Hybrid and Single-Component Flexible Aerogels for Biomedical Applications: A Review
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
PubMed
38275842
PubMed Central
PMC10815221
DOI
10.3390/gels10010004
PII: gels10010004
Knihovny.cz E-zdroje
- Klíčová slova
- biocompatible aerogels, flexible hybrid aerogels, flexible scaffolds, flexible single-component aerogels, mechanical properties, sustained drug delivery, tissue engineering,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
The inherent disadvantages of traditional non-flexible aerogels, such as high fragility and moisture sensitivity, severely restrict their applications. To address these issues and make the aerogels efficient, especially for advanced medical applications, different techniques have been used to incorporate flexibility in aerogel materials. In recent years, a great boom in flexible aerogels has been observed, which has enabled them to be used in high-tech biomedical applications. The current study comprises a comprehensive review of the preparation techniques of pure polymeric-based hybrid and single-component aerogels and their use in biomedical applications. The biomedical applications of these hybrid aerogels will also be reviewed and discussed, where the flexible polymeric components in the aerogels provide the main contribution. The combination of highly controlled porosity, large internal surfaces, flexibility, and the ability to conform into 3D interconnected structures support versatile properties, which are required for numerous potential medical applications such as tissue engineering; drug delivery reservoir systems; biomedical implants like heart stents, pacemakers, and artificial heart valves; disease diagnosis; and the development of antibacterial materials. The present review also explores the different mechanical, chemical, and physical properties in numerical values, which are most wanted for the fabrication of different materials used in the biomedical fields.
Zobrazit více v PubMed
Mazrouei-Sebdani Z., Begum H., Schoenwald S., Horoshenkov K.V., Malfait W.J. A review on silica aerogel-based materials for acoustic applications. J. Non-Cryst. Solids. 2021;562:120770. doi: 10.1016/j.jnoncrysol.2021.120770. DOI
Duan Y., Jana S.C., Lama B., Espe M.P. Reinforcement of silica aerogels using silane-end-capped polyurethanes. Langmuir. 2013;29:6156–6165. doi: 10.1021/la4007394. PubMed DOI
Parale V.G., Lee K.-Y., Park H.H. Flexible and transparent silica aerogels: An overview. J. Korean Ceram. Soc. 2017;54:184–199. doi: 10.4191/kcers.2017.54.3.12. DOI
Zhong L., Chen X., Song H., Guo K., Hu Z. Highly flexible silica aerogels derived from methyltriethoxysilane and polydimethylsiloxane. New J. Chem. 2015;39:7832–7838. doi: 10.1039/C5NJ01477H. DOI
Li X., Dong G., Liu Z., Zhang X. Polyimide aerogel fibers with superior flame resistance, strength, hydrophobicity, and flexibility made via a universal sol–gel confined transition strategy. ACS Nano. 2021;15:4759–4768. doi: 10.1021/acsnano.0c09391. PubMed DOI
Buchtová N., Pradille C., Bouvard J.-L., Budtova T. Mechanical properties of cellulose aerogels and cryogels. Soft Matter. 2019;15:7901–7908. doi: 10.1039/C9SM01028A. PubMed DOI
Qian Z., Wang Z., Zhao N., Xu J. Aerogels Derived from Polymer Nanofibers and Their Applications. Macromol. Rapid Commun. 2018;39:1700724. doi: 10.1002/marc.201700724. PubMed DOI
Li X., Wang J., Zhao Y., Zhang X. Superhydrophobic polyimide aerogels via conformal coating strategy with excellent underwater performances. J. Appl. Polym. Sci. 2020;137:48849. doi: 10.1002/app.48849. DOI
Liu Z., Liu L., Zhong Z., Ran Y., Xi J., Wang J. Ultralight hybrid silica aerogels derived from supramolecular hydrogels self-assembled from insoluble nano building blocks. RSC Adv. 2021;11:7331–7337. doi: 10.1039/D1RA00418B. PubMed DOI PMC
Randall J.P., Meador M.A.B., Jana S.C. Tailoring Mechanical Properties of Aerogels for Aerospace Applications. ACS Appl. Mater. Interfaces. 2011;3:613–626. doi: 10.1021/am200007n. PubMed DOI
Wang J., Du R., Zhang X. Thermoresponsive Polyrotaxane Aerogels: Converting Molecular Necklaces into Tough Porous Monoliths. ACS Appl. Mater. Interfaces. 2018;10:1468–1473. doi: 10.1021/acsami.7b18741. PubMed DOI
Gurav J.L., Rao A.V., Nadargi D.Y., Park H.-H. Ambient pressure dried TEOS-based silica aerogels: Good absorbents of organic liquids. J. Mater. Sci. 2010;45:503–510. doi: 10.1007/s10853-009-3968-8. DOI
Darpentigny C., Molina-Boisseau S., Nonglaton G., Bras J., Jean B. Ice-templated freeze-dried cryogels from tunicate cellulose nanocrystals with high specific surface area and anisotropic morphological and mechanical properties. Cellulose. 2020;27:233–247. doi: 10.1007/s10570-019-02772-8. DOI
Phadtare V.D., Parale V.G., Lee K.-Y., Kim T., Puri V.R., Park H.-H. Flexible and lightweight Fe3O4/polymer foam composites for microwave-absorption applications. J. Alloys Compd. 2019;805:120–129. doi: 10.1016/j.jallcom.2019.07.048. DOI
Parale V.G., Kim T., Phadtare V.D., Yadav H.M., Park H.-H. Enhanced photocatalytic activity of a mesoporous TiO2 aerogel decorated onto three-dimensional carbon foam. J. Mol. Liq. 2019;277:424–433. doi: 10.1016/j.molliq.2018.12.080. DOI
Jing J., Qian X., Si Y., Liu G., Shi S. Recent Advances in the Synthesis and Application of Three-Dimensional Graphene-Based Aerogels. Molecules. 2022;27:924. doi: 10.3390/molecules27030924. PubMed DOI PMC
Diao S., Liu H., Chen S., Xu W., Yu A. Oil adsorption performance of graphene aerogels. J. Mater. Sci. 2020;55:4578–4591. doi: 10.1007/s10853-019-04292-z. DOI
Huang P., Li Y., Yang G., Li X., Li Q., Hu N., Fu Y., Novoselov S. Graphene film for thermal management: A review. Nano Mater. Sci. 2021;3:1–16. doi: 10.1016/j.nanoms.2020.09.001. DOI
Chen N., Pan Q. Versatile Fabrication of Ultralight Magnetic Foams and Application for Oil–Water Separation. ACS Nano. 2013;7:6875–6883. doi: 10.1021/nn4020533. PubMed DOI
Lee J.-H., Park S.-J. Recent advances in preparations and applications of carbon aerogels: A review. Carbon. 2020;163:1–18. doi: 10.1016/j.carbon.2020.02.073. DOI
Kim K.H., Oh Y., Islam M.F. Mechanical and Thermal Management Characteristics of Ultrahigh Surface Area Single-Walled Carbon Nanotube Aerogels. Adv. Funct. Mater. 2013;23:377–383. doi: 10.1002/adfm.201201055. DOI
Kim C.H.J., Zhao D., Lee G., Liu J. Strong, Machinable Carbon Aerogels for High Performance Supercapacitors. Adv. Funct. Mater. 2016;26:4976–4983. doi: 10.1002/adfm.201601010. DOI
Zhu X., Yu Y., Yuana J., Zang X., Yu H., Zang W., Dub A., Zhub B. Synthesis, characterization and mechanism of formation of carbon aerogels incorporated with highly crystalline lanthanum oxychloride particles. RSC Adv. 2017;7:39635–39640. doi: 10.1039/C7RA05454H. DOI
Warrier S.K., Mathew S.S., Pothan L.A., Ajish K.R. Biomedical Applications of Polysaccharide-Based Aerogels: A Review. Curr. Appl. Polym. Sci. 2022;5:87–94. doi: 10.2174/2452271605666220929151916. DOI
Ferreira-Gonçalves T., Constantin C., Neagu M., Reis C.P., Sabri F., Simón-Vázquez R. Safety and efficacy assessment of aerogels for biomedical applications. Biomed. Pharmacother. 2021;144:112356. doi: 10.1016/j.biopha.2021.112356. PubMed DOI
Athamneh T., Amin A., Benka E., Ambrus R., Gurikov P., Smirnova I., Leopold C.S. Pulmonary drug delivery with aerogels: Engineering of alginate and alginate–hyaluronic acid microspheres. Pharm. Dev. Technol. 2021;26:509–521. doi: 10.1080/10837450.2021.1888979. PubMed DOI
Wang Z., Huang C., Han X., Li S., Wang Z., Huang J., Chen Z. Fabrication of aerogel scaffolds with adjustable macro/micro-pore structure through 3D printing and sacrificial template method for tissue engineering. Mater. Des. 2022;217:110662. doi: 10.1016/j.matdes.2022.110662. DOI
Luo C., Zhao Y., Sun X., Hu B. Developing high strength, antiseptic and swelling-resistant polyvinyl alcohol/chitosan hydrogels for tissue engineering material. Mater. Lett. 2020;280:128499. doi: 10.1016/j.matlet.2020.128499. DOI
Hosseini M., Rahmanian V., Pizada T., Frick N., Krissanaprasit A., Khan A.S., LaBean T.H. DNA aerogels and DNA-wrapped CNT aerogels for neuromorphic applications. Mater. Today Bio. 2022;16:100440. doi: 10.1016/j.mtbio.2022.100440. PubMed DOI PMC
Ahmad V., Ahmad A., Khan S.A., Ahmad A., Abuzinadah M.F., Karim S., Jamal Q.M.S. Advances in Aerogel Composites for Environmental Remediation. Elsevier; Amsterdam, The Netherlands: 2021. Biomedical Applications of Aerogel; pp. 33–48. DOI
Saganuwan S.A. Biomedical Applications of Polyurethane Hydrogels, Polyurethane Aerogels, and Polyurethane-graphene Nanocomposite Materials. Cent. Nerv. Syst. Agents Med. Chem. 2022;22:79–87. doi: 10.2174/1871524922666220429115124. PubMed DOI
Maleki H., Durães L., Portugal L. An overview on silica aerogels synthesis and different mechanical reinforcing strategies. J. Non-Cryst. Solids. 2014;385:55–74. doi: 10.1016/j.jnoncrysol.2013.10.017. DOI
Rahmanian V., Pirzada T., Wang S., Khan S.A. Cellulose-Based Hybrid Aerogels: Strategies toward Design and Functionality. Adv. Mater. 2021;33:2102892. doi: 10.1002/adma.202102892. PubMed DOI
Smirnova I., Gurikov P. Aerogel production: Current status, research directions, and future opportunities. J. Supercrit. Fluids. 2018;134:228–233. doi: 10.1016/j.supflu.2017.12.037. DOI
Yahya E.B., Jummat F., Amirul A.A., Adnan A.S., Olaiya N.G., Abdullah C.K., Rizal S., Haafiz M.K.M., Khalil H.P.S. A review on revolutionary natural biopolymer-based aerogels for antibacterial delivery. Antibiotics. 2020;9:648. doi: 10.3390/antibiotics9100648. PubMed DOI PMC
Hoffmann F., Cornelius M., Morell J., Fröba M. Silica-based mesoporous organic–inorganic hybrid materials. Angew. Chem. Int. Ed. 2006;45:3216–3251. doi: 10.1002/anie.200503075. PubMed DOI
Zhang L., Wang Y., Wang R., Yin P., Wu J. Mechanically Robust and Flexible GO/PI Hybrid Aerogels as Highly Efficient Oil Absorbents. Polymers. 2022;14:4903. doi: 10.3390/polym14224903. PubMed DOI PMC
Jia F., Wu R., Liu C., Lan J., Lin Y.H., Yang X. High Thermoelectric and Flexible PEDOT/SWCNT/BC Nanoporous Films Derived from Aerogels. ACS Sustain. Chem. Eng. 2019;7:12591–12600. doi: 10.1021/acssuschemeng.9b02518. DOI
Liu M., Wang Z., Song P., Yang Z., Wang Q. Flexible MXene/rGO/CuO hybrid aerogels for high performance acetone sensing at room temperature. Sens. Actuators B Chem. 2021;340:129946. doi: 10.1016/j.snb.2021.129946. DOI
Zhou L., Zhai Y.M., Yang M.B., Yang W. Flexible and Tough Cellulose Nanocrystal/Polycaprolactone Hybrid Aerogel Based on the Strategy of Macromolecule Cross-Linking via Click Chemistry. ACS Sustain. Chem. Eng. 2019;7:15617–15627. doi: 10.1021/acssuschemeng.9b03640. DOI
Rezaei S., Zolali A.M., Jalali A., Park C.B. Novel and simple design of nanostructured, super-insulative and flexible hybrid silica aerogel with a new macromolecular polyether-based precursor. J. Colloid Interface Sci. 2020;561:890–901. doi: 10.1016/j.jcis.2019.11.072. PubMed DOI
Zhang X., Li W., Song P., You B., Sun G. Double-cross-linking strategy for preparing flexible, robust, and multifunctional polyimide aerogel. Chem. Eng. J. 2019;381:122784. doi: 10.1016/j.cej.2019.122784. DOI
Kistler S.S. Coherent expanded aerogels and jellies. Nature. 1931;127:741. doi: 10.1038/127741a0. DOI
Nguyen B.N., Meador M.A.B., Scheiman D., McCorkle L. Polyimide Aerogels Using Triisocyanate as Cross-linker. ACS Appl. Mater. Interfaces. 2017;9:27313–27321. doi: 10.1021/acsami.7b07821. PubMed DOI
Guo H., Meador M.A.B., Chasman J.L., Tresp D., Dosa B., Scheima D.A., McCorkle L.S. Flexible Polyimide Aerogels with Dodecane Links in the Backbone Structure. ACS Appl. Mater. Interfaces. 2020;12:33288–33296. doi: 10.1021/acsami.0c09321. PubMed DOI
Leven F., Ulbricht M., Limberg J., Ostermann R. Novel finely structured polymer aerogels using organogelators as a structure-directing component. J. Mater. Chem. A Mater. 2021;9:20695–20702. doi: 10.1039/D1TA06161E. DOI
Li Z., Gong L., Cheng X., He S., Li C., Zhang H. Flexible silica aerogel composites strengthened with aramid fibers and their thermal behavior. Mater. Des. 2016;99:349–355. doi: 10.1016/j.matdes.2016.03.063. DOI
Mandal C., Donthula S., Far H.M., Saeed A.M., Sotiriou-Leventis C., Leventis N. Transparent, mechanically strong, thermally insulating cross-linked silica aerogels for energy-efficient windows. J. Solgel Sci. Technol. 2019;92:84–100. doi: 10.1007/s10971-019-05100-5. DOI
Nadargi D.Y., Latthe S.S., Hirashima H., Rao A.V. Studies on rheological properties of methyltriethoxysilane (MTES) based flexible superhydrophobic silica aerogels. Microporous Mesoporous Mater. 2009;117:617–626. doi: 10.1016/j.micromeso.2008.08.025. DOI
Mahadik D.B., Rao A.V., Parale V.G., Kavale M.S., Wagh P.B., Ingale S.V., Gupta S.C. Effect of surface composition and roughness on the apparent surface free energy of silica aerogel materials. Appl. Phys. Lett. 2011;99:104104. doi: 10.1063/1.3635398. DOI
Mahadik D.B., Jung H.-N.-R., Han W., Cho H.H., Park H.-H. Flexible, elastic, and superhydrophobic silica-polymer composite aerogels by high internal phase emulsion process. Compos. Sci. Technol. 2017;147:45–51. doi: 10.1016/j.compscitech.2017.04.036. DOI
Shimizu T., Kanamori K., Maeno A., Kaji H., Doherty C.M., Falcaro P., Nakanish K. Transparent, Highly Insulating Polyethyl- and Polyvinylsilsesquioxane Aerogels: Mechanical Improvements by Vulcanization for Ambient Pressure Drying. Chem. Mater. 2016;28:6860–6868. doi: 10.1021/acs.chemmater.6b01936. DOI
Jiang L., Kato K., Mayumi K., Yokoyama H., Ito K. One-Pot Synthesis and Characterization of Polyrotaxane–Silica Hybrid Aerogel. ACS Macro Lett. 2017;6:281–286. doi: 10.1021/acsmacrolett.7b00014. PubMed DOI
Aravind P.R., Niemeyer P., Ratke L. Novel flexible aerogels derived from methyltrimethoxysilane/3-(2,3-epoxypropoxy)propyltrimethoxysilane co-precursor. Microporous Mesoporous Mater. 2013;181:111–115. doi: 10.1016/j.micromeso.2013.07.025. DOI
Kanamori K., Aizawa M., Nakanishi K., Hanada T. Elastic organic–inorganic hybrid aerogels and xerogels. J. Solgel Sci. Technol. 2008;48:172–181. doi: 10.1007/s10971-008-1756-6. DOI
Venkateswara Rao A., Bhagat S.D., Hirashima H., Pajonk G.M. Synthesis of flexible silica aerogels using methyltrimethoxysilane (MTMS) precursor. J. Colloid Interface Sci. 2006;300:279–285. doi: 10.1016/j.jcis.2006.03.044. PubMed DOI
Baudron V., Gurikov P., Smirnova I. A continuous approach to the emulsion gelation method for the production of aerogel micro-particle. Colloids Surf. A Physicochem. Eng. Asp. 2019;566:58–69. doi: 10.1016/j.colsurfa.2018.12.055. DOI
Starbird R., García-González C.A., Smirnova I., Krautschneider W.H., Bauhofer W. Synthesis of an organic conductive porous material using starch aerogels as template for chronic invasive electrodes. Mater. Sci. Eng. C. 2014;37:177–183. doi: 10.1016/j.msec.2013.12.032. PubMed DOI
Cai H., Sharma S., Mu W., Liu W., Zhang X., Deng y. Aerogel Microspheres from Natural Cellulose Nanofibrils and Their Application as Cell Culture Scaffold. Biomacromolecules. 2014;15:2540–2547. doi: 10.1021/bm5003976. PubMed DOI
In E., Naguib H. Fabrication and characterization of silica aerogel as synthetic tissues for medical imaging phantoms. AIP Conf. Proc. 2015;1664:130002. doi: 10.1063/1.4918495. DOI
Nita L.E., Ghilan A., Rusu A.G., Neamtu I., Chiriac A.P. New Trends in Bio-Based Aerogels. Pharmaceutics. 2020;12:449. doi: 10.3390/pharmaceutics12050449. PubMed DOI PMC
Desfrançois C., Auzély R., Texier I. Lipid Nanoparticles and Their Hydrogel Composites for Drug Delivery: A Review. Pharmaceuticals. 2018;11:118. doi: 10.3390/ph11040118. PubMed DOI PMC
Naguib H.E., Al Jahwari F. An accurate higher order plate theory for tailoring the properties of functionally graded porous media. AIP Conf. Proc. 2015;1664:040006. doi: 10.1063/1.4918404. DOI
Wan C., Jiao Y., Sun Q., Li J. Preparation, characterization, and antibacterial properties of silver nanoparticles embedded into cellulose aerogels. Polym. Compos. 2016;37:1137–1142. doi: 10.1002/pc.23276. DOI
El-Naggar M.E., Othman S.I., Allam A.A., Morsy O.M. Synthesis, drying process and medical application of polysaccharide-based aerogels. Int. J. Biol. Macromol. 2020;145:1115–1128. doi: 10.1016/j.ijbiomac.2019.10.037. PubMed DOI
Malik E., Dennison S., Harris F., Phoenix D. pH Dependent Antimicrobial Peptides and Proteins, Their Mechanisms of Action and Potential as Therapeutic Agents. Pharmaceuticals. 2016;9:67. doi: 10.3390/ph9040067. PubMed DOI PMC
Groult S., Buwalda S., Budtova T. Turning bio-aerogel properties for controlling drug delivery. Part 2: Cellulose-pectin composite aerogels. Biomater. Adv. 2022;135:2772–9508. doi: 10.1016/j.bioadv.2022.212732. PubMed DOI
Lovskaya D.D., Lebedev A.E., Menshutina N.V. Aerogels as drug delivery systems: In vitro and in vivo evaluations. J. Supercrit. Fluids. 2015;106:115–121. doi: 10.1016/j.supflu.2015.07.011. DOI
Yan N., Zhou Y., Zheng S., Yu Q., Li Z., Lu H. Antibacterial properties and cytocompatibility of bio-based nanostructured carbon aerogels derived from silver nanoparticles deposited onto bacterial cellulose. RSC Adv. 2015;5:97467–97476. doi: 10.1039/C5RA15485E. DOI
López-Iglesias C., Barros J., Ardao I., Montterio F., Alvarez-Lorenzo C., Gomez-Amoza J.L., Garcia-Gonzalese C.A. Vancomycin-loaded chitosan aerogel particles for chronic wound applications. Carbohydr. Polym. 2019;204:223–231. doi: 10.1016/j.carbpol.2018.10.012. PubMed DOI
Durst C.A., Cuchiara M.P., Mansfield E.G., West J.L., Grande-Allen K.J. Flexural characterization of cell encapsulated PEGDA hydrogels with applications for tissue engineered heart valves. Acta Biomater. 2011;7:2467–2476. doi: 10.1016/j.actbio.2011.02.018. PubMed DOI PMC
Pääkkö M., Vapaavuori J., Silvennoinen R., Kosonen H., Ankerfors M., Lindstorm T., Berglund L.A., Ikkala O. Long and entangled native cellulose I nanofibers allow flexible aerogels and hierarchically porous templates for functionalities. Soft Matter. 2008;4:2492. doi: 10.1039/b810371b. DOI
Liu Z., Zhang S., He B., Shoujuan W. Synthesis of cellulose aerogels as promising carriers for drug delivery: A review. Cellulose. 2021;28:2697–2714. doi: 10.1007/s10570-021-03734-9. DOI
Yahya E.B., Alzalouk M.M., Alfallous K.A., Abogmaza A.F. Antibacterial cellulose-based aerogels for wound healing application: A review. Biomed. Res. Ther. 2020;7:4032–4040. doi: 10.15419/bmrat.v7i10.637. DOI
Kashanchi G.N., King S.C., Ju S.E., Dashti A., Mratinez R., Lin Y.K., Wall V., McNeil P.E., Marszewski M., Pilon L., et al. Using small angle x-ray scattering to examine the aggregation mechanism in silica nanoparticle-based ambigels for improved optical clarity. J. Chem. Phys. 2023;158:034702. doi: 10.1063/5.0130811. PubMed DOI
Sarkar R., Farghaly A.A., Arachchige I.U. Oxidative Self-Assembly of Au/Ag/Pt Alloy Nanoparticles into High-Surface Area, Mesoporous, and Conductive Aerogels for Methanol Electro-oxidation. Chem. Mater. 2022;34:5874–5887. doi: 10.1021/acs.chemmater.2c00717. DOI
Zhan W., Chen L., Kong Q., Li L., Chen M., Jiang J., Li W., Shi F., Xu Z. The Synthesis and Polymer-Reinforced Mechanical Properties of SiO2 Aerogels: A Review. Molecules. 2023;28:5534. doi: 10.3390/molecules28145534. PubMed DOI PMC
Kovács Z., Csík A., Lakatos A. Thermal stability investigations of different aerogel insulation materials at elevated temperature. Therm. Sci. Eng. Progress. 2023;42:101906. doi: 10.1016/j.tsep.2023.101906. DOI
Guan F., Tao J., Yao Q., Li Z. Alginate–based aerogel fibers with a sheath–core structure for highly efficient methylene blue adsorption via directed freezing wet–spinning. Colloids Surf. A Physicochem. Eng. Asp. 2024;680:132706. doi: 10.1016/j.colsurfa.2023.132706. DOI
Sideris E., Graffin D.R., Ding Y., Li S., Weaver W.M., Carlo D.D., Hsiai T., Segura T. Particle Hydrogels Based on Hyaluronic Acid Building Blocks. ACS Biomater. Sci. Eng. 2016;2:2034–2041. doi: 10.1021/acsbiomaterials.6b00444. PubMed DOI
Han X., Xue Y., Lou R., Ding S., Wang S. Facile and efficient chitosan-based hygroscopic aerogel for air dehumidification. Int. J. Biol. Macromol. 2023;251:126191. doi: 10.1016/j.ijbiomac.2023.126191. PubMed DOI
Parveen I., Mahmud I., Khan A.R. Biodegradable Natural Polymers for Biomedical Applications. Sci. Rev. 2019;5:67–80. doi: 10.32861/sr.53.67.80. DOI
Jahed F.S., Hamidi S., Zamani-Kalajahi M., Siahi-Shadbad M. Biomedical applications of silica-based aerogels: A comprehensive review. Macromol. Res. 2023;31:519–538. doi: 10.1007/s13233-023-00142-9. DOI
Wang Z., E Y., Li J., Du T., Wang K., Yao X., Jiang J., Wang M., Yuan S. Sustainable bacterial cellulose-based composite aerogels with excellent flame retardant and heat insulation. Cellulose. 2023;30:9563–9574. doi: 10.1007/s10570-023-05461-9. DOI
Romero-Montero A., Valencia-Bermudez J.L., Rosas-Melendez S.A., Nunez-Tapia I., Pina-Barba M.C., Leyva-Gomez G., Prado-Audela D. Biopolymeric Fibrous Aerogels: The Sustainable Alternative for Water Remediation. Polymers. 2023;15:262. doi: 10.3390/polym15020262. PubMed DOI PMC
Tetik H., Wang Y., Sun X., Cao D., Shah N., Zhu H., Qian F., Lin D. Additive Manufacturing of 3D Aerogels and Porous Scaffolds: A Review. Adv. Funct. Mater. 2021;31:2103410. doi: 10.1002/adfm.202103410. DOI
Lázár I., Čelko L., Menelaou M. Aerogel-Based Materials in Bone and Cartilage Tissue Engineering—A Review with Future Implications. Gels. 2023;9:746. doi: 10.3390/gels9090746. PubMed DOI PMC
Li F., Truong V.X., Thissen V.X., Frith J.E., Forsythe J.S. Microfluidic Encapsulation of Human Mesenchymal Stem Cells for Articular Cartilage Tissue Regeneration. ACS Appl. Mater. Interfaces. 2017;9:8589–8601. doi: 10.1021/acsami.7b00728. PubMed DOI
Puertas-Bartolomé M., Benito-Garzón L., Fung S., Kohn J., Vázquez-Lasa J.S., San Román J. Bioadhesive functional hydrogels: Controlled release of catechol species with antioxidant and antiinflammatory behaviour. Mater. Sci. Eng. C. 2019;105:110040. doi: 10.1016/j.msec.2019.110040. PubMed DOI
Horsley V., Watt F. Repeal and Replace: Adipocyte Regeneration in Wound Repair. Cell Stem Cell. 2017;20:424–426. doi: 10.1016/j.stem.2017.03.015. PubMed DOI
Bando T., Yokoyama H., Nakamura H. Wound repair, remodeling, and regeneration. Dev. Growth Differ. 2018;60:303–305. doi: 10.1111/dgd.12566. PubMed DOI
Rosique R.G., Rosique M.J., Farina Junior J.A. Curbing Inflammation in Skin Wound Healing: A Review. Int. J. Inflam. 2015;2015:316235. doi: 10.1155/2015/316235. PubMed DOI PMC
Guo S., DiPietro L.A. Factors Affecting Wound Healing. J. Dent. Res. 2010;89:219–229. doi: 10.1177/0022034509359125. PubMed DOI PMC
Ashtikar M., Wacker M.G. Nanopharmaceuticals for wound healing–Lost in translation. Adv. Drug. Deliv. Rev. 2018;129:194–218. doi: 10.1016/j.addr.2018.03.005. PubMed DOI
Rodríguez-Cabello J.C., González de Torre I., Ibañez-Fonseca A., Alonso M. Bioactive scaffolds based on elastin-like materials for wound healing. Adv. Drug. Deliv. Rev. 2018;129:118–133. doi: 10.1016/j.addr.2018.03.003. PubMed DOI
Sheikholeslam M., Wright M.E.E., Jeschke M.G., Amini-Nik S. Biomaterials for Skin Substitutes. Adv. Healthc. Mater. 2018;7:1700897. doi: 10.1002/adhm.201700897. PubMed DOI PMC
Concha M., Vidal A., Giacaman A., Ojeda J., Pavicic F., Oyarzun-Ampuero F.A., Torres C., Cabrera M., Moreno-Villoslada I., Orellana S.L. Aerogels made of chitosan and chondroitin sulfate at high degree of neutralization: Biological properties toward wound healing. J. Biomed. Mater. Res. B Appl. Biomater. 2018;106:2464–2471. doi: 10.1002/jbm.b.34038. PubMed DOI
Jorfi M., Foster E.J. Recent advances in nanocellulose for biomedical applications. J. Appl. Polym. Sci. 2015;132 doi: 10.1002/app.41719. DOI
Zhang H., Lyu S., Zhou X., Gu H., Ma C., Wang C., Ding T., Shao Q., Liu H., Guo Z. Super light 3D hierarchical nanocellulose aerogel foam with superior oil adsorption. J. Colloid. Interface Sci. 2019;536:245–251. doi: 10.1016/j.jcis.2018.10.038. PubMed DOI
Nemoto J., Saito T., Isogai A. Simple Freeze-Drying Procedure for Producing Nanocellulose Aerogel-Containing, High-Performance Air Filters. ACS Appl. Mater. Interfaces. 2015;7:19809–19815. doi: 10.1021/acsami.5b05841. PubMed DOI
Nordli H.R., Chinga-Carrasco G., Rokstad A.M., Pukstad B. Producing ultrapure wood cellulose nanofibrils and evaluating the cytotoxicity using human skin cells. Carbohydr. Polym. 2016;150:65–73. doi: 10.1016/j.carbpol.2016.04.094. PubMed DOI
Gorbet M.B., Sefton M.V. Endotoxin: The uninvited guest. Biomaterials. 2005;26:6811–6817. doi: 10.1016/j.biomaterials.2005.04.063. PubMed DOI
Parenteau-Bareil R., Gauvin R., Berthod F. Collagen-based biomaterials for tissue engineering applications. Materials. 2010;3:1863–1887. doi: 10.3390/ma3031863. DOI
Govindarajan D., Duraipandy N., Srivatsan K.V., Lakra R., Korapatti P.S., Jayavel R., Kiran M.S. Fabrication of Hybrid Collagen Aerogels Reinforced with Wheat Grass Bioactives as Instructive Scaffolds for Collagen Turnover and Angiogenesis for Wound Healing Applications. ACS Appl. Mater. Interfaces. 2017;9:16939–16950. doi: 10.1021/acsami.7b05842. PubMed DOI
Dharunya G., Duraipandy N., Lakra R., Korapatti P.S., Jayavel R., Kiran M.S. Curcumin cross-linked collagen aerogels with controlled anti-proteolytic and pro-angiogenic efficacy. Biomed. Mater. 2016;11:1748–6041. doi: 10.1088/1748-6041/11/4/045011. PubMed DOI
Durairaj V., Hoda M., Shakya G., Babu S.P.P., Rajagopalan R. Phytochemical screening and analysis of antioxidant properties of aqueous extract of wheatgrass. Asian Pac. J. Trop. Med. 2014;7:S398–S404. doi: 10.1016/S1995-7645(14)60265-0. PubMed DOI
Bernardes B.G., Del Gaudio P., Del Alves P., Costa R., García-Gonzaléz C.A., Oliveira A.L. Bioaerogels: Promising Nanostructured Materials in Fluid Management, Healing and Regeneration of Wounds. Molecules. 2021;26:3834. doi: 10.3390/molecules26133834. PubMed DOI PMC
Batista M.P., Gonçalves V.S.S., Gaspar F.B., Nogueira I.D., Matias A.A., Gurikov P. Novel alginate-chitosan aerogel fibres for potential wound healing applications. Int. J. Biol. Macromol. 2020;156:773–782. doi: 10.1016/j.ijbiomac.2020.04.089. PubMed DOI
Guo X., Xu D., Zhao Y., Gao H., Shi X., Dend H., Chen Y., Du Y. Electroassembly of Chitin Nanoparticles to Construct Freestanding Hydrogels and High Porous Aerogels for Wound Healing. ACS Appl. Mater. Interfaces. 2019;11:34766–34776. doi: 10.1021/acsami.9b13063. PubMed DOI
Stergar J., Maver U. Review of aerogel-based materials in biomedical applications. J. Sol-Gel Sci. Technol. 2016;77:738–752. doi: 10.1007/s10971-016-3968-5. DOI
Muñoz-Ruíz A., Escobar-García D.M., Quintana M., Pozos-Guillén A., Flores H. Synthesis and Characterization of a New Collagen-Alginate Aerogel for Tissue Engineering. J. Nanomater. 2019;2019:2875375. doi: 10.1155/2019/2875375. DOI
Silva S.S., Duarte A.R., C Oliveira J.M., Mano J.F., Reis R.L. Alternative methodology for chitin-hydroxyapatite composites using ionic liquids and supercritical fluid technology. J. Bioact. Compat. Polym. 2013;28:481–491. doi: 10.1177/0883911513501595. DOI
Quraishi S., MarTins M., Barros A.A., Gurikov P., Raman S.P., Smirnova I., Duarte A.R.C., Reis R.L. Novel non-cytotoxic alginate–lignin hybrid aerogels as scaffolds for tissue engineering. J. Supercrit. Fluids. 2015;105:1–8. doi: 10.1016/j.supflu.2014.12.026. DOI
Orlacchio R., Zuppolini S., Cruz-Maya I., Pragliola S., Borriello A., Guarino V., Fittipaldi R., Lettieri M., Venditto V. Polydopamine-coated Poly-Lactic acid aerogels as Scaffolds for tissue engineering applications. Molecules. 2022;27:2137. doi: 10.3390/molecules27072137. PubMed DOI PMC
Reverchon E., Pisanti P., Cardea S. Nanostructured PLLA−Hydroxyapatite Scaffolds Produced by a Supercritical Assisted Technique. Ind. Eng. Chem. 2009;48:5310–5316. doi: 10.1021/ie8018752. DOI
Ge J., Li M., Zhang Q., Yang C.Z., Wooley P.H., Chen X., Yang S.U. Silica aerogel improves the biocompatibility in a poly-ε-caprolactone composite used as a tissue engineering scaffold. Int. J. Polym. Sci. 2013;2013:402859. doi: 10.1155/2013/402859. DOI
García-González C.A., Smirnova I. Use of supercritical fluid technology for the production of tailor-made aerogel particles for delivery systems. J Supercrit Fluids. 2013;79:152–158. doi: 10.1016/j.supflu.2013.03.001. DOI
Owens G., Singh R.K., Foroutan F., Alqaysi M., Han C.M., Mahapatra C., Kim H.W., Knowles J.C. Sol–gel based materials for biomedical applications. Prog. Mater. Sci. 2016;77:1–79. doi: 10.1016/j.pmatsci.2015.12.001. DOI
Yin W., Venkitachalma S.M., Jarret E., Staggs S., Leventis N., Lu H., Rubenstein D.A. Biocompatibility of surfactant-templated polyurea-nanoencapsulated macroporous silica aerogels with plasma platelets and endothelial cells. J. Biomed. Mater. Res. A. 2009;92:1431–1439. doi: 10.1002/jbm.a.32476. PubMed DOI
Dijkman P.E., Fioretta E.S., Frese L., Pasqualini F.S., Hoerstrup S.P. Heart Valve Replacements with Regenerative Capacity. Transfus. Med. Hemother. 2016;43:282–290. doi: 10.1159/000448181. PubMed DOI PMC
Sengupta D., Waldman S.D., Li S. From In Vitro to In Situ Tissue Engineering. Ann. Biomed. Eng. 2014;42:1537–1545. doi: 10.1007/s10439-014-1022-8. PubMed DOI
Wang X., Ali M., Lacerda C. A three-Dimensional Collagen-Elastin Scaffold for Heart Valve Tissue Engineering. Bioengineering. 2018;5:69. doi: 10.3390/bioengineering5030069. PubMed DOI PMC
Fu J.-H., Zhao M., Lin Y.R., Tian X.D., Wang Y.D., Wang Z.X., Fracgp L.X.W. Degradable Chitosan-Collagen Composites Seeded with Cells as Tissue Engineered Heart Valves. Heart Lung Circ. 2017;26:94–100. doi: 10.1016/j.hlc.2016.05.116. PubMed DOI
Jahnavi S., Saravanan U., Bhuvaneshwar G.S., Kumary T.V., Rajan S., Verma R.S. Biological and mechanical evaluation of a Bio-Hybrid scaffold for autologous valve tissue engineering. Mater. Sci. Eng. C. 2017;73:59–71. doi: 10.1016/j.msec.2016.11.116. PubMed DOI
Du J., Zhu T., Yu H., Zhu J., Sun C., Wang J., Chen S., Wang J., Guo X. Potential applications of three-dimensional structure of silk fibroin/poly(ester-urethane) urea nanofibrous scaffold in heart valve tissue engineering. Appl. Surf. Sci. 2018;447:269–278. doi: 10.1016/j.apsusc.2018.03.077. DOI
Yahya E.B., Amirul A.A., Abdul Khalil H.P.S., Olaiya N.G., Iqbal M.O., Jummaat F., Atty Sofea A.K., Adna A.S. Insights into the Role of Biopolymer Aerogel Scaffolds in Tissue Engineering and Regenerative Medicine. Polymers. 2021;13:1612. doi: 10.3390/polym13101612. PubMed DOI PMC
Hunziker E.B., Lippuner K., Keel M.J.B., Shintani N. An educational review of cartilage repair: Precepts & practice–myths & misconceptions–progress & prospects. Osteoarthr. Cartil. 2015;23:334–350. doi: 10.1016/j.joca.2014.12.011. PubMed DOI
Hafezi M., Khorasan S.N., Zare P., Neisiany R.E., Davoodi P. Biomimetic hydrogels designed for cartilage tissue engineering. Polymers. 2021;13:4199. doi: 10.3390/polym13234199. PubMed DOI PMC
Lynn R., Irwing P. Sex differences on the progressive matrices: A meta-analysis. Intelligence. 2004;32:481–498. doi: 10.1016/j.intell.2004.06.008. DOI
Kim S., Lee H. The Impact of Organizational Context and Information Technology on Employee Knowledge-Sharing Capabilities. Public. Adm. Rev. 2006;3:370–385. doi: 10.1111/j.1540-6210.2006.00595.x. DOI
Malaviya P., Nerem R.M. Fluid-Induced Shear Stress Stimulates Chondrocyte Proliferation Partially Mediated via TGF-β 1. Tissue Eng. 2002;8:581–590. doi: 10.1089/107632702760240508. PubMed DOI
Tanaka K., Oikawa K., Fukuhara C., Saito H., Onosaka S., Min K.S., Fujii M. Metabolism of potassium bromate in rats II. In vitro studies. Chemosphere. 1984;13:1213–1219. doi: 10.1016/0045-6535(84)90121-8. DOI
Drury J.L., Mooney D.J. Hydrogels for tissue engineering: Scaffold design variables and applications. Biomaterials. 2003;24:4337–4351. doi: 10.1016/S0142-9612(03)00340-5. PubMed DOI
Tertuliano O.A., Greer J.R. The nanocomposite nature of bone drives its strength and damage resistance. Nat. Mater. 2016;15:1195–1202. doi: 10.1038/nmat4719. PubMed DOI
Li Y., Li Q., Zhu S., Luo E., Li J., Feng G., Liao Y., Hu J. The effect of strontium-substituted hydroxyapatite coating on implant fixation in ovariectomized rats. Biomaterials. 2003;31:9006–9014. doi: 10.1016/j.biomaterials.2010.07.112. PubMed DOI
Ortiz C., Boyce M.C. Bioinspired Structural Materials. Science. 2008;319:1053–1054. doi: 10.1126/science.1154295. PubMed DOI
Zhang M.C., Zhu Y.-J., Xiong Z.-C., Wu J., Chen F. Bioinspired Ultralight Inorganic Aerogel for Highly Efficient Air Filtration and Oil–Water Separation. ACS Appl. Mater. Interfaces. 2018;10:13019–13027. doi: 10.1021/acsami.8b02081. PubMed DOI
Sun T.-W., Zhu Y.-J., Chen F. Hydroxyapatite nanowire/collagen elastic porous nanocomposite and its enhanced performance in bone defect repair. RSC Adv. 2018;8:26218–26229. doi: 10.1039/C8RA03972K. PubMed DOI PMC
Sun T.-W., Yu W.-L., Zhu Y.-J., Chen F., Zhang Y.-G., Jiang Y.-Y., He Y.-H. Porous Nanocomposite Comprising Ultralong Hydroxyapatite Nanowires Decorated with Zinc-Containing Nanoparticles and Chitosan: Synthesis and Application in Bone Defect Repair. Chem. Eur. J. 2018;24:8809–8821. doi: 10.1002/chem.201800425. PubMed DOI
Zhang Y.-G., Zhu Y.-J., Chen F., Sun T.-W. Biocompatible, Ultralight, Strong Hydroxyapatite Networks Based on Hydroxyapatite Microtubes with Excellent Permeability and Ultralow Thermal Conductivity. ACS Appl. Mater. Interfaces. 2017;9:7918–7928. doi: 10.1021/acsami.6b13328. PubMed DOI
Zhang Y.-G., Zhu Y.-J., Chen F., Sun T.-W. A novel composite scaffold comprising ultralong hydroxyapatite microtubes and chitosan: Preparation and application in drug delivery. J. Mater. Chem. B. 2017;5:3898–3906. doi: 10.1039/C6TB02576E. PubMed DOI
Sun T.-W., Yu W.-L., Zhu Y.-J., Yang R.-L., Shen Y.-Q., Chen D.-Y., He Y.-H., Chen F. Hydroxyapatite Nanowire@Magnesium Silicate Core–Shell Hierarchical Nanocomposite: Synthesis and Application in Bone Regeneration. ACS Appl. Mater. Interfaces. 2017;9:16435–16447. doi: 10.1021/acsami.7b03532. PubMed DOI
Ulker Z., Erkey C. A novel hybrid material: An inorganic silica aerogel core encapsulated with a tunable organic alginate aerogel layer. RSC Adv. 2014;4:62362–62366. doi: 10.1039/C4RA09089F. DOI
Ulker Z., Erkey C. An emerging platform for drug delivery: Aerogel based systems. J. Control. Release. 2014;177:51–63. doi: 10.1016/j.jconrel.2013.12.033. PubMed DOI
Du A., Zhou B., Zhang Z., Shen J. A Special Material or a New State of Matter: A Review and Reconsideration of the Aerogel. Materials. 2013;6:941–968. doi: 10.3390/ma6030941. PubMed DOI PMC
Selmer I., Kleemann C., Kulozik U., Heinrich S., Smirnova I. Development of egg white protein aerogels as new matrix material for microencapsulation in food. J. Supercrit. Fluids. 2015;106:42–49. doi: 10.1016/j.supflu.2015.05.023. DOI
Abdul Khalil H.P.S., Yahya E.B., Jummaat F., Adnan A.S., Olaiya N.G., Rizal S., Abdullah C.K., Pasquini D., Thoman S. Biopolymers based aerogels: A review on revolutionary solutions for smart therapeutics delivery. Prog. Mater. Sci. 2023;131:101014. doi: 10.1016/j.pmatsci.2022.101014. DOI
Follmann H.D.M., Oliveira O.N., Jr., Martins A.C., Lazarin-Bidoia D., Nakamura C.V., Rubira A.F., Silva R., Asefa T. Nanofibrous silica microparticles/polymer hybrid aerogels for sustained delivery of poorly water-soluble camptothecin. J. Colloid Interface Sci. 2020;567:92–102. doi: 10.1016/j.jcis.2020.01.110. PubMed DOI
Wang R., Shou D., Lv O., Kong Y., Deng L., Shen J. pH-Controlled drug delivery with hybrid aerogel of chitosan, carboxymethyl cellulose and graphene oxide as the carrier. Int. J. Biol. Macromol. 2017;103:248–253. doi: 10.1016/j.ijbiomac.2017.05.064. PubMed DOI
Follmann H.D.M., Oliveira O.N., Jr., Lazarin-Bidoia D., Nakamura C.V., Huang X., Asefa T., Silva R. Multifunctional hybrid aerogels: Hyperbranched polymer-trapped mesoporous silica nanoparticles for sustained and prolonged drug release. Nanoscale. 2018;10:1704–1715. doi: 10.1039/C7NR08464A. PubMed DOI
Tiryaki E., Başaran Elalmış Y., Karakuzu B., Yücel S. Novel organic/inorganic hybrid nanoparticles as enzyme-triggered drug delivery systems: Dextran and Dextran aldehyde coated silica aerogels. J. Drug. Deliv. Sci. Technol. 2020;56:101517. doi: 10.1016/j.jddst.2020.101517. DOI
García-González C.A., Sosnik A., Kalamar J., Marco I.D., Erkey C., Concheiro A., Alvarez-Lorenzo C. Aerogels in drug delivery: From design to application. J. Control. Release. 2021;332:40–63. doi: 10.1016/j.jconrel.2021.02.012. PubMed DOI
Kaci F.N., Rüzgar D., Görmez A., Efe D. The Evaluation of Cytotoxic and Antibacterial Activity of the Ethanol Extract of Punica granatum L. Peels. J. Inst. Sci. Technol. 2021;11:2319–2327. doi: 10.21597/jist.875449. DOI
Uddin K.M.A., Orelma H., Mohammadi P., Borghei M., Laine J., Klinder M., Rojas O. Retention of lysozyme activity by physical immobilization in nanocellulose aerogels and antibacterial effects. Cellulose. 2017;24:2837–2848. doi: 10.1007/s10570-017-1311-0. DOI
Lu T., Li Q., Chen W., Yu H. Composite aerogels based on dialdehyde nanocellulose and collagen for potential applications as wound dressing and tissue engineering scaffold. Compos. Sci. Technol. 2014;94:132–138. doi: 10.1016/j.compscitech.2014.01.020. DOI
Ye S., Shu H., Chen S., Lie J., Yanyi W., Zhngiie Z., Wei S. Morphological, Release and Antibacterial Performances of Amoxicillin-Loaded Cellulose Aerogels. Molecules. 2018;23:2082. doi: 10.3390/molecules23082082. PubMed DOI PMC
Navarro J.R.G., Rostami J., Ahlinder A., Mietner J.B., Bernin D., Saake B., Edlund U. Surface-Initiated Controlled Radical Polymerization Approach to In Situ Cross-Link Cellulose Nanofibrils with Inorganic Nanoparticles. Biomacromolecules. 2020;21:1952–1961. doi: 10.1021/acs.biomac.0c00210. PubMed DOI
Sun D., Liu W., Tang A., Guo F., Xie W. A new PEGDA/CNF aerogel-wet hydrogel scaffold fabricated by a two-step method. Soft Matter. 2019;15:8092–8101. doi: 10.1039/C9SM00899C. PubMed DOI
Zhou J., Zhang R., Xu R., Li Y. Super-Assembled Hierarchical Cellulose Aerogel-Gelatin Solid Electrolyte for Implantable and Biodegradable Zinc Ion Battery. Adv. Funct. Mater. 2022;32:21. doi: 10.1002/adfm.202111406. DOI
Liang L., Zhang S., Goenaga G.A., Meng X., Zawodzinski T.A., Ragauskas A.J. Chemically Cross-Linked Cellulose Nanocrystal Aerogels for Effective Removal of Cation Dye. Front. Chem. 2020;8:570. doi: 10.3389/fchem.2020.00570. PubMed DOI PMC
Gao W., Wen D. Recent advances of noble metal aerogels in biosensing. View. 2021;2:3. doi: 10.1002/VIW.20200124. DOI
Lee I., Kim S.-H., Rethinasabapathy M., Haldorai Y., Lee G.-W., Choe R., Jang S.-C., Kang Y.-K., Roh C., Cho W.-S., et al. Porous 3D Prussian blue/cellulose aerogel as a decorporation agent for removal of ingested cesium from the gastrointestinal tract. Sci. Rep. 2018;8:4540. doi: 10.1038/s41598-018-22715-w. PubMed DOI PMC
Dong S., Li N., Suo G., Huang T. Inorganic/Organic Doped Carbon Aerogels As Biosensing Materials for the Detection of Hydrogen Peroxide. Anal. Chem. 2013;85:11739–11746. doi: 10.1021/ac4015098. PubMed DOI
Shen Z., Han G., Wang X., Luo J., Sun R. An ultra-light antibacterial bagasse–AgNP aerogel. J. Mater. Chem. B. 2017;5:1155–1158. doi: 10.1039/C6TB02171A. PubMed DOI
Henschen J., Illergård J., Larsson P.A., Ek M., Wågberg L. Contact-active antibacterial aerogels from cellulose nanofibrils. Colloids Surf. B. Biointerfaces. 2016;146:415–422. doi: 10.1016/j.colsurfb.2016.06.031. PubMed DOI
Kim S.-K., Murugan S.S., Dalavi P.A., Gupta S., Anil S., Seong G.H., Venkatesan J. Biomimetic chitosan with biocomposite nanomaterials for bone tissue repair and regeneration. Beilstein J. Nanotechnol. 2022;13:1051–1067. doi: 10.3762/bjnano.13.92. PubMed DOI PMC
Idumah C.I. Recent advancements in self-healing polymers, polymer blends, and nanocomposites. Polym. Polym. Compos. 2021;29:246–258. doi: 10.1177/0967391120910882. DOI
Trembecka-Wójciga K., Sobczak J.J., Sobczak N. A comprehensive review of graphene-based aerogels for biomedical applications. The impact of synthesis parameters onto material microstructure and porosity. Arch. Civ. Mech. Eng. 2023;23:133. doi: 10.1007/s43452-023-00650-6. DOI
Liu C., Wang S., Wang N., Yu J., Liu Y.-T., Ding B. From 1D Nanofibers to 3D Nanofibrous Aerogels: A Marvellous Evolution of Electrospun SiO2 Nanofibers for Emerging Applications. Nanomicro Lett. 2022;14:194. doi: 10.1007/s40820-022-00937-y. PubMed DOI PMC
Abdullah, Zou Y., Farooq S., Walayat N., Zhang H., Faieta M., Pitia P., Huang Q. Bio-aerogels: Fabrication, properties and food applications. Crit. Rev. Food Sci. Nutr. 2023;63:6687–6709. doi: 10.1080/10408398.2022.2037504. PubMed DOI
Karamikamkar S., Yalcintas E.P., Haghniaz R., Barros N.R.D., Nasiri R., Davoodi E., Nasrollahi F., Erdem A., Kang H., Jee J., et al. Aerogel-Based Biomaterials for Biomedical Applications: From Fabrication Methods to Disease-Targeting Applications. Adv. Sci. 2023;10:23. doi: 10.1002/advs.202204681. PubMed DOI PMC