Meeting Summary of The NYO3 5th NO-Age/AD Meeting and the 1st Norway-UK Joint Meeting on Aging and Dementia: Recent Progress on the Mechanisms and Interventional Strategies
Jazyk angličtina Země Spojené státy americké Médium print
Typ dokumentu časopisecké články
Grantová podpora
Wellcome Trust - United Kingdom
Alzheimer's Society - United Kingdom
PubMed
38289789
PubMed Central
PMC10917444
DOI
10.1093/gerona/glae029
PII: 7592044
Knihovny.cz E-zdroje
- Klíčová slova
- Aging, Alzheimer’s disease, Dementia, Longevity, Neurodegeneration,
- MeSH
- demence * prevence a kontrola epidemiologie MeSH
- dlouhověkost MeSH
- lidé MeSH
- senioři MeSH
- stárnutí * MeSH
- Check Tag
- lidé MeSH
- senioři MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Norsko MeSH
- Spojené království MeSH
Unhealthy aging poses a global challenge with profound healthcare and socioeconomic implications. Slowing down the aging process offers a promising approach to reduce the burden of a number of age-related diseases, such as dementia, and promoting healthy longevity in the old population. In response to the challenge of the aging population and with a view to the future, Norway and the United Kingdom are fostering collaborations, supported by a "Money Follows Cooperation agreement" between the 2 nations. The inaugural Norway-UK joint meeting on aging and dementia gathered leading experts on aging and dementia from the 2 nations to share their latest discoveries in related fields. Since aging is an international challenge, and to foster collaborations, we also invited leading scholars from 11 additional countries to join this event. This report provides a summary of the conference, highlighting recent progress on molecular aging mechanisms, genetic risk factors, DNA damage and repair, mitophagy, autophagy, as well as progress on a series of clinical trials (eg, using NAD+ precursors). The meeting facilitated dialogue among policymakers, administrative leaders, researchers, and clinical experts, aiming to promote international research collaborations and to translate findings into clinical applications and interventions to advance healthy aging.
Brain and Muscle Energy Group Institute of Oral Biology University of Oslo Oslo Norway
British Embassy Oslo Oslo Norway
Centre for Age Related Medicine Stavanger University Hospital Stavanger Norway
Centre for Molecular Medicine Norway University of Oslo Oslo Norway
Centre for Sustainable Healthcare Education Faculty of Medicine University of Oslo Oslo Norway
Department of Biochemistry University of Oxford Oxford UK
Department of Clinical Medicine University of Bergen Bergen Norway
Department of Clinical Neuroscience University of Cambridge Cambridge UK
Department of Haematology Oslo University Hospital Oslo Norway
Department of Microbiology Oslo University Hospital Oslo Norway
Department of Molecular Medicine Institute of Basic Medical Sciences University of Oslo Oslo Norway
Department of Neurology Akershus University Hospital Lørenskog Norway
Department of Neuroscience Erasmus MC Rotterdam The Netherlands
Department of Physiology Medical School National and Kapodistrian University of Athens Athens Greece
Guangdong Hong Kong Macau Great Bay Area Geroscience Joint Laboratory Guangzhou China
Institute for Molecular Medicine Finland HiLIFE University of Helsinki Helsinki Finland
Institute of Biosciences and Applications NCSR Demokritos Athens Greece
Institute of Clinical Medicine Campus Ahus University of Oslo Oslo Norway
Institute of Clinical Medicine Faculty of Medicine University of Oslo Oslo Norway
International Clinical Research Centre St Anne's University Hospital Brno Czech Republic
Karolinska Institutet Stockholm Sweden
Max Planck Institute for Biology of Ageing Cologne Germany
Medical School University of Crete Heraklion Greece
Netherlands Institute for Neuroscience Amsterdam The Netherlands
Norwegian National Centre for Ageing and Health Vestfold Hospital Trust Tønsberg Norway
Royal Norwegian Embassy in London London UK
The Norwegian Centre on Healthy Ageing Oslo Norway
Tracked bio Copenhagen Denmark
UK Dementia Research Institute University of Cambridge Cambridge UK
Xiangya School of Stomatology Central South University Changsha Hunan China
Zobrazit více v PubMed
WHO. Ageing and Health; 2022.
Fang EF, Xie C, Schenkel JA, et al. . A research agenda for ageing in China in the 21st century (2nd edition): focusing on basic and translational research, long-term care, policy and social networks. Ageing Res Rev. 2020;64:101174. 10.1016/j.arr.2020.101174 PubMed DOI PMC
Fang EF, Scheibye-Knudsen M, Jahn HJ, et al. . A research agenda for aging in China in the 21st century. Ageing Res Rev. 2015;24:197–205. 10.1016/j.arr.2015.08.003 PubMed DOI PMC
Woods T, Palmarini N, Corner L, et al. . Quantum healthy longevity for healthy people, planet, and growth. Lancet Healthy Longev. 2022;3:e811–e813. 10.1016/S2666-7568(22)00267-7 PubMed DOI
Livingston G, Huntley J, Sommerlad A, et al. . Dementia prevention, intervention, and care: 2020 report of the Lancet Commission. Lancet. 2020;396:413–446. 10.1016/S0140-6736(20)30367-6 PubMed DOI PMC
Cox LS, Faragher RGA.. Linking interdisciplinary and multiscale approaches to improve healthspan—a new UK model for collaborative research networks in ageing biology and clinical translation. Lancet Healthy Longev. 2022;3:e318–e320. 10.1016/S2666-7568(22)00095-2 PubMed DOI
Regan JC, Khericha M, Dobson AJ, Bolukbasi E, Rattanavirotkul N, Partridge L.. Sex difference in pathology of the ageing gut mediates the greater response of female lifespan to dietary restriction. Elife. 2016;5:e10956. 10.7554/eLife.10956 PubMed DOI PMC
Regan JC, Lu YX, Urena E, et al. . Sexual identity of enterocytes regulates autophagy to determine intestinal health, lifespan and responses to rapamycin. Nat Aging. 2022;2:1145–1158. 10.1038/s43587-022-00308-7 PubMed DOI PMC
Juricic P, Lu YX, Leech T, et al. . Long-lasting geroprotection from brief rapamycin treatment in early adulthood by persistently increased intestinal autophagy. Nat Aging. 2022;2:824–836. 10.1038/s43587-022-00278-w PubMed DOI PMC
Cox LS, Bellantuono I, Lord JM, et al. . Tackling immunosenescence to improve COVID-19 outcomes and vaccine response in older adults. Lancet Healthy Longev. 2020;1:e55–e57. 10.1016/S2666-7568(20)30011-8 PubMed DOI PMC
Camell CD, Yousefzadeh MJ, Zhu Y, et al. . Senolytics reduce coronavirus-related mortality in old mice. Science. 2021;373. 10.1126/science.abe4832 PubMed DOI PMC
Cox LS, Lord JM.. Targeting aging cells improves survival. Science. 2021;373:281–282. 10.1126/science.abi4474 PubMed DOI
Mannick JB, Del Giudice G, Lattanzi M, et al. . mTOR inhibition improves immune function in the elderly. Sci Transl Med. 2014;6:268ra179. 10.1126/scitranslmed.3009892 PubMed DOI
Mannick JB, Morris M, Hockey HP, et al. . TORC1 inhibition enhances immune function and reduces infections in the elderly. Sci Transl Med. 2018;10:eaaq1564. 10.1126/scitranslmed.aaq1564 PubMed DOI
Bischof E, Siow RC, Zhavoronkov A, Kaeberlein M.. The potential of rapalogs to enhance resilience against SARS-CoV-2 infection and reduce the severity of COVID-19. Lancet Healthy Longev. 2021;2:e105–e111. 10.1016/S2666-7568(20)30068-4 PubMed DOI PMC
Rolt A, Nair A, Cox LS.. Optimisation of a screening platform for determining IL-6 inflammatory signalling in the senescence-associated secretory phenotype (SASP). Biogerontology. 2019;20:359–371. 10.1007/s10522-019-09796-4 PubMed DOI PMC
Fang EF, Scheibye-Knudsen M, Chua KF, Mattson MP, Croteau DL, Bohr VA.. Nuclear DNA damage signalling to mitochondria in ageing. Nat Rev Mol Cell Biol. 2016;17:308–321. 10.1038/nrm.2016.14 PubMed DOI PMC
Kurki MI, Karjalainen J, Palta P, et al. ; FinnGen. FinnGen provides genetic insights from a well-phenotyped isolated population. Nature. 2023;613:508–518. 10.1038/s41586-022-05473-8 PubMed DOI PMC
Fang EF, Scheibye-Knudsen M, Brace LE, et al. . Defective mitophagy in XPA via PARP-1 hyperactivation and NAD(+)/SIRT1 reduction. Cell. 2014;157:882–896. 10.1016/j.cell.2014.03.026 PubMed DOI PMC
Fang EF, Lautrup S, Hou Y, et al. . NAD(+) in aging: molecular mechanisms and translational implications. Trends Mol Med. 2017;23:899–916. 10.1016/j.molmed.2017.08.001 PubMed DOI PMC
Fang EF, Hou Y, Palikaras K, et al. . Mitophagy inhibits amyloid-beta and tau pathology and reverses cognitive deficits in models of Alzheimer’s disease. Nat Neurosci. 2019;22:401–412. 10.1038/s41593-018-0332-9 PubMed DOI PMC
Wang H, Lautrup S, Caponio D, Zhang J, Fang EF.. DNA damage-induced neurodegeneration in accelerated ageing and Alzheimer’s disease. Int J Mol Sci. 2021;22:1–17. 10.3390/ijms22136748 PubMed DOI PMC
Fang EF, Kassahun H, Croteau DL, et al. . NAD(+) replenishment improves lifespan and healthspan in ataxia telangiectasia models via mitophagy and DNA repair. Cell Metab. 2016;24:566–581. 10.1016/j.cmet.2016.09.004 PubMed DOI PMC
Presterud R, Deng WH, Wennerstrom AB, et al. . Long-term nicotinamide riboside use improves coordination and eye movements in ataxia telangiectasia. Mov Disord. 2023. 10.1002/mds.29645 PubMed DOI
Aman Y, Schmauck-Medina T, Hansen M, et al. . Autophagy in healthy aging and disease. Nat Aging. 2021;1:634–650. 10.1038/s43587-021-00098-4 PubMed DOI PMC
Zhang J, Wang HL, Fang EF.. Autophagy and bioenergetics in aging. In: Fang EF, Bergersen LH, Gilmour BC, eds. Molecular, Cellular, and Metabolic Fundamentals of Human Aging. Elsevier Inc./Academic Press; 2022:107–119. eBook ISBN: 9780323916189
Fleming A, Bourdenx M, Fujimaki M, et al. . The different autophagy degradation pathways and neurodegeneration. Neuron. 2022;110:935–966. 10.1016/j.neuron.2022.01.017 PubMed DOI PMC
Schmauck-Medina T, Moliere A, Lautrup S, et al. . New hallmarks of ageing: a 2022 Copenhagen ageing meeting summary. Aging (Albany NY). 2022;14:6829–6839. 10.18632/aging.204248 PubMed DOI PMC
Lopez-Otin C, Blasco MA, Partridge L, Serrano M, Kroemer G.. Hallmarks of aging: an expanding universe. Cell. 2023;186:243–278. 10.1016/j.cell.2022.11.001 PubMed DOI
Palikaras K, Lionaki E, Tavernarakis N.. Coordination of mitophagy and mitochondrial biogenesis during ageing in C. elegans. Nature. 2015;521:525–528. 10.1038/nature14300 PubMed DOI
Palikaras K, Lionaki E, Tavernarakis N.. Mechanisms of mitophagy in cellular homeostasis, physiology and pathology. Nat Cell Biol. 2018;20:1013–1022. 10.1038/s41556-018-0176-2 PubMed DOI
Wilson DM, 3rd, Cookson MR, Van Den Bosch L, Zetterberg H, Holtzman DM, Dewachter I.. Hallmarks of neurodegenerative diseases. Cell. 2023;186:693–714. 10.1016/j.cell.2022.12.032 PubMed DOI
Hou Y, Dan X, Babbar M, et al. . Ageing as a risk factor for neurodegenerative disease. Nat Rev Neurol. 2019;15:565–581. 10.1038/s41582-019-0244-7 PubMed DOI
Borbolis F, Palikaras K.. The compartmentalised nature of neuronal mitophagy: molecular insights and implications. Expert Rev Mol Med. 2022;24:e38. 10.1017/erm.2022.31 PubMed DOI PMC
Palikaras K, Tavernarakis N.. Regulation and roles of mitophagy at synapses. Mech Ageing Dev. 2020;187:111216. 10.1016/j.mad.2020.111216 PubMed DOI
Zaninello M, Palikaras K, Sotiriou A, Tavernarakis N, Scorrano L.. Sustained intracellular calcium rise mediates neuronal mitophagy in models of autosomal dominant optic atrophy. Cell Death Differ. 2022;29:167–177. 10.1038/s41418-021-00847-3 PubMed DOI PMC
Zaninello M, Palikaras K, Naon D, et al. . Inhibition of autophagy curtails visual loss in a model of autosomal dominant optic atrophy. Nat Commun. 2020;11:4029. 10.1038/s41467-020-17821-1 PubMed DOI PMC
Princely Abudu Y, Pankiv S, Mathai BJ, et al. . NIPSNAP1 and NIPSNAP2 Act as “Eat Me” Signals for Mitophagy. Dev Cell. 2019;49:509–525.e12. 10.1016/j.devcel.2019.03.013 PubMed DOI
Lautrup S, Sinclair DA, Mattson MP, Fang EF.. NAD(+) in brain aging and neurodegenerative disorders. Cell Metab. 2019;30:630–655. 10.1016/j.cmet.2019.09.001 PubMed DOI PMC
Xie C, Zhuang XX, Niu Z, et al. . Amelioration of Alzheimer’s disease pathology by mitophagy inducers identified via machine learning and a cross-species workflow. Nat Biomed Eng. 2022;6:76–93. 10.1038/s41551-021-00819-5 PubMed DOI PMC
Puri C, Gratian MJ, Rubinsztein DC.. Mammalian autophagosomes form from finger-like phagophores. Dev Cell. 2023;58:2746–2760.e5. 10.1016/j.devcel.2023.08.016 PubMed DOI
Festa BP, Siddiqi FH, Jimenez-Sanchez M, et al. . Microglial-to- neuronal CCR5 signaling regulates autophagy in neurodegeneration. Neuron. 2023;111:2021–2037.e12. 10.1016/j.neuron.2023.04.006 PubMed DOI
Papandreou ME, Konstantinidis G, Tavernarakis N.. Nucleophagy delays aging and preserves germline immortality. Nat Aging. 2023;3:34–46. 10.1038/s43587-022-00327-4 PubMed DOI PMC
Luo OJ, Lei W, Zhu G, et al. . Multidimensional single-cell analysis of human peripheral blood reveals characteristic features of the immune system landscape in aging and frailty. Nat Aging. 2022;2:348–364. 10.1038/s43587-022-00198-9 PubMed DOI
Xiao C, Ren Z, Zhang B, et al. . Insufficient epitope-specific T cell clones are responsible for impaired cellular immunity to inactivated SARS-CoV-2 vaccine in older adults. Nat Aging. 2023;3:418–435. 10.1038/s43587-023-00379-0 PubMed DOI PMC
Miller GW, Jones DP.. The nature of nurture: refining the definition of the exposome. Toxicol Sci. 2014;137:1–2. 10.1093/toxsci/kft251 PubMed DOI PMC
GjOra L, Strand BH, Bergh S, et al. . Current and future prevalence estimates of mild cognitive impairment, dementia, and its subtypes in a population-based sample of people 70 years and older in Norway: the HUNT Study. J Alzheimers Dis. 2021;79:1213–1226. 10.3233/JAD-201275 PubMed DOI PMC
Selbaek G, Stuebs J, Engedal K, et al. . Blood pressure trajectories over 35 years and dementia risk: a retrospective study: the HUNT Study. Front Aging Neurosci. 2022;14:931715. 10.3389/fnagi.2022.931715 PubMed DOI PMC
Naia L, Shimozawa M, Bereczki E, et al. . Mitochondrial hypermetabolism precedes impaired autophagy and synaptic disorganization in App knock-in Alzheimer mouse models. Mol Psychiatry. 2023;28:3966–3981. 10.1038/s41380-023-02289-4 PubMed DOI PMC
Watne LO, Pollmann CT, Neerland BE, et al. . Cerebrospinal fluid quinolinic acid is strongly associated with delirium and mortality in hip-fracture patients. J Clin Invest. 2023;133:e163472. 10.1172/JCI163472 PubMed DOI PMC
Sepulveda-Falla D, Barrera-Ocampo A, Hagel C, et al. . Familial Alzheimer’s disease-associated presenilin-1 alters cerebellar activity and calcium homeostasis. J Clin Invest. 2014;124:1552–1567. 10.1172/JCI66407 PubMed DOI PMC
Fang EF, Hou Y, Lautrup S, et al. . NAD(+) augmentation restores mitophagy and limits accelerated aging in Werner syndrome. Nat Commun. 2019;10:5284. 10.1038/s41467-019-13172-8 PubMed DOI PMC
Brelstaff J, Tolkovsky AM, Ghetti B, Goedert M, Spillantini MG.. Living neurons with tau filaments aberrantly expose phosphatidylserine and are phagocytosed by microglia. Cell Rep. 2018;24:1939–1948.e4. 10.1016/j.celrep.2018.07.072 PubMed DOI PMC
Brelstaff JH, Mason M, Katsinelos T, et al. . Microglia become hypofunctional and release metalloproteases and tau seeds when phagocytosing live neurons with P301S tau aggregates. Sci Adv. 2021;7:eabg4980. 10.1126/sciadv.abg4980 PubMed DOI PMC
Schweighauser M, Arseni D, Bacioglu M, et al. . Age-dependent formation of TMEM106B amyloid filaments in human brains. Nature. 2022;605:310–314. 10.1038/s41586-022-04650-z PubMed DOI PMC
Baggen J, Jacquemyn M, Persoons L, et al. . TMEM106B is a receptor mediating ACE2-independent SARS-CoV-2 cell entry. Cell. 2023;186:3427–3442.e22. 10.1016/j.cell.2023.06.005 PubMed DOI PMC
Guerreiro SR, Guimaraes MR, Silva JM, et al. . Chronic pain causes Tau-mediated hippocampal pathology and memory deficits. Mol Psychiatry. 2022;27:4385–4393. 10.1038/s41380-022-01707-3 PubMed DOI
Sotiropoulos I, Silva JM, Gomes P, Sousa N, Almeida OFX.. Stress and the etiopathogenesis of Alzheimer’s disease and depression. Adv Exp Med Biol. 2019;1184:241–257. 10.1007/978-981-32-9358-8_20 PubMed DOI
Silva JM, Rodrigues S, Sampaio-Marques B, et al. . Dysregulation of autophagy and stress granule-related proteins in stress-driven Tau pathology. Cell Death Differ. 2019;26:1411–1427. 10.1038/s41418-018-0217-1 PubMed DOI PMC
Gomes PA, Bodo C, Nogueras-Ortiz C, et al. . A novel isolation method for spontaneously released extracellular vesicles from brain tissue and its implications for stress-driven brain pathology. Cell Commun Signal. 2023;21:35. 10.1186/s12964-023-01045-z PubMed DOI PMC
Ezra M, Garbrecht J, Rasmussen N, et al. . The human pathome shows sex specific aging patterns post-development. BIoRxiv. 2023. 10.1101/2023.02.27.530179 DOI
Liang KX, Kristiansen CK, Mostafavi S, et al. . Disease-specific phenotypes in iPSC-derived neural stem cells with POLG mutations. EMBO Mol Med. 2020;12:e12146. 10.15252/emmm.202012146 PubMed DOI PMC
Hong Y, Kristiansen CK, Chen A, et al. . POLG genotype influences degree of mitochondrial dysfunction in iPSC derived neural progenitors, but not the parent iPSC or derived glia. Exp Neurol. 2023;365:114429. 10.1016/j.expneurol.2023.114429 PubMed DOI
Liang KX, Vatne GH, Kristiansen CK, et al. . N-acetylcysteine amide ameliorates mitochondrial dysfunction and reduces oxidative stress in hiPSC-derived dopaminergic neurons with POLG mutation. Exp Neurol. 2021;337:113536. 10.1016/j.expneurol.2020.113536 PubMed DOI
Norevik CS, Huuha AM, Rosbjorgen RN, et al. . Exercised blood plasma promotes hippocampal neurogenesis in the Alzheimer’s disease rat brain. J Sport Health Sci. 2023:S2095–2546(23)00072. 10.1016/j.jshs.2023.07.003 PubMed DOI
Cao SQ, Wang HL, Palikaras K, Tavernarakis N, Fang EF.. Chemotaxis assay for evaluation of memory-like behavior in wild-type and Alzheimer’s-disease-like C. elegans models. STAR Protoc. 2023;4:102250. 10.1016/j.xpro.2023.102250 PubMed DOI PMC
Mladenovic Djordjevic AN, Kapetanou M, Loncarevic-Vasiljkovic N, et al. . Pharmacological intervention in a transgenic mouse model improves Alzheimer’s-associated pathological phenotype: involvement of proteasome activation. Free Radic Biol Med. 2021;162:88–103. 10.1016/j.freeradbiomed.2020.11.038 PubMed DOI PMC
Abdelnour C, Gonzalez MC, Gibson LL, et al. . Dementia with Lewy bodies drug therapies in clinical trials: systematic review up to 2022. Neurol Ther. 2023;12:727–749. 10.1007/s40120-023-00467-8 PubMed DOI PMC