone tissue regenerative PLA/HA scaffolds with comprehensive performance optimizations. Mater Des 2021,201,109490 DOI
Chen X.; Gao C.; Jiang J.; Wu Y.; Zhu P.; Chen G.; 3D printed porous PLA/nHA composite scaffolds with enhanced osteogenesis and osteoconductivity in vivo for bone regeneration. Biomed Mater 2019,14(6),065003 PubMed DOI
Chen G.; Chen N.; Wang Q.; Fabrication and properties of poly(vinyl alcohol)/β-tricalcium phosphate composite scaffolds via fused deposition modeling for bone tissue engineering. Compos Sci Technol 2019,172,17-28 DOI
Pierantozzi D.; Scalzone A.; Jindal S.; Stīpniece L.; Šalma-Ancāne K.; Dalgarno K.; Gentile P.; Mancuso E.; 3D printed Sr-containing composite scaffolds: Effect of structural design and material formulation towards new strategies for bone tissue engineering. Compos Sci Technol 2020,191,108069 DOI
Kolan K.C.R.; Li J.; Roberts S.; Semon J.A.; Park J.; Day D.E.; Leu M.C.; Near-field electrospinning of a polymer/bioactive glass composite to fabricate 3D biomimetic structures. Int J Bioprinting 2018,5(1),163 PubMed DOI
Grémare A.; Guduric V.; Bareille R.; Heroguez V.; Latour S.; L’heureux N.; Fricain J.C.; Catros S.; Le Nihouannen D.; Characterization of printed PLA scaffolds for bone tissue engineering. J Biomed Mater Res A 2018,106(4),887-894 PubMed DOI
Feng X.; Ma L.; Liang H.; Liu X.; Lei J.; Li W.; Wang K.; Song Y.; Wang B.; Li G.; Li S.; Yang C.; Osteointegration of 3D-printed fully porous polyetheretherketone scaffolds with different pore sizes. ACS Omega 2020,5(41),26655-26666 PubMed DOI
Gwiazda M.; Kumar S.; Świeszkowski W.; Ivanovski S.; Vaquette C.; The effect of melt electrospun writing fiber orientation onto cellular organization and mechanical properties for application in Anterior Cruciate Ligament tissue engineering. J Mech Behav Biomed Mater 2020,104,103631 PubMed DOI
Paxton N.C.; Lanaro M.; Bo A.; Crooks N.; Ross M.T.; Green N.; Tetsworth K.; Allenby M.C.; Gu Y.; Wong C.S.; Powell S.K.; Woodruff M.A.; Design tools for patient specific and highly controlled melt electrowritten scaffolds. J Mech Behav Biomed Mater 2020,105,103695 PubMed DOI
Su Y.; Zhang Z.; Wan Y.; Zhang Y.; Wang Z.; Klausen L.H.; Huang P.; Dong M.; Han X.; Cui B.; Chen M.; A hierarchically ordered compacted coil scaffold for tissue regeneration. NPG Asia Mater 2020,12(1),55 DOI
Castilho M.; Mouser V.; Chen M.; Malda J.; Ito K.; Bi-layered micro-fibre reinforced hydrogels for articular cartilage regeneration. Acta Biomater 2019,95,297-306 PubMed DOI
Ross M.T.; Kilian D.; Lode A.; Ren J.; Allenby M.C.; Gelinsky M.; Woodruff M.A.; Using melt-electrowritten microfibres for tailoring scaffold mechanics of 3D bioprinted chondrocyte-laden constructs. Bioprinting 2021,23,e00158 DOI
Li H.; Liao Z.; Yang Z.; Gao C.; Fu L.; Li P.; Zhao T.; Cao F.; Chen W.; Yuan Z.; Sui X.; Liu S.; Guo Q.; 3D printed poly(ε-caprolactone)/meniscus extracellular matrix composite scaffold functionalized with kartogenin-releasing PLGA microspheres for meniscus tissue engineering. Front Bioeng Biotechnol 2021,9,662381 PubMed DOI
Han Y.; Lian M.; Sun B.; Jia B.; Wu Q.; Qiao Z.; Dai K.; Preparation of high precision multilayer scaffolds based on melt electro-writing to repair cartilage injury. Theranostics 2020,10(22),10214-10230 PubMed DOI
Han Y.; Jia B.; Lian M.; Sun B.; Wu Q.; Sun B.; Qiao Z.; Dai K.; High-precision, gelatin-based, hybrid, bilayer scaffolds using melt electro-writing to repair cartilage injury. Bioact Mater 2021,6(7),2173-2186 PubMed DOI
Vijayavenkataraman S.; Thaharah S.; Zhang S.; Lu W.F.; Fuh J.Y.H.; 3D-printed PCL/rGO conductive scaffolds for peripheral nerve injury repair. Artif Organs 2019,43(5),515-523 PubMed DOI
Zhang Z.; Jørgensen M.L.; Wang Z.; Amagat J.; Wang Y.; Li Q.; Dong M.; Chen M.; 3D anisotropic photocatalytic architectures as bioactive nerve guidance conduits for peripheral neural regeneration. Biomaterials 2020,253,120108 PubMed DOI
Reitmaier S.; Kovtun A.; Schuelke J.; Kanter B.; Lemm M.; Hoess A.; Heinemann S.; Nies B.; Ignatius A.; Strontium(II) and mechanical loading additively augment bone formation in calcium phosphate scaffolds. J Orthop Res 2018,36(1),106-117 PubMed DOI
Vijayavenkataraman S.; Lu W.F.; Fuh J.Y.H.; 3D bioprinting of skin: A state-of-the-art review on modelling, materials, and processes. Biofabrication 2016,8(3),032001 PubMed DOI
Lavrentieva A.; Fleischhammer T.; Enders A.; Pirmahboub H.; Bahnemann J.; Pepelanova I.; Fabrication of stiffness gradients of GelMA hydrogels using a 3D printed micromixer. Macromol Biosci 2020,20(7),2000107 PubMed DOI
Zhang J.; Wehrle E.; Adamek P.; Paul G.R.; Qin X.H.; Rubert M.; Müller R.; Optimization of mechanical stiffness and cell density of 3D bioprinted cell-laden scaffolds improves extracellular matrix mineralization and cellular organization for bone tissue engineering. Acta Biomater 2020,114,307-322 PubMed DOI
Zhang J.; Wehrle E.; Vetsch J.R.; Paul G.R.; Rubert M.; Müller R.; Alginate dependent changes of physical properties in 3D bioprinted cell-laden porous scaffolds affect cell viability and cell morphology. Biomed Mater 2019,14(6),065009 PubMed DOI
Hewitt E.; Mros S.; Mcconnell M.; Cabral J.; Ali A.; Melt-electrowriting with novel milk protein/PCL biomaterials for skin regeneration. Biomed Mater 2019,14(5),055013 PubMed DOI
Lin F-S.; Lee J.; Lee A.K.; Ho C-C.; Liu Y-T.; Shie M-Y.; Calcium silicate-activated gelatin methacrylate hydrogel for accelerating human dermal fibroblast proliferation and differentiation. Polymers 2021,13(1),70
Distler T.; Solisito A.A.; Schneidereit D.; Friedrich O.; Detsch R.; Boccaccini A.R.; 3D printed oxidized alginate-gelatin bioink provides guidance for C2C12 muscle precursor cell orientation and differentiation via shear stress during bioprinting. Biofabrication 2020,12(4),045005 PubMed DOI
Chae S.; Sun Y.; Choi Y.J.; Ha D.H.; Jeon I.; Cho D.W.; 3D cell-printing of tendon-bone interface using tissue-derived extracellular matrix bioinks for chronic rotator cuff repair. Biofabrication 2021,13(3),035005 PubMed DOI
Kim W.; Kim G.; 3D bioprinting of functional cell-laden bioinks and its application for cell-alignment and maturation. Appl Mater Today 2020,19,100588 DOI
Berg J.; Weber Z.; Fechler-Bitteti M.; Hocke A.C.; Hippenstiel S.; Elomaa L.; Weinhart M.; Kurreck J.; Bioprinted multi-cell type lung model for the study of viral inhibitors. Viruses 2021,13(8),1590
Franks T.J.; Colby T.V.; Travis W.D.; Tuder R.M.; Reynolds H.Y.; Brody A.R.; Cardoso W.V.; Crystal R.G.; Drake C.J.; Engelhardt J.; Frid M.; Herzog E.; Mason R.; Phan S.H.; Randell S.H.; Rose M.C.; Stevens T.; Serge J.; Sunday M.E.; Voynow J.A.; Weinstein B.M.; Whitsett J.; Williams M.C.; Resident cellular components of the human lung: Current knowledge and goals for research on cell phenotyping and function. Proc Am Thorac Soc 2008,5(7),763-766 PubMed DOI
Bhattacharjee M.; Coburn J.; Centola M.; Murab S.; Barbero A.; Kaplan D.L.; Martin I.; Ghosh S.; Tissue engineering strategies to study cartilage development, degeneration and regeneration. Adv Drug Deliv Rev 2015,84,107-122 PubMed DOI
Chawla S.; Ghosh S.; Establishment of in vitro model of corneal scar pathophysiology. J Cell Physiol 2018,233(5),3817-3830 PubMed DOI
Roy S.; Yadav S.; Dasgupta T.; Chawla S.; Tandon R.; Ghosh S.; Interplay between hereditary and environmental factors to establish an in vitro disease model of keratoconus. Drug Discov Today 2019,24(2),403-416 PubMed DOI
Das S.; Pati F.; Choi Y.J.; Rijal G.; Shim J.H.; Kim S.W.; Ray A.R.; Cho D.W.; Ghosh S.; Bioprintable, cell-laden silk fibroin-gelatin hydrogel supporting multilineage differentiation of stem cells for fabrication of three-dimensional tissue constructs. Acta Biomater 2015,11,233-246 PubMed DOI
Guidance for Industry and Food and Drug Administration Staff. Technical Considerations for Additive Manufactured Medical Devices Available form: https://www.fda.gov/regulatory-information/search-fda-guidance-documents/technical-considerations-additive-manufactured-medical-devices (Accessed on : 04 Aug 2023). 2023
CDER Researchers Explore the Promise and Potential of 3D Printed Pharmaceuticals Available from: https://www.fda.gov/drugs/news-events-human-drugs/cder-researchers -explore-promise-and-potential-3d-printed-pharmaceuticals
Beg S.; Almalki W.H.; Malik A.; Farhan M.; Aatif M.; Rahman Z.; Alruwaili N.K.; Alrobaian M.; Tarique M.; Rahman M.; 3D printing for drug delivery and biomedical applications. Drug Discov Today 2020,25(9),1668-1681 PubMed DOI
Huang S.H.; Liu P.; Mokasdar A.; Hou L.; Additive manufacturing and its societal impact: A literature review. Int J Adv Manuf Technol 2013,67(5-8),1191-1203 DOI
Varghese R.; Sood P.; Salvi S.; Karsiya J.; Kumar D.; 3D printing in the pharmaceutical sector: Advances and evidences. Sensors Int 2022,3,100177 DOI
Pham D.T.; Gault R.S.; A comparison of rapid prototyping technologies. Int J Mach Tools Manuf 1998,38(10-11),1257-1287 DOI
Cui M.; Pan H.; Fang D.; Qiao S.; Wang S.; Pan W.; Fabrication of high drug loading levetiracetam tablets using semi-solid extrusion 3D printing. J Drug Deliv Sci Technol 2020,57,101683 DOI
Naseri E.; Butler H.; MacNevin W.; Ahmed M.; Ahmadi A.; Low-temperature solvent-based 3D printing of PLGA: A parametric printability study. Drug Dev Ind Pharm 2020,46(2),173-178 PubMed DOI
Annaji M.; Ramesh S.; Poudel I.; Govindarajulu M.; Arnold R.D.; Dhanasekaran M.; Babu R.J.; Application of extrusion-based 3D printed dosage forms in the treatment of chronic diseases. J Pharm Sci 2020,109(12),3551-3568 PubMed DOI
Zheng F.; Huang S.; Advances in study on three-dimensional printing in pharmaceutics. Chin Herb Med 2016,8(2),121-125 DOI
Trenfield S.J.; Xian Tan H.; Awad A.; Buanz A.; Gaisford S.; Basit A.W.; Goyanes A.; Track-and-trace: Novel anti-counterfeit measures for 3D printed personalized drug products using smart material inks. Int J Pharm 2019,567,118443 PubMed DOI
Rivera-Tarazona L.K.; Campbell Z.T.; Ware T.H.; Stimuli-responsive engineered living materials. Soft Matter 2021,17(4),785-809 PubMed DOI
Khoo Z.X.; Teoh J.E.M.; Liu Y.; Chua C.K.; Yang S.; An J.; Leong K.F.; Yeong W.Y.; 3D printing of smart materials: A review on recent progresses in 4D printing. Virtual Phys Prototyp 2015,10(3),103-122 DOI
Constante G.; Apsite I.; Alkhamis H.; Dulle M.; Schwarzer M.; Caspari A.; Synytska A.; Salehi S.; Ionov L.; 4D biofabrication using a combination of 3D printing and melt-electrowriting of shape-morphing polymers. ACS Appl Mater Interfaces 2021,13(11),12767-12776 PubMed DOI
Wang Y.; Cui H.; Wang Y.; Xu C.; Esworthy T.J.; Hann S.Y.; Boehm M.; Shen Y.L.; Mei D.; Zhang L.G.; 4D printed cardiac construct with aligned myofibers and adjustable curvature for myocardial regeneration. ACS Appl Mater Interfaces 2021,13(11),12746-12758 PubMed DOI
Huang J.; Xia S.; Li Z.; Wu X.; Ren J.; Applications of four-dimensional printing in emerging directions: Review and prospects. J Mater Sci Technol 2021,91,105-120 DOI
Saska S.; Pilatti L.; Blay A.; Shibli J.A.; Bioresorbable polymers: Advanced materials and 4D printing for tissue engineering. Polymers 2021,13(4),563
Tamay D.G.; Dursun Usal T.; Alagoz A.S.; Yucel D.; Hasirci N.; Hasirci V.; 3D and 4D printing of polymers for tissue engineering applications. Front Bioeng Biotechnol 2019,7,164 PubMed DOI
Gu B.K.; Choi D.J.; Park S.J.; Kim M.S.; Kang C.M.; Kim C.H.; 3-dimensional bioprinting for tissue engineering applications. Biomater Res 2016,20(1),12 PubMed DOI
Paul G.M.; Rezaienia A.; Wen P.; Condoor S.; Parkar N.; King W.; Korakianitis T.; Medical applications for 3D printing: Recent developments. Mo Med 2018,115(1),75-81 PubMed
Algahtani M.S.; Assessment of pharmacist’s knowledge and perception toward 3D printing technology as a dispensing method for personalized medicine and the readiness for implementation. Pharmacy 2021,9(1),68 PubMed DOI
Al-Dulimi Z.; Wallis M.; Tan D.K.; Maniruzzaman M.; Nokhodchi A.; 3D printing technology as innovative solutions for biomedical applications. Drug Discov Today 2021,26(2),360-383 PubMed DOI
Wang Y.; Sun L.; Mei Z.; Zhang F.; He M.; Fletcher C.; Wang F.; Yang J.; Bi D.; Jiang Y.; Liu P.; 3D printed biodegradable implants as an individualized drug delivery system for local chemotherapy of osteosarcoma. Mater Des 2020,186,108336 DOI
Malebari A.M.; Kara A.; Khayyat A.N.; Mohammad K.A.; Serrano D.R.; Development of advanced 3D-printed solid dosage pediatric formulations for HIV treatment. Pharmaceuticals 2022,15(4),435
Jamróz W.; Kurek M.; Łyszczarz E.; Szafraniec J.; Knapik-Kowalczuk J.; Syrek K.; Paluch M.; Jachowicz R.; 3D printed orodispersible films with Aripiprazole. Int J Pharm 2017,533(2),413-420 PubMed DOI
Goyanes A.; Det-Amornrat U.; Wang J.; Basit A.W.; Gaisford S.; 3D scanning and 3D printing as innovative technologies for fabricating personalized topical drug delivery systems. J Control Release 2016,234,41-48 PubMed DOI
Liu J.; Zheng X.; Huang Y.; Shan H.; Huang J.; Successful use of methylprednisolone for treating severe COVID-19. J Allergy Clin Immunol 2020,146(2),325-327 PubMed DOI
Zieliński P.S.; Gudeti P.K.R.; Rikmanspoel T.; Włodarczyk-Biegun M.K.; 3D printing of bio-instructive materials: Toward directing the cell. Bioact Mater 2023,19,292-327 PubMed DOI