Trace elements in the muscle and liver tissues of Garra shamal from the freshwater ecosystem of Oman: an exposure risk assessment

. 2024 Feb ; 31 (10) : 15199-15208. [epub] 20240130

Jazyk angličtina Země Německo Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid38291207

Grantová podpora
IG/AGR/FISH/22/01 Sultan Qaboos University

Odkazy

PubMed 38291207
PubMed Central PMC10884084
DOI 10.1007/s11356-024-32229-w
PII: 10.1007/s11356-024-32229-w
Knihovny.cz E-zdroje

Anthropogenic activities lead to environmental contamination with foreign substances such as heavy metals. This work was aimed to monitor trace elements (total arsenic (As), cadmium (Cd), chrome (Cr), cobalt (Co), copper (Cu), lead (Pb), manganese (Mn), mercury (Hg), nickel (Ni), and zinc (Zn)) contamination levels (dry weight base) in three natural freshwater reservoirs of Oman including Al Khawd and Al Amarat (Muscat Governorate) and Surur area (Ad Dakhiliyah Governorate as control area) using a native benthic inland fish (Garra shamal; Cyprinidae) for the first time. The muscle and liver of a hundred and twenty G. shamal were collected to assess the degree of metal contamination. Atomic absorption spectrometry was used as an analytical technique. From the spectrum of analyzed elements, we found Zn as a major element in monitored areas. The statistically significant (P < 0.05) highest concentrations of Zn liver (0.275 ± 0.065 µg/g) were in Al Amarat compared to the other areas. The concentrations of monitored elements in the fish muscle were lower than the liver samples. Furthermore, the fish length was significantly correlated with the accumulation of Hg and Co in both muscle and liver samples. In all analyzed fish from Oman inland water, the concentrations of elements were below the permissible limits; however, additional research is needed.

Zobrazit více v PubMed

Abreu SN, Pereira E, Vale C, Duarte AC. Accumulation of mercury in sea bass from a contaminated lagoon (Ria de Aveiro, Portugal) Mar Pollut Bull. 2000;40:293–297. doi: 10.1016/S0025-326X(99)00187-3. DOI

Adel M, Conti GO, Dadar M, Mahjoub M, Copat C, Ferrante M. Heavy metal concentrations in edible muscle of whitecheek shark, Carcharhinus dussumieri (Elasmobranchii, Chondrichthyes) from the Persian Gulf: a food safety issue. Food Chem Toxicol. 2016;97:135–140. doi: 10.1016/j.fct.2016.09.002. PubMed DOI

Adel M, Copat C, Conti GO, Sakhaie F, Hashemi Z, Mancini G, Cristaldi A, Ferrante M. Trace elements in the muscle tissue of Hemiculter leucisculus and Abramis brama orientalis from the Anzali International wetland, south-west of Caspian Sea: an exposure risk assessment. Mar Pollut Bull. 2022;180:113756. doi: 10.1016/j.marpolbul.2022.113756. PubMed DOI

Al Jufaili SM, Echreshavi S, Esmaeili HR. Scales surface topography: comparative ultrastructural and decorative characteristics of a modern elasmoid fish scales in a cyprinid fish, Garra shamal (Teleostei: Cyprinidae) using digital optical light and scanning electron microscope imaging. Microscop Res Techn. 2022;86:97–114. doi: 10.1002/jemt.24263. PubMed DOI

Al Raisi SAH, Sulaiman H, Suliman FE, Abdallah O. Assessment of heavy metals in leachate of an unlined landfill in the Sultanate of Oman. Int J Environ Sci Develop. 2014;5:60.

Aljuboury DA, Palaniandy P, Maqbali KSAA. Evaluating of performance of landfills of waste in Al-Amerat and Barka, in Oman. Mat Today: Proc. 2019;17:1152–1160.

Al-Busaidi M, Yesudhason P, Al-Mughairi S, Al-Rahbi W, Al-Harthy K, Al-Mazrooei N, AlHabsi SH (2011) Toxic metals in commercial marine fish in Oman with reference to national and international standards. Chemosphere 85:67–73 PubMed

Al-Mughairi S, Yesudhason P, Al-Busaidi M, Al-Waili A, Al-Rahbi WA, Al-Mazrooei N, Al-Habsi SH (2013) Concentration and exposure assessment of mercury in commercialfish and other seafood marketed in Oman. J Food Sci 78(7):1082–1090 PubMed

Al-Shidi HK, Al-Reasi HA, Sulaiman H. Heavy metals levels in road dust from Muscat, Oman: relationship with traffic volumes, and ecological and health risk assessments. Int J Environ Health Res. 2022;32(2):264–276. doi: 10.1080/09603123.2020.1751806. PubMed DOI

Arderne C, Batchelor KF, Uprety B, Chandran R, Abrahamse H. Reactivity trends of cobalt (III) complexes towards various amino acids based on the properties of the amino acid alkyl chains. Acta Crystallogr C Struct Chem. 2020;76(7):663–672. doi: 10.1107/S2053229620007123. PubMed DOI

Asim M, Nageswara Rao K. Assessment of heavy metal pollution in Yamuna River, Delhi-NCR, using heavy metal pollution index and GIS. Environ Monit Asses. 2021;193(2):103. doi: 10.1007/s10661-021-08886-6. PubMed DOI

Baramaki Yazdi R, Ebrahimpour M, Mansouri B, Rezaei MR, Babaei H. Contamination of metals in tissues of Ctenopharyngodon idella and Perca fluviatilis, from Anzali Wetland. Iran Bullet Environ Contam Toxicol. 2012;89:831–835. doi: 10.1007/s00128-012-0795-4. PubMed DOI

Berntssen MHG, Hylland K, Julshamn K, Lundebye AK, Waagbø R. Maximum limits of organic and inorganic mercury in fish feed. Aquac Nutr. 2004;10(2):83–97. doi: 10.1046/j.1365-2095.2003.00282.x. DOI

Budi HS, Catalan Opulencia MJ, Afra A, Abdelbasset WK, Abdullaev D, Majdi A, Taherian M, Ekrami HA, Mohammadi MJ. Source, toxicity and carcinogenic health risk assessment of heavy metals. Rev Environ Health. 2022 doi: 10.1515/reveh-2022-0096. PubMed DOI

Çelik EŞ, Kaya H, Yilmaz S, Akbulut M, Tulgar A. Effects of zinc exposure on the accumulation, haematology and immunology of Mozambique tilapia. Oreochromis Mossambicus Afri J Biotechnol. 2013;12(7):744–753.

Conte F, Copat C, Longo S, Conti GO, Grasso A, Arena G, Ferrante M. First data on trace elements in Haliotis tuberculata (Linnaeus, 1758) from southern Italy: safety issues. Food Chem Toxicol. 2015;81:143–150. doi: 10.1016/j.fct.2015.04.020. PubMed DOI

Copat C, Maggiore R, Arena G, Lanzafame S, Fallico R, Sciacca S, Ferrante M. Evaluation of a temporal trend heavy metals contamination in Posidonia oceanica (L.) Delile, (1813) along the western coastline of Sicily (Italy) J Environ Monit. 2012;14:187–192. doi: 10.1039/C1EM10575B. PubMed DOI

Dadar M, Peyghan R, Memari HR. Evaluation of the bioaccumulation of heavy metals in white Shrimp (Litopenaeus vannamei) along the Persian Gulf coast. Bull Environ Contam Toxicol. 2014;93:339–343. doi: 10.1007/s00128-014-1334-2. PubMed DOI

Dang F, Wang WX. Why mercury concentration increases with fish size? Biokinetic explanation. Environ Pollut. 2012;163:192–198. doi: 10.1016/j.envpol.2011.12.026. PubMed DOI

EC (2001) Commission regulation (EC) nr 466/2001 of 8 March 2001. Setting maximum levels for certain contaminants in food stuffs. Off J Eur Commun 77:1–13

El-Moselhy KM, Othman AI, Abd El-Azem H, El-Metwally MEA. Bioaccumulation of heavy metals in some tissues of fish in the Red Sea Egypt. Egypt J Basic Appl Sci. 2014;1(2):97–105.

Engwa GA, Ferdinand PU, Nwalo FN, Unachukwu MN (2019) Mechanism and health effects of heavy metal toxicity in humans. In: Karcioglu O, Arslan B (eds) Poisoning in the modern world-new tricks for an old dog. IntechOpen, London, pp 70–90

Esmaeili HR, Al Jufaili SAUD, Masoumi AH, Zarei F. Ichthyodiversity in southeastern Arabian Peninsula: annotated checklist, taxonomy, short description and distribution of Inland fishes of Oman. Zootaxa. 2022;5134:451–503. doi: 10.11646/zootaxa.5134.4.1. PubMed DOI

FAO (Food and Agricultural Organization) (1983) Compilation of legal limits for hazardous substance in fish and fishery products. FAO Fish Circ 464:5–100

FAOSTAT (2023) World food and agriculture – statistical yearbook 2023. Rome. 10.4060/cc8166en

Ferrante M, Napoli S, Grasso A, Zuccarello P, Cristaldi A, Copat C. Systematic review of arsenic in fresh seafood from the Mediterranean Sea and European Atlantic coasts: a health risk assessment. Food Chem Toxicol. 2019;126:322–331. doi: 10.1016/j.fct.2019.01.010. PubMed DOI

Food and Drug Administration (FDA) (2003) FDA consumer advisory. Available from: http://www.fda.gov. Accessed 18 Aug 2011

Giovis I, Brundo MV, Doumpas N, Kazlari Z, Loukovitis D, Moutopoulos DK, Spyridopoulou RNA, Papadopoulou A, Papapetrou M, Tiralongo F, Ferrante M, Copat Ch. Trace elements in edible tissues of elasmobranchs from the North Aegean Sea (Eastern Mediterranean) and potential risks from consumption. Mar Pollut Bull. 2022;184:114129. doi: 10.1016/j.marpolbul.2022.114129. PubMed DOI

Godswill AG, Somtochukwu IV, Ikechukwu AO, Kate EC. Health benefits of micronutrients (vitamins and minerals) and their associated deficiency diseases: a systematic review. Int J Food Sci. 2020;3(1):1–32.

Gümgüm B, Tez Z, Gülsün Z. Heavy metal pollution in water, sediment and fish from the Tigris River in Turkey. Chemosphere. 1994;29(1):111–116. doi: 10.1016/0045-6535(94)90094-9. PubMed DOI

Guney M, Akimzhanova Z, Kumisbek A, Beisova K, Kismelyeva S, Satayeva A, Inglezakis V, Karaca F. Mercury (Hg) contaminated sites in Kazakhstan: review of current cases and site remediation responses. Int J Environ Res Public Health. 2020;17(23):8936. doi: 10.3390/ijerph17238936. PubMed DOI PMC

He ZL, Yang XE, Stoffella PJ. Trace elements in agroecosystems and impacts on the environment. J Trace Elem Med Biol. 2005;19(2–3):125–140. doi: 10.1016/j.jtemb.2005.02.010. PubMed DOI

Huwait EA, Kumosani TA, Moselhy SS, Mosaoa RM, Yaghmoor SS. Relationship between soil cobalt and vitamin B12 levels in the liver of livestock in Saudi Arabia: role of competing elements in soils. Afr Health Sci. 2015;15(3):993–998. doi: 10.4314/ahs.v15i3.38. PubMed DOI PMC

Ikem A, Garth J. Dietary exposure assessment of selected trace elements in eleven commercial fish species from the Missouri market. Heliyon. 2022;8:e10458. doi: 10.1016/j.heliyon.2022.e10458. PubMed DOI PMC

Jezierska B, Witeska M (2006) The metal uptake and accumulation in fish living in polluted waters. In: Twardowska I, Allen HE, Häggblom MM, Stefaniak S (eds) Soil and water pollution monitoring, protection and remediation. NATO Science Series, vol 69. Springer, Dordrecht, pp 107–114

Jisr N, Younes G, El Omari K, Hamze M, Sukhn C, El-Dakdouki MH. Levels of heavy metals, total petroleum hydrocarbons, and microbial load in commercially valuable fish from the marine area of Tripoli, Lebanon. Environ Monit Assess. 2020;192:1–13. doi: 10.1007/s10661-020-08672-w. PubMed DOI

Khan Z, Elahi A, Bukhari DA, Rehman A (2022) Cadmium sources, toxicity, resistance and removal by microorganisms-a potential strategy for cadmium eradication. J Saudi Chem Soc 26:101569. 10.1016/j.jscs.2022.101569

Kumar V, Parihar RD, Sharma A, Bakshi P, Sidhu GPS, Bali AS, Rodrigo-Comino J. Global evaluation of heavy metal content in surface water bodies: a meta-analysis using heavy metal pollution indices and multivariate statistical analyses. Chemosphere. 2019;236:124364. doi: 10.1016/j.chemosphere.2019.124364. PubMed DOI

Kumari S, Mishra A (2021) Heavy metal contamination. In: Larramendy ML, Soloneski S (eds) Soil contamination-threats and sustainable solutions. IntechOpen, London, pp 1–14

Lall SP, Kaushik SJ. Nutrition and metabolism of minerals in fish. Animals. 2021;11(09):2711. doi: 10.3390/ani11092711. PubMed DOI PMC

Macomber L, Hausinger RP. Mechanisms of nickel toxicity in microorganisms. Metallomics. 2011;3(11):1153–1162. doi: 10.1039/c1mt00063b. PubMed DOI PMC

Maggi C, Berducci MT, Bianchi J, Giani M, Campanella L. Methylmercury determination in marine sediment and organisms by Direct Mercury Analyser. Anal Chim Acta. 2009;641(1–2):32–36. doi: 10.1016/j.aca.2009.03.033. PubMed DOI

Man Y, Yin R, Cai K, Qin C, Wang J, Yan H, Li M. Primary amino acids affect the distribution of methylmercury rather than inorganic mercury among tissues of two farmed-raised fish species. Chemosphere. 2019;225:320–328. doi: 10.1016/j.chemosphere.2019.03.058. PubMed DOI

Mao L, Liu X, Wang Z, Wang B, Lin C, Xin M, Zhang BT, Wu T, He M, Ouyang W. Trophic transfer and dietary exposure risk of mercury in aquatic organisms from urbanized coastal ecosystems. Chemosphere. 2021;281:130836. doi: 10.1016/j.chemosphere.2021.130836. PubMed DOI

Maršálek P, Svobodová Z, Randák T, Švehla J. Total mercury and methylmercury contamination of fish from the Skalka reservoir: a case study. Acta Vet. 2005;73:427–434. doi: 10.2754/avb200574030427. DOI

Mensoor M, Said A. Determination of heavy metals in freshwater fishes of the Tigris River in Baghdad. Fishes. 2018;3:23. doi: 10.3390/fishes3020023. DOI

Nguyen HD, Kim MS. Interactions between cadmium, lead, mercury, and arsenic and depression: a molecular mechanism involved. J Affect Disord. 2023;7:315–329. doi: 10.1016/j.jad.2023.02.013. PubMed DOI

Pham TL. Accumulation, depuration and risk assessment of cadmium (Cd) and lead (Pb) in clam Corbicula fluminea (OF Müller, 1774) under laboratory conditions. Iran J Fish Sci. 2020;19(3):1062–1072.

Robards K, Worsfold P (1991) Cadmium: toxicology and analysis. Analyst 116:549–568 PubMed

Salvaggio A, Tiralongo F, Krasakopoulou E, Marmara D, Giovos I, Crupi R, Brundo MV. Biomarkers of exposure to chemical contamination in the commercial fish species Lepidopus caudatus (Euphrasen, 1788): a particular focus on plastic additives. Front Physiol. 2019;10:905. doi: 10.3389/fphys.2019.00905. PubMed DOI PMC

Scharf B, Clement CC, Zolla V, Perino G, Yan B, Elci SG, Purdue E, Goldring S, Macaluso F, Cobelli N, Vachet RW. Molecular analysis of chromium and cobalt-related toxicity. Sci Rep. 2014;4(1):5729. doi: 10.1038/srep05729. PubMed DOI PMC

Shams M, Tavakkoli Nezhad N, Dehghan A, Alidadi H, Paydar M, Mohammadi AA, Zarei A. Heavy metals exposure, carcinogenic and non-carcinogenic human health risks assessment of groundwater around mines in Joghatai. Iran Int J Environ Anal Chem. 2022;102(8):1884–1899. doi: 10.1080/03067319.2020.1743835. DOI

Sharma A, Grewal AS, Sharma D, Srivastav AL (2023) Heavy metal contamination in water: consequences on human health and environment. In: Shukla SK, Kumar S, Mahdev S, Mishra PK (eds) Metals in water. Elsevier, Amsterdam, pp 39–52

Tekin-Özan S, Kir İ. Comparative study on the accumulation of heavy metals in different organs of tench (Tinca tinca L. 1758) and plerocercoids of its endoparasite Ligula intestinalis. Parasitol Res. 2005;97:156–159. doi: 10.1007/s00436-005-1412-9. PubMed DOI

Tort L, Crespo S, Balasch J (1982) Oxygen consumption of the dogfish gill tissue following zinc treatment. Comp Biochem Physiol 72:145–148 PubMed

Triassi M, Cerino P, Montuori P, Pizzolante A, Trama U, Nicodemo F, Limone A. Heavy metals in groundwater of Southern Italy: occurrence and potential adverse effects on the environment and human health. Int J Environ Res Public Health. 2023;20:1693. doi: 10.3390/ijerph20031693. PubMed DOI PMC

Ullah S, Hussain Z, Mahboob S, Al-Ghanim K. Heavy metals in Garra gotyla, Cyprinus carpio and Cyprinion watsoni from the River Panjkora, District, Lower Dir, Khyber Pakhtunkhwa. Pakistan Brazil Arch Biol Technol. 2016;59:e16160321.

US EPA (2000) Guidance for assessing chemical contaminant data for use in fish advisories volume 2 risk assessment and fish consumption limits third edition. Available at: https://www.epa.gov/sites/default/files/2015-06/documents/volume2.pdf

Wang S, Zhang Y, Cheng J, Li Y, Li F, Li Y, Shi Z. Pollution assessment and source apportionment of soil heavy metals in a coastal industrial city, Zhejiang, southeastern China. Int J Environ Res Public Health. 2022;19(6):3335. doi: 10.3390/ijerph19063335. PubMed DOI PMC

Wright DA. Trace metal and major ion interactions in aquatic animals. Mar Pollut Bull. 1995;31(1–3):8–18. doi: 10.1016/0025-326X(95)00036-M. DOI

Wu J, Lu J, Li L, Min X, Luo Y. Pollution, ecological-health risks, and sources of heavy metals in soil of the northeastern Qinghai-Tibet Plateau. Chemosphere. 2018;201:234–242. doi: 10.1016/j.chemosphere.2018.02.122. PubMed DOI

Yaghi B, AbdulWahab SA. Levels of heavy metals in outdoor and indoor dusts in Muscat. Oman Int J Environ Stud. 2004;61(3):307–314. doi: 10.1080/0020723032000203295. DOI

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...