Hybrid and Single-Component Flexible Aerogels for Biomedical Applications: A Review

. 2023 Dec 21 ; 10 (1) : . [epub] 20231221

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid38275842

The inherent disadvantages of traditional non-flexible aerogels, such as high fragility and moisture sensitivity, severely restrict their applications. To address these issues and make the aerogels efficient, especially for advanced medical applications, different techniques have been used to incorporate flexibility in aerogel materials. In recent years, a great boom in flexible aerogels has been observed, which has enabled them to be used in high-tech biomedical applications. The current study comprises a comprehensive review of the preparation techniques of pure polymeric-based hybrid and single-component aerogels and their use in biomedical applications. The biomedical applications of these hybrid aerogels will also be reviewed and discussed, where the flexible polymeric components in the aerogels provide the main contribution. The combination of highly controlled porosity, large internal surfaces, flexibility, and the ability to conform into 3D interconnected structures support versatile properties, which are required for numerous potential medical applications such as tissue engineering; drug delivery reservoir systems; biomedical implants like heart stents, pacemakers, and artificial heart valves; disease diagnosis; and the development of antibacterial materials. The present review also explores the different mechanical, chemical, and physical properties in numerical values, which are most wanted for the fabrication of different materials used in the biomedical fields.

Zobrazit více v PubMed

Mazrouei-Sebdani Z., Begum H., Schoenwald S., Horoshenkov K.V., Malfait W.J. A review on silica aerogel-based materials for acoustic applications. J. Non-Cryst. Solids. 2021;562:120770. doi: 10.1016/j.jnoncrysol.2021.120770. DOI

Duan Y., Jana S.C., Lama B., Espe M.P. Reinforcement of silica aerogels using silane-end-capped polyurethanes. Langmuir. 2013;29:6156–6165. doi: 10.1021/la4007394. PubMed DOI

Parale V.G., Lee K.-Y., Park H.H. Flexible and transparent silica aerogels: An overview. J. Korean Ceram. Soc. 2017;54:184–199. doi: 10.4191/kcers.2017.54.3.12. DOI

Zhong L., Chen X., Song H., Guo K., Hu Z. Highly flexible silica aerogels derived from methyltriethoxysilane and polydimethylsiloxane. New J. Chem. 2015;39:7832–7838. doi: 10.1039/C5NJ01477H. DOI

Li X., Dong G., Liu Z., Zhang X. Polyimide aerogel fibers with superior flame resistance, strength, hydrophobicity, and flexibility made via a universal sol–gel confined transition strategy. ACS Nano. 2021;15:4759–4768. doi: 10.1021/acsnano.0c09391. PubMed DOI

Buchtová N., Pradille C., Bouvard J.-L., Budtova T. Mechanical properties of cellulose aerogels and cryogels. Soft Matter. 2019;15:7901–7908. doi: 10.1039/C9SM01028A. PubMed DOI

Qian Z., Wang Z., Zhao N., Xu J. Aerogels Derived from Polymer Nanofibers and Their Applications. Macromol. Rapid Commun. 2018;39:1700724. doi: 10.1002/marc.201700724. PubMed DOI

Li X., Wang J., Zhao Y., Zhang X. Superhydrophobic polyimide aerogels via conformal coating strategy with excellent underwater performances. J. Appl. Polym. Sci. 2020;137:48849. doi: 10.1002/app.48849. DOI

Liu Z., Liu L., Zhong Z., Ran Y., Xi J., Wang J. Ultralight hybrid silica aerogels derived from supramolecular hydrogels self-assembled from insoluble nano building blocks. RSC Adv. 2021;11:7331–7337. doi: 10.1039/D1RA00418B. PubMed DOI PMC

Randall J.P., Meador M.A.B., Jana S.C. Tailoring Mechanical Properties of Aerogels for Aerospace Applications. ACS Appl. Mater. Interfaces. 2011;3:613–626. doi: 10.1021/am200007n. PubMed DOI

Wang J., Du R., Zhang X. Thermoresponsive Polyrotaxane Aerogels: Converting Molecular Necklaces into Tough Porous Monoliths. ACS Appl. Mater. Interfaces. 2018;10:1468–1473. doi: 10.1021/acsami.7b18741. PubMed DOI

Gurav J.L., Rao A.V., Nadargi D.Y., Park H.-H. Ambient pressure dried TEOS-based silica aerogels: Good absorbents of organic liquids. J. Mater. Sci. 2010;45:503–510. doi: 10.1007/s10853-009-3968-8. DOI

Darpentigny C., Molina-Boisseau S., Nonglaton G., Bras J., Jean B. Ice-templated freeze-dried cryogels from tunicate cellulose nanocrystals with high specific surface area and anisotropic morphological and mechanical properties. Cellulose. 2020;27:233–247. doi: 10.1007/s10570-019-02772-8. DOI

Phadtare V.D., Parale V.G., Lee K.-Y., Kim T., Puri V.R., Park H.-H. Flexible and lightweight Fe3O4/polymer foam composites for microwave-absorption applications. J. Alloys Compd. 2019;805:120–129. doi: 10.1016/j.jallcom.2019.07.048. DOI

Parale V.G., Kim T., Phadtare V.D., Yadav H.M., Park H.-H. Enhanced photocatalytic activity of a mesoporous TiO2 aerogel decorated onto three-dimensional carbon foam. J. Mol. Liq. 2019;277:424–433. doi: 10.1016/j.molliq.2018.12.080. DOI

Jing J., Qian X., Si Y., Liu G., Shi S. Recent Advances in the Synthesis and Application of Three-Dimensional Graphene-Based Aerogels. Molecules. 2022;27:924. doi: 10.3390/molecules27030924. PubMed DOI PMC

Diao S., Liu H., Chen S., Xu W., Yu A. Oil adsorption performance of graphene aerogels. J. Mater. Sci. 2020;55:4578–4591. doi: 10.1007/s10853-019-04292-z. DOI

Huang P., Li Y., Yang G., Li X., Li Q., Hu N., Fu Y., Novoselov S. Graphene film for thermal management: A review. Nano Mater. Sci. 2021;3:1–16. doi: 10.1016/j.nanoms.2020.09.001. DOI

Chen N., Pan Q. Versatile Fabrication of Ultralight Magnetic Foams and Application for Oil–Water Separation. ACS Nano. 2013;7:6875–6883. doi: 10.1021/nn4020533. PubMed DOI

Lee J.-H., Park S.-J. Recent advances in preparations and applications of carbon aerogels: A review. Carbon. 2020;163:1–18. doi: 10.1016/j.carbon.2020.02.073. DOI

Kim K.H., Oh Y., Islam M.F. Mechanical and Thermal Management Characteristics of Ultrahigh Surface Area Single-Walled Carbon Nanotube Aerogels. Adv. Funct. Mater. 2013;23:377–383. doi: 10.1002/adfm.201201055. DOI

Kim C.H.J., Zhao D., Lee G., Liu J. Strong, Machinable Carbon Aerogels for High Performance Supercapacitors. Adv. Funct. Mater. 2016;26:4976–4983. doi: 10.1002/adfm.201601010. DOI

Zhu X., Yu Y., Yuana J., Zang X., Yu H., Zang W., Dub A., Zhub B. Synthesis, characterization and mechanism of formation of carbon aerogels incorporated with highly crystalline lanthanum oxychloride particles. RSC Adv. 2017;7:39635–39640. doi: 10.1039/C7RA05454H. DOI

Warrier S.K., Mathew S.S., Pothan L.A., Ajish K.R. Biomedical Applications of Polysaccharide-Based Aerogels: A Review. Curr. Appl. Polym. Sci. 2022;5:87–94. doi: 10.2174/2452271605666220929151916. DOI

Ferreira-Gonçalves T., Constantin C., Neagu M., Reis C.P., Sabri F., Simón-Vázquez R. Safety and efficacy assessment of aerogels for biomedical applications. Biomed. Pharmacother. 2021;144:112356. doi: 10.1016/j.biopha.2021.112356. PubMed DOI

Athamneh T., Amin A., Benka E., Ambrus R., Gurikov P., Smirnova I., Leopold C.S. Pulmonary drug delivery with aerogels: Engineering of alginate and alginate–hyaluronic acid microspheres. Pharm. Dev. Technol. 2021;26:509–521. doi: 10.1080/10837450.2021.1888979. PubMed DOI

Wang Z., Huang C., Han X., Li S., Wang Z., Huang J., Chen Z. Fabrication of aerogel scaffolds with adjustable macro/micro-pore structure through 3D printing and sacrificial template method for tissue engineering. Mater. Des. 2022;217:110662. doi: 10.1016/j.matdes.2022.110662. DOI

Luo C., Zhao Y., Sun X., Hu B. Developing high strength, antiseptic and swelling-resistant polyvinyl alcohol/chitosan hydrogels for tissue engineering material. Mater. Lett. 2020;280:128499. doi: 10.1016/j.matlet.2020.128499. DOI

Hosseini M., Rahmanian V., Pizada T., Frick N., Krissanaprasit A., Khan A.S., LaBean T.H. DNA aerogels and DNA-wrapped CNT aerogels for neuromorphic applications. Mater. Today Bio. 2022;16:100440. doi: 10.1016/j.mtbio.2022.100440. PubMed DOI PMC

Ahmad V., Ahmad A., Khan S.A., Ahmad A., Abuzinadah M.F., Karim S., Jamal Q.M.S. Advances in Aerogel Composites for Environmental Remediation. Elsevier; Amsterdam, The Netherlands: 2021. Biomedical Applications of Aerogel; pp. 33–48. DOI

Saganuwan S.A. Biomedical Applications of Polyurethane Hydrogels, Polyurethane Aerogels, and Polyurethane-graphene Nanocomposite Materials. Cent. Nerv. Syst. Agents Med. Chem. 2022;22:79–87. doi: 10.2174/1871524922666220429115124. PubMed DOI

Maleki H., Durães L., Portugal L. An overview on silica aerogels synthesis and different mechanical reinforcing strategies. J. Non-Cryst. Solids. 2014;385:55–74. doi: 10.1016/j.jnoncrysol.2013.10.017. DOI

Rahmanian V., Pirzada T., Wang S., Khan S.A. Cellulose-Based Hybrid Aerogels: Strategies toward Design and Functionality. Adv. Mater. 2021;33:2102892. doi: 10.1002/adma.202102892. PubMed DOI

Smirnova I., Gurikov P. Aerogel production: Current status, research directions, and future opportunities. J. Supercrit. Fluids. 2018;134:228–233. doi: 10.1016/j.supflu.2017.12.037. DOI

Yahya E.B., Jummat F., Amirul A.A., Adnan A.S., Olaiya N.G., Abdullah C.K., Rizal S., Haafiz M.K.M., Khalil H.P.S. A review on revolutionary natural biopolymer-based aerogels for antibacterial delivery. Antibiotics. 2020;9:648. doi: 10.3390/antibiotics9100648. PubMed DOI PMC

Hoffmann F., Cornelius M., Morell J., Fröba M. Silica-based mesoporous organic–inorganic hybrid materials. Angew. Chem. Int. Ed. 2006;45:3216–3251. doi: 10.1002/anie.200503075. PubMed DOI

Zhang L., Wang Y., Wang R., Yin P., Wu J. Mechanically Robust and Flexible GO/PI Hybrid Aerogels as Highly Efficient Oil Absorbents. Polymers. 2022;14:4903. doi: 10.3390/polym14224903. PubMed DOI PMC

Jia F., Wu R., Liu C., Lan J., Lin Y.H., Yang X. High Thermoelectric and Flexible PEDOT/SWCNT/BC Nanoporous Films Derived from Aerogels. ACS Sustain. Chem. Eng. 2019;7:12591–12600. doi: 10.1021/acssuschemeng.9b02518. DOI

Liu M., Wang Z., Song P., Yang Z., Wang Q. Flexible MXene/rGO/CuO hybrid aerogels for high performance acetone sensing at room temperature. Sens. Actuators B Chem. 2021;340:129946. doi: 10.1016/j.snb.2021.129946. DOI

Zhou L., Zhai Y.M., Yang M.B., Yang W. Flexible and Tough Cellulose Nanocrystal/Polycaprolactone Hybrid Aerogel Based on the Strategy of Macromolecule Cross-Linking via Click Chemistry. ACS Sustain. Chem. Eng. 2019;7:15617–15627. doi: 10.1021/acssuschemeng.9b03640. DOI

Rezaei S., Zolali A.M., Jalali A., Park C.B. Novel and simple design of nanostructured, super-insulative and flexible hybrid silica aerogel with a new macromolecular polyether-based precursor. J. Colloid Interface Sci. 2020;561:890–901. doi: 10.1016/j.jcis.2019.11.072. PubMed DOI

Zhang X., Li W., Song P., You B., Sun G. Double-cross-linking strategy for preparing flexible, robust, and multifunctional polyimide aerogel. Chem. Eng. J. 2019;381:122784. doi: 10.1016/j.cej.2019.122784. DOI

Kistler S.S. Coherent expanded aerogels and jellies. Nature. 1931;127:741. doi: 10.1038/127741a0. DOI

Nguyen B.N., Meador M.A.B., Scheiman D., McCorkle L. Polyimide Aerogels Using Triisocyanate as Cross-linker. ACS Appl. Mater. Interfaces. 2017;9:27313–27321. doi: 10.1021/acsami.7b07821. PubMed DOI

Guo H., Meador M.A.B., Chasman J.L., Tresp D., Dosa B., Scheima D.A., McCorkle L.S. Flexible Polyimide Aerogels with Dodecane Links in the Backbone Structure. ACS Appl. Mater. Interfaces. 2020;12:33288–33296. doi: 10.1021/acsami.0c09321. PubMed DOI

Leven F., Ulbricht M., Limberg J., Ostermann R. Novel finely structured polymer aerogels using organogelators as a structure-directing component. J. Mater. Chem. A Mater. 2021;9:20695–20702. doi: 10.1039/D1TA06161E. DOI

Li Z., Gong L., Cheng X., He S., Li C., Zhang H. Flexible silica aerogel composites strengthened with aramid fibers and their thermal behavior. Mater. Des. 2016;99:349–355. doi: 10.1016/j.matdes.2016.03.063. DOI

Mandal C., Donthula S., Far H.M., Saeed A.M., Sotiriou-Leventis C., Leventis N. Transparent, mechanically strong, thermally insulating cross-linked silica aerogels for energy-efficient windows. J. Solgel Sci. Technol. 2019;92:84–100. doi: 10.1007/s10971-019-05100-5. DOI

Nadargi D.Y., Latthe S.S., Hirashima H., Rao A.V. Studies on rheological properties of methyltriethoxysilane (MTES) based flexible superhydrophobic silica aerogels. Microporous Mesoporous Mater. 2009;117:617–626. doi: 10.1016/j.micromeso.2008.08.025. DOI

Mahadik D.B., Rao A.V., Parale V.G., Kavale M.S., Wagh P.B., Ingale S.V., Gupta S.C. Effect of surface composition and roughness on the apparent surface free energy of silica aerogel materials. Appl. Phys. Lett. 2011;99:104104. doi: 10.1063/1.3635398. DOI

Mahadik D.B., Jung H.-N.-R., Han W., Cho H.H., Park H.-H. Flexible, elastic, and superhydrophobic silica-polymer composite aerogels by high internal phase emulsion process. Compos. Sci. Technol. 2017;147:45–51. doi: 10.1016/j.compscitech.2017.04.036. DOI

Shimizu T., Kanamori K., Maeno A., Kaji H., Doherty C.M., Falcaro P., Nakanish K. Transparent, Highly Insulating Polyethyl- and Polyvinylsilsesquioxane Aerogels: Mechanical Improvements by Vulcanization for Ambient Pressure Drying. Chem. Mater. 2016;28:6860–6868. doi: 10.1021/acs.chemmater.6b01936. DOI

Jiang L., Kato K., Mayumi K., Yokoyama H., Ito K. One-Pot Synthesis and Characterization of Polyrotaxane–Silica Hybrid Aerogel. ACS Macro Lett. 2017;6:281–286. doi: 10.1021/acsmacrolett.7b00014. PubMed DOI

Aravind P.R., Niemeyer P., Ratke L. Novel flexible aerogels derived from methyltrimethoxysilane/3-(2,3-epoxypropoxy)propyltrimethoxysilane co-precursor. Microporous Mesoporous Mater. 2013;181:111–115. doi: 10.1016/j.micromeso.2013.07.025. DOI

Kanamori K., Aizawa M., Nakanishi K., Hanada T. Elastic organic–inorganic hybrid aerogels and xerogels. J. Solgel Sci. Technol. 2008;48:172–181. doi: 10.1007/s10971-008-1756-6. DOI

Venkateswara Rao A., Bhagat S.D., Hirashima H., Pajonk G.M. Synthesis of flexible silica aerogels using methyltrimethoxysilane (MTMS) precursor. J. Colloid Interface Sci. 2006;300:279–285. doi: 10.1016/j.jcis.2006.03.044. PubMed DOI

Baudron V., Gurikov P., Smirnova I. A continuous approach to the emulsion gelation method for the production of aerogel micro-particle. Colloids Surf. A Physicochem. Eng. Asp. 2019;566:58–69. doi: 10.1016/j.colsurfa.2018.12.055. DOI

Starbird R., García-González C.A., Smirnova I., Krautschneider W.H., Bauhofer W. Synthesis of an organic conductive porous material using starch aerogels as template for chronic invasive electrodes. Mater. Sci. Eng. C. 2014;37:177–183. doi: 10.1016/j.msec.2013.12.032. PubMed DOI

Cai H., Sharma S., Mu W., Liu W., Zhang X., Deng y. Aerogel Microspheres from Natural Cellulose Nanofibrils and Their Application as Cell Culture Scaffold. Biomacromolecules. 2014;15:2540–2547. doi: 10.1021/bm5003976. PubMed DOI

In E., Naguib H. Fabrication and characterization of silica aerogel as synthetic tissues for medical imaging phantoms. AIP Conf. Proc. 2015;1664:130002. doi: 10.1063/1.4918495. DOI

Nita L.E., Ghilan A., Rusu A.G., Neamtu I., Chiriac A.P. New Trends in Bio-Based Aerogels. Pharmaceutics. 2020;12:449. doi: 10.3390/pharmaceutics12050449. PubMed DOI PMC

Desfrançois C., Auzély R., Texier I. Lipid Nanoparticles and Their Hydrogel Composites for Drug Delivery: A Review. Pharmaceuticals. 2018;11:118. doi: 10.3390/ph11040118. PubMed DOI PMC

Naguib H.E., Al Jahwari F. An accurate higher order plate theory for tailoring the properties of functionally graded porous media. AIP Conf. Proc. 2015;1664:040006. doi: 10.1063/1.4918404. DOI

Wan C., Jiao Y., Sun Q., Li J. Preparation, characterization, and antibacterial properties of silver nanoparticles embedded into cellulose aerogels. Polym. Compos. 2016;37:1137–1142. doi: 10.1002/pc.23276. DOI

El-Naggar M.E., Othman S.I., Allam A.A., Morsy O.M. Synthesis, drying process and medical application of polysaccharide-based aerogels. Int. J. Biol. Macromol. 2020;145:1115–1128. doi: 10.1016/j.ijbiomac.2019.10.037. PubMed DOI

Malik E., Dennison S., Harris F., Phoenix D. pH Dependent Antimicrobial Peptides and Proteins, Their Mechanisms of Action and Potential as Therapeutic Agents. Pharmaceuticals. 2016;9:67. doi: 10.3390/ph9040067. PubMed DOI PMC

Groult S., Buwalda S., Budtova T. Turning bio-aerogel properties for controlling drug delivery. Part 2: Cellulose-pectin composite aerogels. Biomater. Adv. 2022;135:2772–9508. doi: 10.1016/j.bioadv.2022.212732. PubMed DOI

Lovskaya D.D., Lebedev A.E., Menshutina N.V. Aerogels as drug delivery systems: In vitro and in vivo evaluations. J. Supercrit. Fluids. 2015;106:115–121. doi: 10.1016/j.supflu.2015.07.011. DOI

Yan N., Zhou Y., Zheng S., Yu Q., Li Z., Lu H. Antibacterial properties and cytocompatibility of bio-based nanostructured carbon aerogels derived from silver nanoparticles deposited onto bacterial cellulose. RSC Adv. 2015;5:97467–97476. doi: 10.1039/C5RA15485E. DOI

López-Iglesias C., Barros J., Ardao I., Montterio F., Alvarez-Lorenzo C., Gomez-Amoza J.L., Garcia-Gonzalese C.A. Vancomycin-loaded chitosan aerogel particles for chronic wound applications. Carbohydr. Polym. 2019;204:223–231. doi: 10.1016/j.carbpol.2018.10.012. PubMed DOI

Durst C.A., Cuchiara M.P., Mansfield E.G., West J.L., Grande-Allen K.J. Flexural characterization of cell encapsulated PEGDA hydrogels with applications for tissue engineered heart valves. Acta Biomater. 2011;7:2467–2476. doi: 10.1016/j.actbio.2011.02.018. PubMed DOI PMC

Pääkkö M., Vapaavuori J., Silvennoinen R., Kosonen H., Ankerfors M., Lindstorm T., Berglund L.A., Ikkala O. Long and entangled native cellulose I nanofibers allow flexible aerogels and hierarchically porous templates for functionalities. Soft Matter. 2008;4:2492. doi: 10.1039/b810371b. DOI

Liu Z., Zhang S., He B., Shoujuan W. Synthesis of cellulose aerogels as promising carriers for drug delivery: A review. Cellulose. 2021;28:2697–2714. doi: 10.1007/s10570-021-03734-9. DOI

Yahya E.B., Alzalouk M.M., Alfallous K.A., Abogmaza A.F. Antibacterial cellulose-based aerogels for wound healing application: A review. Biomed. Res. Ther. 2020;7:4032–4040. doi: 10.15419/bmrat.v7i10.637. DOI

Kashanchi G.N., King S.C., Ju S.E., Dashti A., Mratinez R., Lin Y.K., Wall V., McNeil P.E., Marszewski M., Pilon L., et al. Using small angle x-ray scattering to examine the aggregation mechanism in silica nanoparticle-based ambigels for improved optical clarity. J. Chem. Phys. 2023;158:034702. doi: 10.1063/5.0130811. PubMed DOI

Sarkar R., Farghaly A.A., Arachchige I.U. Oxidative Self-Assembly of Au/Ag/Pt Alloy Nanoparticles into High-Surface Area, Mesoporous, and Conductive Aerogels for Methanol Electro-oxidation. Chem. Mater. 2022;34:5874–5887. doi: 10.1021/acs.chemmater.2c00717. DOI

Zhan W., Chen L., Kong Q., Li L., Chen M., Jiang J., Li W., Shi F., Xu Z. The Synthesis and Polymer-Reinforced Mechanical Properties of SiO2 Aerogels: A Review. Molecules. 2023;28:5534. doi: 10.3390/molecules28145534. PubMed DOI PMC

Kovács Z., Csík A., Lakatos A. Thermal stability investigations of different aerogel insulation materials at elevated temperature. Therm. Sci. Eng. Progress. 2023;42:101906. doi: 10.1016/j.tsep.2023.101906. DOI

Guan F., Tao J., Yao Q., Li Z. Alginate–based aerogel fibers with a sheath–core structure for highly efficient methylene blue adsorption via directed freezing wet–spinning. Colloids Surf. A Physicochem. Eng. Asp. 2024;680:132706. doi: 10.1016/j.colsurfa.2023.132706. DOI

Sideris E., Graffin D.R., Ding Y., Li S., Weaver W.M., Carlo D.D., Hsiai T., Segura T. Particle Hydrogels Based on Hyaluronic Acid Building Blocks. ACS Biomater. Sci. Eng. 2016;2:2034–2041. doi: 10.1021/acsbiomaterials.6b00444. PubMed DOI

Han X., Xue Y., Lou R., Ding S., Wang S. Facile and efficient chitosan-based hygroscopic aerogel for air dehumidification. Int. J. Biol. Macromol. 2023;251:126191. doi: 10.1016/j.ijbiomac.2023.126191. PubMed DOI

Parveen I., Mahmud I., Khan A.R. Biodegradable Natural Polymers for Biomedical Applications. Sci. Rev. 2019;5:67–80. doi: 10.32861/sr.53.67.80. DOI

Jahed F.S., Hamidi S., Zamani-Kalajahi M., Siahi-Shadbad M. Biomedical applications of silica-based aerogels: A comprehensive review. Macromol. Res. 2023;31:519–538. doi: 10.1007/s13233-023-00142-9. DOI

Wang Z., E Y., Li J., Du T., Wang K., Yao X., Jiang J., Wang M., Yuan S. Sustainable bacterial cellulose-based composite aerogels with excellent flame retardant and heat insulation. Cellulose. 2023;30:9563–9574. doi: 10.1007/s10570-023-05461-9. DOI

Romero-Montero A., Valencia-Bermudez J.L., Rosas-Melendez S.A., Nunez-Tapia I., Pina-Barba M.C., Leyva-Gomez G., Prado-Audela D. Biopolymeric Fibrous Aerogels: The Sustainable Alternative for Water Remediation. Polymers. 2023;15:262. doi: 10.3390/polym15020262. PubMed DOI PMC

Tetik H., Wang Y., Sun X., Cao D., Shah N., Zhu H., Qian F., Lin D. Additive Manufacturing of 3D Aerogels and Porous Scaffolds: A Review. Adv. Funct. Mater. 2021;31:2103410. doi: 10.1002/adfm.202103410. DOI

Lázár I., Čelko L., Menelaou M. Aerogel-Based Materials in Bone and Cartilage Tissue Engineering—A Review with Future Implications. Gels. 2023;9:746. doi: 10.3390/gels9090746. PubMed DOI PMC

Li F., Truong V.X., Thissen V.X., Frith J.E., Forsythe J.S. Microfluidic Encapsulation of Human Mesenchymal Stem Cells for Articular Cartilage Tissue Regeneration. ACS Appl. Mater. Interfaces. 2017;9:8589–8601. doi: 10.1021/acsami.7b00728. PubMed DOI

Puertas-Bartolomé M., Benito-Garzón L., Fung S., Kohn J., Vázquez-Lasa J.S., San Román J. Bioadhesive functional hydrogels: Controlled release of catechol species with antioxidant and antiinflammatory behaviour. Mater. Sci. Eng. C. 2019;105:110040. doi: 10.1016/j.msec.2019.110040. PubMed DOI

Horsley V., Watt F. Repeal and Replace: Adipocyte Regeneration in Wound Repair. Cell Stem Cell. 2017;20:424–426. doi: 10.1016/j.stem.2017.03.015. PubMed DOI

Bando T., Yokoyama H., Nakamura H. Wound repair, remodeling, and regeneration. Dev. Growth Differ. 2018;60:303–305. doi: 10.1111/dgd.12566. PubMed DOI

Rosique R.G., Rosique M.J., Farina Junior J.A. Curbing Inflammation in Skin Wound Healing: A Review. Int. J. Inflam. 2015;2015:316235. doi: 10.1155/2015/316235. PubMed DOI PMC

Guo S., DiPietro L.A. Factors Affecting Wound Healing. J. Dent. Res. 2010;89:219–229. doi: 10.1177/0022034509359125. PubMed DOI PMC

Ashtikar M., Wacker M.G. Nanopharmaceuticals for wound healing–Lost in translation. Adv. Drug. Deliv. Rev. 2018;129:194–218. doi: 10.1016/j.addr.2018.03.005. PubMed DOI

Rodríguez-Cabello J.C., González de Torre I., Ibañez-Fonseca A., Alonso M. Bioactive scaffolds based on elastin-like materials for wound healing. Adv. Drug. Deliv. Rev. 2018;129:118–133. doi: 10.1016/j.addr.2018.03.003. PubMed DOI

Sheikholeslam M., Wright M.E.E., Jeschke M.G., Amini-Nik S. Biomaterials for Skin Substitutes. Adv. Healthc. Mater. 2018;7:1700897. doi: 10.1002/adhm.201700897. PubMed DOI PMC

Concha M., Vidal A., Giacaman A., Ojeda J., Pavicic F., Oyarzun-Ampuero F.A., Torres C., Cabrera M., Moreno-Villoslada I., Orellana S.L. Aerogels made of chitosan and chondroitin sulfate at high degree of neutralization: Biological properties toward wound healing. J. Biomed. Mater. Res. B Appl. Biomater. 2018;106:2464–2471. doi: 10.1002/jbm.b.34038. PubMed DOI

Jorfi M., Foster E.J. Recent advances in nanocellulose for biomedical applications. J. Appl. Polym. Sci. 2015;132 doi: 10.1002/app.41719. DOI

Zhang H., Lyu S., Zhou X., Gu H., Ma C., Wang C., Ding T., Shao Q., Liu H., Guo Z. Super light 3D hierarchical nanocellulose aerogel foam with superior oil adsorption. J. Colloid. Interface Sci. 2019;536:245–251. doi: 10.1016/j.jcis.2018.10.038. PubMed DOI

Nemoto J., Saito T., Isogai A. Simple Freeze-Drying Procedure for Producing Nanocellulose Aerogel-Containing, High-Performance Air Filters. ACS Appl. Mater. Interfaces. 2015;7:19809–19815. doi: 10.1021/acsami.5b05841. PubMed DOI

Nordli H.R., Chinga-Carrasco G., Rokstad A.M., Pukstad B. Producing ultrapure wood cellulose nanofibrils and evaluating the cytotoxicity using human skin cells. Carbohydr. Polym. 2016;150:65–73. doi: 10.1016/j.carbpol.2016.04.094. PubMed DOI

Gorbet M.B., Sefton M.V. Endotoxin: The uninvited guest. Biomaterials. 2005;26:6811–6817. doi: 10.1016/j.biomaterials.2005.04.063. PubMed DOI

Parenteau-Bareil R., Gauvin R., Berthod F. Collagen-based biomaterials for tissue engineering applications. Materials. 2010;3:1863–1887. doi: 10.3390/ma3031863. DOI

Govindarajan D., Duraipandy N., Srivatsan K.V., Lakra R., Korapatti P.S., Jayavel R., Kiran M.S. Fabrication of Hybrid Collagen Aerogels Reinforced with Wheat Grass Bioactives as Instructive Scaffolds for Collagen Turnover and Angiogenesis for Wound Healing Applications. ACS Appl. Mater. Interfaces. 2017;9:16939–16950. doi: 10.1021/acsami.7b05842. PubMed DOI

Dharunya G., Duraipandy N., Lakra R., Korapatti P.S., Jayavel R., Kiran M.S. Curcumin cross-linked collagen aerogels with controlled anti-proteolytic and pro-angiogenic efficacy. Biomed. Mater. 2016;11:1748–6041. doi: 10.1088/1748-6041/11/4/045011. PubMed DOI

Durairaj V., Hoda M., Shakya G., Babu S.P.P., Rajagopalan R. Phytochemical screening and analysis of antioxidant properties of aqueous extract of wheatgrass. Asian Pac. J. Trop. Med. 2014;7:S398–S404. doi: 10.1016/S1995-7645(14)60265-0. PubMed DOI

Bernardes B.G., Del Gaudio P., Del Alves P., Costa R., García-Gonzaléz C.A., Oliveira A.L. Bioaerogels: Promising Nanostructured Materials in Fluid Management, Healing and Regeneration of Wounds. Molecules. 2021;26:3834. doi: 10.3390/molecules26133834. PubMed DOI PMC

Batista M.P., Gonçalves V.S.S., Gaspar F.B., Nogueira I.D., Matias A.A., Gurikov P. Novel alginate-chitosan aerogel fibres for potential wound healing applications. Int. J. Biol. Macromol. 2020;156:773–782. doi: 10.1016/j.ijbiomac.2020.04.089. PubMed DOI

Guo X., Xu D., Zhao Y., Gao H., Shi X., Dend H., Chen Y., Du Y. Electroassembly of Chitin Nanoparticles to Construct Freestanding Hydrogels and High Porous Aerogels for Wound Healing. ACS Appl. Mater. Interfaces. 2019;11:34766–34776. doi: 10.1021/acsami.9b13063. PubMed DOI

Stergar J., Maver U. Review of aerogel-based materials in biomedical applications. J. Sol-Gel Sci. Technol. 2016;77:738–752. doi: 10.1007/s10971-016-3968-5. DOI

Muñoz-Ruíz A., Escobar-García D.M., Quintana M., Pozos-Guillén A., Flores H. Synthesis and Characterization of a New Collagen-Alginate Aerogel for Tissue Engineering. J. Nanomater. 2019;2019:2875375. doi: 10.1155/2019/2875375. DOI

Silva S.S., Duarte A.R., C Oliveira J.M., Mano J.F., Reis R.L. Alternative methodology for chitin-hydroxyapatite composites using ionic liquids and supercritical fluid technology. J. Bioact. Compat. Polym. 2013;28:481–491. doi: 10.1177/0883911513501595. DOI

Quraishi S., MarTins M., Barros A.A., Gurikov P., Raman S.P., Smirnova I., Duarte A.R.C., Reis R.L. Novel non-cytotoxic alginate–lignin hybrid aerogels as scaffolds for tissue engineering. J. Supercrit. Fluids. 2015;105:1–8. doi: 10.1016/j.supflu.2014.12.026. DOI

Orlacchio R., Zuppolini S., Cruz-Maya I., Pragliola S., Borriello A., Guarino V., Fittipaldi R., Lettieri M., Venditto V. Polydopamine-coated Poly-Lactic acid aerogels as Scaffolds for tissue engineering applications. Molecules. 2022;27:2137. doi: 10.3390/molecules27072137. PubMed DOI PMC

Reverchon E., Pisanti P., Cardea S. Nanostructured PLLA−Hydroxyapatite Scaffolds Produced by a Supercritical Assisted Technique. Ind. Eng. Chem. 2009;48:5310–5316. doi: 10.1021/ie8018752. DOI

Ge J., Li M., Zhang Q., Yang C.Z., Wooley P.H., Chen X., Yang S.U. Silica aerogel improves the biocompatibility in a poly-ε-caprolactone composite used as a tissue engineering scaffold. Int. J. Polym. Sci. 2013;2013:402859. doi: 10.1155/2013/402859. DOI

García-González C.A., Smirnova I. Use of supercritical fluid technology for the production of tailor-made aerogel particles for delivery systems. J Supercrit Fluids. 2013;79:152–158. doi: 10.1016/j.supflu.2013.03.001. DOI

Owens G., Singh R.K., Foroutan F., Alqaysi M., Han C.M., Mahapatra C., Kim H.W., Knowles J.C. Sol–gel based materials for biomedical applications. Prog. Mater. Sci. 2016;77:1–79. doi: 10.1016/j.pmatsci.2015.12.001. DOI

Yin W., Venkitachalma S.M., Jarret E., Staggs S., Leventis N., Lu H., Rubenstein D.A. Biocompatibility of surfactant-templated polyurea-nanoencapsulated macroporous silica aerogels with plasma platelets and endothelial cells. J. Biomed. Mater. Res. A. 2009;92:1431–1439. doi: 10.1002/jbm.a.32476. PubMed DOI

Dijkman P.E., Fioretta E.S., Frese L., Pasqualini F.S., Hoerstrup S.P. Heart Valve Replacements with Regenerative Capacity. Transfus. Med. Hemother. 2016;43:282–290. doi: 10.1159/000448181. PubMed DOI PMC

Sengupta D., Waldman S.D., Li S. From In Vitro to In Situ Tissue Engineering. Ann. Biomed. Eng. 2014;42:1537–1545. doi: 10.1007/s10439-014-1022-8. PubMed DOI

Wang X., Ali M., Lacerda C. A three-Dimensional Collagen-Elastin Scaffold for Heart Valve Tissue Engineering. Bioengineering. 2018;5:69. doi: 10.3390/bioengineering5030069. PubMed DOI PMC

Fu J.-H., Zhao M., Lin Y.R., Tian X.D., Wang Y.D., Wang Z.X., Fracgp L.X.W. Degradable Chitosan-Collagen Composites Seeded with Cells as Tissue Engineered Heart Valves. Heart Lung Circ. 2017;26:94–100. doi: 10.1016/j.hlc.2016.05.116. PubMed DOI

Jahnavi S., Saravanan U., Bhuvaneshwar G.S., Kumary T.V., Rajan S., Verma R.S. Biological and mechanical evaluation of a Bio-Hybrid scaffold for autologous valve tissue engineering. Mater. Sci. Eng. C. 2017;73:59–71. doi: 10.1016/j.msec.2016.11.116. PubMed DOI

Du J., Zhu T., Yu H., Zhu J., Sun C., Wang J., Chen S., Wang J., Guo X. Potential applications of three-dimensional structure of silk fibroin/poly(ester-urethane) urea nanofibrous scaffold in heart valve tissue engineering. Appl. Surf. Sci. 2018;447:269–278. doi: 10.1016/j.apsusc.2018.03.077. DOI

Yahya E.B., Amirul A.A., Abdul Khalil H.P.S., Olaiya N.G., Iqbal M.O., Jummaat F., Atty Sofea A.K., Adna A.S. Insights into the Role of Biopolymer Aerogel Scaffolds in Tissue Engineering and Regenerative Medicine. Polymers. 2021;13:1612. doi: 10.3390/polym13101612. PubMed DOI PMC

Hunziker E.B., Lippuner K., Keel M.J.B., Shintani N. An educational review of cartilage repair: Precepts & practice–myths & misconceptions–progress & prospects. Osteoarthr. Cartil. 2015;23:334–350. doi: 10.1016/j.joca.2014.12.011. PubMed DOI

Hafezi M., Khorasan S.N., Zare P., Neisiany R.E., Davoodi P. Biomimetic hydrogels designed for cartilage tissue engineering. Polymers. 2021;13:4199. doi: 10.3390/polym13234199. PubMed DOI PMC

Lynn R., Irwing P. Sex differences on the progressive matrices: A meta-analysis. Intelligence. 2004;32:481–498. doi: 10.1016/j.intell.2004.06.008. DOI

Kim S., Lee H. The Impact of Organizational Context and Information Technology on Employee Knowledge-Sharing Capabilities. Public. Adm. Rev. 2006;3:370–385. doi: 10.1111/j.1540-6210.2006.00595.x. DOI

Malaviya P., Nerem R.M. Fluid-Induced Shear Stress Stimulates Chondrocyte Proliferation Partially Mediated via TGF-β 1. Tissue Eng. 2002;8:581–590. doi: 10.1089/107632702760240508. PubMed DOI

Tanaka K., Oikawa K., Fukuhara C., Saito H., Onosaka S., Min K.S., Fujii M. Metabolism of potassium bromate in rats II. In vitro studies. Chemosphere. 1984;13:1213–1219. doi: 10.1016/0045-6535(84)90121-8. DOI

Drury J.L., Mooney D.J. Hydrogels for tissue engineering: Scaffold design variables and applications. Biomaterials. 2003;24:4337–4351. doi: 10.1016/S0142-9612(03)00340-5. PubMed DOI

Tertuliano O.A., Greer J.R. The nanocomposite nature of bone drives its strength and damage resistance. Nat. Mater. 2016;15:1195–1202. doi: 10.1038/nmat4719. PubMed DOI

Li Y., Li Q., Zhu S., Luo E., Li J., Feng G., Liao Y., Hu J. The effect of strontium-substituted hydroxyapatite coating on implant fixation in ovariectomized rats. Biomaterials. 2003;31:9006–9014. doi: 10.1016/j.biomaterials.2010.07.112. PubMed DOI

Ortiz C., Boyce M.C. Bioinspired Structural Materials. Science. 2008;319:1053–1054. doi: 10.1126/science.1154295. PubMed DOI

Zhang M.C., Zhu Y.-J., Xiong Z.-C., Wu J., Chen F. Bioinspired Ultralight Inorganic Aerogel for Highly Efficient Air Filtration and Oil–Water Separation. ACS Appl. Mater. Interfaces. 2018;10:13019–13027. doi: 10.1021/acsami.8b02081. PubMed DOI

Sun T.-W., Zhu Y.-J., Chen F. Hydroxyapatite nanowire/collagen elastic porous nanocomposite and its enhanced performance in bone defect repair. RSC Adv. 2018;8:26218–26229. doi: 10.1039/C8RA03972K. PubMed DOI PMC

Sun T.-W., Yu W.-L., Zhu Y.-J., Chen F., Zhang Y.-G., Jiang Y.-Y., He Y.-H. Porous Nanocomposite Comprising Ultralong Hydroxyapatite Nanowires Decorated with Zinc-Containing Nanoparticles and Chitosan: Synthesis and Application in Bone Defect Repair. Chem. Eur. J. 2018;24:8809–8821. doi: 10.1002/chem.201800425. PubMed DOI

Zhang Y.-G., Zhu Y.-J., Chen F., Sun T.-W. Biocompatible, Ultralight, Strong Hydroxyapatite Networks Based on Hydroxyapatite Microtubes with Excellent Permeability and Ultralow Thermal Conductivity. ACS Appl. Mater. Interfaces. 2017;9:7918–7928. doi: 10.1021/acsami.6b13328. PubMed DOI

Zhang Y.-G., Zhu Y.-J., Chen F., Sun T.-W. A novel composite scaffold comprising ultralong hydroxyapatite microtubes and chitosan: Preparation and application in drug delivery. J. Mater. Chem. B. 2017;5:3898–3906. doi: 10.1039/C6TB02576E. PubMed DOI

Sun T.-W., Yu W.-L., Zhu Y.-J., Yang R.-L., Shen Y.-Q., Chen D.-Y., He Y.-H., Chen F. Hydroxyapatite Nanowire@Magnesium Silicate Core–Shell Hierarchical Nanocomposite: Synthesis and Application in Bone Regeneration. ACS Appl. Mater. Interfaces. 2017;9:16435–16447. doi: 10.1021/acsami.7b03532. PubMed DOI

Ulker Z., Erkey C. A novel hybrid material: An inorganic silica aerogel core encapsulated with a tunable organic alginate aerogel layer. RSC Adv. 2014;4:62362–62366. doi: 10.1039/C4RA09089F. DOI

Ulker Z., Erkey C. An emerging platform for drug delivery: Aerogel based systems. J. Control. Release. 2014;177:51–63. doi: 10.1016/j.jconrel.2013.12.033. PubMed DOI

Du A., Zhou B., Zhang Z., Shen J. A Special Material or a New State of Matter: A Review and Reconsideration of the Aerogel. Materials. 2013;6:941–968. doi: 10.3390/ma6030941. PubMed DOI PMC

Selmer I., Kleemann C., Kulozik U., Heinrich S., Smirnova I. Development of egg white protein aerogels as new matrix material for microencapsulation in food. J. Supercrit. Fluids. 2015;106:42–49. doi: 10.1016/j.supflu.2015.05.023. DOI

Abdul Khalil H.P.S., Yahya E.B., Jummaat F., Adnan A.S., Olaiya N.G., Rizal S., Abdullah C.K., Pasquini D., Thoman S. Biopolymers based aerogels: A review on revolutionary solutions for smart therapeutics delivery. Prog. Mater. Sci. 2023;131:101014. doi: 10.1016/j.pmatsci.2022.101014. DOI

Follmann H.D.M., Oliveira O.N., Jr., Martins A.C., Lazarin-Bidoia D., Nakamura C.V., Rubira A.F., Silva R., Asefa T. Nanofibrous silica microparticles/polymer hybrid aerogels for sustained delivery of poorly water-soluble camptothecin. J. Colloid Interface Sci. 2020;567:92–102. doi: 10.1016/j.jcis.2020.01.110. PubMed DOI

Wang R., Shou D., Lv O., Kong Y., Deng L., Shen J. pH-Controlled drug delivery with hybrid aerogel of chitosan, carboxymethyl cellulose and graphene oxide as the carrier. Int. J. Biol. Macromol. 2017;103:248–253. doi: 10.1016/j.ijbiomac.2017.05.064. PubMed DOI

Follmann H.D.M., Oliveira O.N., Jr., Lazarin-Bidoia D., Nakamura C.V., Huang X., Asefa T., Silva R. Multifunctional hybrid aerogels: Hyperbranched polymer-trapped mesoporous silica nanoparticles for sustained and prolonged drug release. Nanoscale. 2018;10:1704–1715. doi: 10.1039/C7NR08464A. PubMed DOI

Tiryaki E., Başaran Elalmış Y., Karakuzu B., Yücel S. Novel organic/inorganic hybrid nanoparticles as enzyme-triggered drug delivery systems: Dextran and Dextran aldehyde coated silica aerogels. J. Drug. Deliv. Sci. Technol. 2020;56:101517. doi: 10.1016/j.jddst.2020.101517. DOI

García-González C.A., Sosnik A., Kalamar J., Marco I.D., Erkey C., Concheiro A., Alvarez-Lorenzo C. Aerogels in drug delivery: From design to application. J. Control. Release. 2021;332:40–63. doi: 10.1016/j.jconrel.2021.02.012. PubMed DOI

Kaci F.N., Rüzgar D., Görmez A., Efe D. The Evaluation of Cytotoxic and Antibacterial Activity of the Ethanol Extract of Punica granatum L. Peels. J. Inst. Sci. Technol. 2021;11:2319–2327. doi: 10.21597/jist.875449. DOI

Uddin K.M.A., Orelma H., Mohammadi P., Borghei M., Laine J., Klinder M., Rojas O. Retention of lysozyme activity by physical immobilization in nanocellulose aerogels and antibacterial effects. Cellulose. 2017;24:2837–2848. doi: 10.1007/s10570-017-1311-0. DOI

Lu T., Li Q., Chen W., Yu H. Composite aerogels based on dialdehyde nanocellulose and collagen for potential applications as wound dressing and tissue engineering scaffold. Compos. Sci. Technol. 2014;94:132–138. doi: 10.1016/j.compscitech.2014.01.020. DOI

Ye S., Shu H., Chen S., Lie J., Yanyi W., Zhngiie Z., Wei S. Morphological, Release and Antibacterial Performances of Amoxicillin-Loaded Cellulose Aerogels. Molecules. 2018;23:2082. doi: 10.3390/molecules23082082. PubMed DOI PMC

Navarro J.R.G., Rostami J., Ahlinder A., Mietner J.B., Bernin D., Saake B., Edlund U. Surface-Initiated Controlled Radical Polymerization Approach to In Situ Cross-Link Cellulose Nanofibrils with Inorganic Nanoparticles. Biomacromolecules. 2020;21:1952–1961. doi: 10.1021/acs.biomac.0c00210. PubMed DOI

Sun D., Liu W., Tang A., Guo F., Xie W. A new PEGDA/CNF aerogel-wet hydrogel scaffold fabricated by a two-step method. Soft Matter. 2019;15:8092–8101. doi: 10.1039/C9SM00899C. PubMed DOI

Zhou J., Zhang R., Xu R., Li Y. Super-Assembled Hierarchical Cellulose Aerogel-Gelatin Solid Electrolyte for Implantable and Biodegradable Zinc Ion Battery. Adv. Funct. Mater. 2022;32:21. doi: 10.1002/adfm.202111406. DOI

Liang L., Zhang S., Goenaga G.A., Meng X., Zawodzinski T.A., Ragauskas A.J. Chemically Cross-Linked Cellulose Nanocrystal Aerogels for Effective Removal of Cation Dye. Front. Chem. 2020;8:570. doi: 10.3389/fchem.2020.00570. PubMed DOI PMC

Gao W., Wen D. Recent advances of noble metal aerogels in biosensing. View. 2021;2:3. doi: 10.1002/VIW.20200124. DOI

Lee I., Kim S.-H., Rethinasabapathy M., Haldorai Y., Lee G.-W., Choe R., Jang S.-C., Kang Y.-K., Roh C., Cho W.-S., et al. Porous 3D Prussian blue/cellulose aerogel as a decorporation agent for removal of ingested cesium from the gastrointestinal tract. Sci. Rep. 2018;8:4540. doi: 10.1038/s41598-018-22715-w. PubMed DOI PMC

Dong S., Li N., Suo G., Huang T. Inorganic/Organic Doped Carbon Aerogels As Biosensing Materials for the Detection of Hydrogen Peroxide. Anal. Chem. 2013;85:11739–11746. doi: 10.1021/ac4015098. PubMed DOI

Shen Z., Han G., Wang X., Luo J., Sun R. An ultra-light antibacterial bagasse–AgNP aerogel. J. Mater. Chem. B. 2017;5:1155–1158. doi: 10.1039/C6TB02171A. PubMed DOI

Henschen J., Illergård J., Larsson P.A., Ek M., Wågberg L. Contact-active antibacterial aerogels from cellulose nanofibrils. Colloids Surf. B. Biointerfaces. 2016;146:415–422. doi: 10.1016/j.colsurfb.2016.06.031. PubMed DOI

Kim S.-K., Murugan S.S., Dalavi P.A., Gupta S., Anil S., Seong G.H., Venkatesan J. Biomimetic chitosan with biocomposite nanomaterials for bone tissue repair and regeneration. Beilstein J. Nanotechnol. 2022;13:1051–1067. doi: 10.3762/bjnano.13.92. PubMed DOI PMC

Idumah C.I. Recent advancements in self-healing polymers, polymer blends, and nanocomposites. Polym. Polym. Compos. 2021;29:246–258. doi: 10.1177/0967391120910882. DOI

Trembecka-Wójciga K., Sobczak J.J., Sobczak N. A comprehensive review of graphene-based aerogels for biomedical applications. The impact of synthesis parameters onto material microstructure and porosity. Arch. Civ. Mech. Eng. 2023;23:133. doi: 10.1007/s43452-023-00650-6. DOI

Liu C., Wang S., Wang N., Yu J., Liu Y.-T., Ding B. From 1D Nanofibers to 3D Nanofibrous Aerogels: A Marvellous Evolution of Electrospun SiO2 Nanofibers for Emerging Applications. Nanomicro Lett. 2022;14:194. doi: 10.1007/s40820-022-00937-y. PubMed DOI PMC

Abdullah, Zou Y., Farooq S., Walayat N., Zhang H., Faieta M., Pitia P., Huang Q. Bio-aerogels: Fabrication, properties and food applications. Crit. Rev. Food Sci. Nutr. 2023;63:6687–6709. doi: 10.1080/10408398.2022.2037504. PubMed DOI

Karamikamkar S., Yalcintas E.P., Haghniaz R., Barros N.R.D., Nasiri R., Davoodi E., Nasrollahi F., Erdem A., Kang H., Jee J., et al. Aerogel-Based Biomaterials for Biomedical Applications: From Fabrication Methods to Disease-Targeting Applications. Adv. Sci. 2023;10:23. doi: 10.1002/advs.202204681. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...