Mitochondrial HER2 stimulates respiration and promotes tumorigenicity
Language English Country England, Great Britain Media print-electronic
Document type Journal Article
Grant support
21-04607X
Grantová Agentura České Republiky
22-34507S
Grantová Agentura České Republiky
5068-2022
European Molecular Biology Organization
NU23-03-00226
Agentura Pro Zdravotnický Výzkum České Republiky
1435320
Grantová Agentura, Univerzita Karlova
1506318
Grantová Agentura, Univerzita Karlova
RVO86652036
Czech Academy of Sciences
RVO68378050
Czech Academy of Sciences
Ministerstvo Školství, Mládeže a Tělovýchovy : LX22NPO5102 : LM2023036 : LM2023050
CZ.02.1.01/0.0/0.0/16_013/0001775
European Regional Development Fund
CZ.02.1.01/0.0/0.0/18_046/0016045
European Regional Development Fund
PubMed
38291340
DOI
10.1111/eci.14174
Knihovny.cz E-resources
- Keywords
- HER2, cancer, electron transport chain, mitochondria, reactive oxygen species,
- MeSH
- Cell Respiration physiology MeSH
- Energy Metabolism MeSH
- Carcinogenesis metabolism MeSH
- Humans MeSH
- Mitochondria * metabolism MeSH
- Mice MeSH
- Cell Line, Tumor MeSH
- Breast Neoplasms * metabolism genetics MeSH
- Oxidative Phosphorylation MeSH
- Cell Proliferation MeSH
- Reactive Oxygen Species metabolism MeSH
- Receptor, ErbB-2 * metabolism MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Mice MeSH
- Female MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
BACKGROUND: Amplification of HER2, a receptor tyrosine kinase and a breast cancer-linked oncogene, is associated with aggressive disease. HER2 protein is localised mostly at the cell membrane, but a fraction translocates to mitochondria. Whether and how mitochondrial HER2 contributes to tumorigenicity is currently unknown. METHODS: We enriched the mitochondrial (mt-)HER2 fraction in breast cancer cells using an N-terminal mitochondrial targeting sequence and analysed how this manipulation impacts bioenergetics and tumorigenic properties. The role of the tyrosine kinase activity of mt-HER2 was assessed in wild type, kinase-dead (K753M) and kinase-enhanced (V659E) mtHER2 constructs. RESULTS: We document that mt-HER2 associates with the oxidative phosphorylation system, stimulates bioenergetics and promotes larger respiratory supercomplexes. mt-HER2 enhances proliferation and invasiveness in vitro and tumour growth and metastatic potential in vivo, in a kinase activity-dependent manner. On the other hand, constitutively active mt-HER2 provokes excessive mitochondria ROS generation, sensitises to cell death, and restricts growth of primary tumours, suggesting that regulation of HER2 activity in mitochondria is required for the maximal pro-tumorigenic effect. CONCLUSIONS: mt-HER2 promotes tumorigenicity by supporting bioenergetics and optimal redox balance.
1st Faculty of Medicine Charles University Prague Czech Republic
Faculty of Science Charles University Prague Czech Republic
Institute of Biotechnology of the Czech Academy of Sciences Vestec Czech Republic
Institute of Molecular Genetics of the Czech Academy of Sciences Prague Czech Republic
Institute of Physiology of the Czech Academy of Sciences Prague Czech Republic
School of Medical Science Griffith University Gold Coast Queensland Australia
See more in PubMed
Slamon DJ, Clark GM, Wong SG, Levin WJ, Ullrich A, McGuire WL. Human breast cancer: correlation of relapse and survival with amplification of the HER‐2/neu oncogene. Science. 1987;235(4785):177‐182.
Schafer ZT, Grassian AR, Song L, et al. Antioxidant and oncogene rescue of metabolic defects caused by loss of matrix attachment. Nature. 2009;461(7260):109‐113.
Rohlenova K, Neuzil J, Rohlena J. The role of Her2 and other oncogenes of the PI3K/AKT pathway in mitochondria. Biol Chem. 2016;397(7):607‐615.
Acin‐Perez R, Fernandez‐Silva P, Peleato ML, Perez‐Martos A, Enriquez JA. Respiratory active mitochondrial supercomplexes. Mol Cell. 2008;32(4):529‐539.
Schagger H, Pfeiffer K. Supercomplexes in the respiratory chains of yeast and mammalian mitochondria. EMBO J. 2000;19(8):1777‐1783.
Murphy MP. How mitochondria produce reactive oxygen species. Biochem J. 2009;417(1):1‐13.
Ding Y, Liu Z, Desai S, et al. Receptor tyrosine kinase ErbB2 translocates into mitochondria and regulates cellular metabolism. Nat Commun. 2012;3:1271.
Rohlenova K, Sachaphibulkij K, Stursa J, et al. Selective disruption of respiratory supercomplexes as a new strategy to suppress Her2(high) breast cancer. Antioxid Redox Signal. 2017;26(2):84‐103.
Lortz S, Gurgul‐Convey E, Naujok O, Lenzen S. Overexpression of the antioxidant enzyme catalase does not interfere with the glucose responsiveness of insulin‐secreting INS‐1E cells and rat islets. Diabetologia. 2013;56(4):774‐782.
Blecha J, Novais SM, Rohlenova K, et al. Antioxidant defense in quiescent cells determines selectivity of electron transport chain inhibition‐induced cell death. Free Radic Biol Med. 2017;112:253‐266.
Huebner K, Erlenbach‐Wuensch K, Prochazka J, et al. ATF2 loss promotes tumor invasion in colorectal cancer cells via upregulation of cancer driver TROP2. Cell Mol Life Sci. 2022;79(8):423.
Heide H, Bleier L, Steger M, et al. Complexome profiling identifies TMEM126B as a component of the mitochondrial complex I assembly complex. Cell Metab. 2012;16(4):538‐549.
Lapuente‐Brun E, Moreno‐Loshuertos R, Acin‐Perez R, et al. Supercomplex assembly determines electron flux in the mitochondrial electron transport chain. Science. 2013;340(6140):1567‐1570.
Bielcikova Z, Stursa J, Krizova L, et al. Mitochondrially targeted tamoxifen in patients with metastatic solid tumours: an open‐label, phase I/Ib single‐centre trial. eClinicalMedicine. 2023;57:101873.
Sánchez‐Caballero L, Guerrero‐Castillo S, Nijtmans L. Unraveling the complexity of mitochondrial complex I assembly: a dynamic process. Biochim Biophys Acta. 2016;1857(7):980‐990.
Fiedorczuk K, Letts JA, Degliesposti G, Kaszuba K, Skehel M, Sazanov LA. Atomic structure of the entire mammalian mitochondrial complex I. Nature. 2016;538(7625):406‐410.
Hu H, Nan J, Sun Y, et al. Electron leak from NDUFA13 within mitochondrial complex I attenuates ischemia‐reperfusion injury via dimerized STAT3. Proc Natl Acad Sci. 2017;114(45):11908‐11913.
Oh S, Ju JH, Yang W, Lee KM, Nam K, Shin I. EGFR negates the proliferative effect of oncogenic HER2 in MDA‐MB‐231 cells. Arch Biochem Biophys. 2015;575:69‐76.
Long JS, Edwards J, Watson C, et al. Sphingosine kinase 1 induces tolerance to human epidermal growth factor receptor 2 and prevents formation of a migratory phenotype in response to sphingosine 1‐phosphate in estrogen receptor‐positive breast cancer cells. Mol Cell Biol. 2010;30(15):3827‐3841.
Weinberg F, Hamanaka R, Wheaton WW, et al. Mitochondrial metabolism and ROS generation are essential for Kras‐mediated tumorigenicity. Proc Natl Acad Sci U S A. 2010;107(19):8788‐8793.
Schieber M, Chandel NS. ROS function in redox signaling and oxidative stress. Curr Biol. 2014;24(10):R453‐R462.
Kirova DG, Judasova K, Vorhauser J, et al. A ROS‐dependent mechanism promotes CDK2 phosphorylation to drive progression through S phase. Dev Cell. 2022;57(14):1712‐1727 e1719.
Magalhaes‐Novais S, Blecha J, Naraine R, et al. Mitochondrial respiration supports autophagy to provide stress resistance during quiescence. Autophagy. 2022;1–18:2409‐2426.
Tan AS, Baty JW, Dong LF, et al. Mitochondrial genome acquisition restores respiratory function and tumorigenic potential of cancer cells without mitochondrial DNA. Cell Metab. 2015;21(1):81‐94.
LeBleu VS, O'Connell JT, Gonzalez Herrera KN, et al. PGC‐1alpha mediates mitochondrial biogenesis and oxidative phosphorylation in cancer cells to promote metastasis. Nat Cell Biol. 2014;16(10):992‐1003, 1001–1015.
Bajzikova M, Kovarova J, Coelho AR, et al. Reactivation of dihydroorotate dehydrogenase‐driven pyrimidine biosynthesis restores tumor growth of respiration‐deficient cancer cells. Cell Metab. 2019;29(2):399‐416 e310.
Piskounova E, Agathocleous M, Murphy MM, et al. Oxidative stress inhibits distant metastasis by human melanoma cells. Nature. 2015;527(7577):186‐191.