• This record comes from PubMed

Mitochondrial HER2 stimulates respiration and promotes tumorigenicity

. 2024 Jun ; 54 (6) : e14174. [epub] 20240130

Language English Country England, Great Britain Media print-electronic

Document type Journal Article

Grant support
21-04607X Grantová Agentura České Republiky
22-34507S Grantová Agentura České Republiky
5068-2022 European Molecular Biology Organization
NU23-03-00226 Agentura Pro Zdravotnický Výzkum České Republiky
1435320 Grantová Agentura, Univerzita Karlova
1506318 Grantová Agentura, Univerzita Karlova
RVO86652036 Czech Academy of Sciences
RVO68378050 Czech Academy of Sciences
Ministerstvo Školství, Mládeže a Tělovýchovy : LX22NPO5102 : LM2023036 : LM2023050
CZ.02.1.01/0.0/0.0/16_013/0001775 European Regional Development Fund
CZ.02.1.01/0.0/0.0/18_046/0016045 European Regional Development Fund

BACKGROUND: Amplification of HER2, a receptor tyrosine kinase and a breast cancer-linked oncogene, is associated with aggressive disease. HER2 protein is localised mostly at the cell membrane, but a fraction translocates to mitochondria. Whether and how mitochondrial HER2 contributes to tumorigenicity is currently unknown. METHODS: We enriched the mitochondrial (mt-)HER2 fraction in breast cancer cells using an N-terminal mitochondrial targeting sequence and analysed how this manipulation impacts bioenergetics and tumorigenic properties. The role of the tyrosine kinase activity of mt-HER2 was assessed in wild type, kinase-dead (K753M) and kinase-enhanced (V659E) mtHER2 constructs. RESULTS: We document that mt-HER2 associates with the oxidative phosphorylation system, stimulates bioenergetics and promotes larger respiratory supercomplexes. mt-HER2 enhances proliferation and invasiveness in vitro and tumour growth and metastatic potential in vivo, in a kinase activity-dependent manner. On the other hand, constitutively active mt-HER2 provokes excessive mitochondria ROS generation, sensitises to cell death, and restricts growth of primary tumours, suggesting that regulation of HER2 activity in mitochondria is required for the maximal pro-tumorigenic effect. CONCLUSIONS: mt-HER2 promotes tumorigenicity by supporting bioenergetics and optimal redox balance.

See more in PubMed

Slamon DJ, Clark GM, Wong SG, Levin WJ, Ullrich A, McGuire WL. Human breast cancer: correlation of relapse and survival with amplification of the HER‐2/neu oncogene. Science. 1987;235(4785):177‐182.

Schafer ZT, Grassian AR, Song L, et al. Antioxidant and oncogene rescue of metabolic defects caused by loss of matrix attachment. Nature. 2009;461(7260):109‐113.

Rohlenova K, Neuzil J, Rohlena J. The role of Her2 and other oncogenes of the PI3K/AKT pathway in mitochondria. Biol Chem. 2016;397(7):607‐615.

Acin‐Perez R, Fernandez‐Silva P, Peleato ML, Perez‐Martos A, Enriquez JA. Respiratory active mitochondrial supercomplexes. Mol Cell. 2008;32(4):529‐539.

Schagger H, Pfeiffer K. Supercomplexes in the respiratory chains of yeast and mammalian mitochondria. EMBO J. 2000;19(8):1777‐1783.

Murphy MP. How mitochondria produce reactive oxygen species. Biochem J. 2009;417(1):1‐13.

Ding Y, Liu Z, Desai S, et al. Receptor tyrosine kinase ErbB2 translocates into mitochondria and regulates cellular metabolism. Nat Commun. 2012;3:1271.

Rohlenova K, Sachaphibulkij K, Stursa J, et al. Selective disruption of respiratory supercomplexes as a new strategy to suppress Her2(high) breast cancer. Antioxid Redox Signal. 2017;26(2):84‐103.

Lortz S, Gurgul‐Convey E, Naujok O, Lenzen S. Overexpression of the antioxidant enzyme catalase does not interfere with the glucose responsiveness of insulin‐secreting INS‐1E cells and rat islets. Diabetologia. 2013;56(4):774‐782.

Blecha J, Novais SM, Rohlenova K, et al. Antioxidant defense in quiescent cells determines selectivity of electron transport chain inhibition‐induced cell death. Free Radic Biol Med. 2017;112:253‐266.

Huebner K, Erlenbach‐Wuensch K, Prochazka J, et al. ATF2 loss promotes tumor invasion in colorectal cancer cells via upregulation of cancer driver TROP2. Cell Mol Life Sci. 2022;79(8):423.

Heide H, Bleier L, Steger M, et al. Complexome profiling identifies TMEM126B as a component of the mitochondrial complex I assembly complex. Cell Metab. 2012;16(4):538‐549.

Lapuente‐Brun E, Moreno‐Loshuertos R, Acin‐Perez R, et al. Supercomplex assembly determines electron flux in the mitochondrial electron transport chain. Science. 2013;340(6140):1567‐1570.

Bielcikova Z, Stursa J, Krizova L, et al. Mitochondrially targeted tamoxifen in patients with metastatic solid tumours: an open‐label, phase I/Ib single‐centre trial. eClinicalMedicine. 2023;57:101873.

Sánchez‐Caballero L, Guerrero‐Castillo S, Nijtmans L. Unraveling the complexity of mitochondrial complex I assembly: a dynamic process. Biochim Biophys Acta. 2016;1857(7):980‐990.

Fiedorczuk K, Letts JA, Degliesposti G, Kaszuba K, Skehel M, Sazanov LA. Atomic structure of the entire mammalian mitochondrial complex I. Nature. 2016;538(7625):406‐410.

Hu H, Nan J, Sun Y, et al. Electron leak from NDUFA13 within mitochondrial complex I attenuates ischemia‐reperfusion injury via dimerized STAT3. Proc Natl Acad Sci. 2017;114(45):11908‐11913.

Oh S, Ju JH, Yang W, Lee KM, Nam K, Shin I. EGFR negates the proliferative effect of oncogenic HER2 in MDA‐MB‐231 cells. Arch Biochem Biophys. 2015;575:69‐76.

Long JS, Edwards J, Watson C, et al. Sphingosine kinase 1 induces tolerance to human epidermal growth factor receptor 2 and prevents formation of a migratory phenotype in response to sphingosine 1‐phosphate in estrogen receptor‐positive breast cancer cells. Mol Cell Biol. 2010;30(15):3827‐3841.

Weinberg F, Hamanaka R, Wheaton WW, et al. Mitochondrial metabolism and ROS generation are essential for Kras‐mediated tumorigenicity. Proc Natl Acad Sci U S A. 2010;107(19):8788‐8793.

Schieber M, Chandel NS. ROS function in redox signaling and oxidative stress. Curr Biol. 2014;24(10):R453‐R462.

Kirova DG, Judasova K, Vorhauser J, et al. A ROS‐dependent mechanism promotes CDK2 phosphorylation to drive progression through S phase. Dev Cell. 2022;57(14):1712‐1727 e1719.

Magalhaes‐Novais S, Blecha J, Naraine R, et al. Mitochondrial respiration supports autophagy to provide stress resistance during quiescence. Autophagy. 2022;1–18:2409‐2426.

Tan AS, Baty JW, Dong LF, et al. Mitochondrial genome acquisition restores respiratory function and tumorigenic potential of cancer cells without mitochondrial DNA. Cell Metab. 2015;21(1):81‐94.

LeBleu VS, O'Connell JT, Gonzalez Herrera KN, et al. PGC‐1alpha mediates mitochondrial biogenesis and oxidative phosphorylation in cancer cells to promote metastasis. Nat Cell Biol. 2014;16(10):992‐1003, 1001–1015.

Bajzikova M, Kovarova J, Coelho AR, et al. Reactivation of dihydroorotate dehydrogenase‐driven pyrimidine biosynthesis restores tumor growth of respiration‐deficient cancer cells. Cell Metab. 2019;29(2):399‐416 e310.

Piskounova E, Agathocleous M, Murphy MM, et al. Oxidative stress inhibits distant metastasis by human melanoma cells. Nature. 2015;527(7577):186‐191.

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...