Polymorphisms in transcription factor binding sites and enhancer regions and pancreatic ductal adenocarcinoma risk

. 2024 Feb 02 ; 18 (1) : 12. [epub] 20240202

Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid38308339

Grantová podpora
29017 Cancer Research UK - United Kingdom
LX22NPO5102 National Institute for Cancer Research - NICR (Programme EXCELES)

Odkazy

PubMed 38308339
PubMed Central PMC10837899
DOI 10.1186/s40246-024-00576-x
PII: 10.1186/s40246-024-00576-x
Knihovny.cz E-zdroje

Genome-wide association studies (GWAS) are a powerful tool for detecting variants associated with complex traits and can help risk stratification and prevention strategies against pancreatic ductal adenocarcinoma (PDAC). However, the strict significance threshold commonly used makes it likely that many true risk loci are missed. Functional annotation of GWAS polymorphisms is a proven strategy to identify additional risk loci. We aimed to investigate single-nucleotide polymorphisms (SNP) in regulatory regions [transcription factor binding sites (TFBSs) and enhancers] that could change the expression profile of multiple genes they act upon and thereby modify PDAC risk. We analyzed a total of 12,636 PDAC cases and 43,443 controls from PanScan/PanC4 and the East Asian GWAS (discovery populations), and the PANDoRA consortium (replication population). We identified four associations that reached study-wide statistical significance in the overall meta-analysis: rs2472632(A) (enhancer variant, OR 1.10, 95%CI 1.06,1.13, p = 5.5 × 10-8), rs17358295(G) (enhancer variant, OR 1.16, 95%CI 1.10,1.22, p = 6.1 × 10-7), rs2232079(T) (TFBS variant, OR 0.88, 95%CI 0.83,0.93, p = 6.4 × 10-6) and rs10025845(A) (TFBS variant, OR 1.88, 95%CI 1.50,1.12, p = 1.32 × 10-5). The SNP with the most significant association, rs2472632, is located in an enhancer predicted to target the coiled-coil domain containing 34 oncogene. Our results provide new insights into genetic risk factors for PDAC by a focused analysis of polymorphisms in regulatory regions and demonstrating the usefulness of functional prioritization to identify loci associated with PDAC risk.

1st Propaedeutic University Surgery Clinic Hippocratio General Hospital Medical School National and Kapodistrian University of Athens Athens Greece

Biomedical Center Faculty of Medicine in Pilsen Charles University Plzeň Czech Republic

Blood Transfusion Service Meyer Children's Hospital Florence Italy

Cancer Center Amsterdam Imaging and Biomarkers Amsterdam the Netherlands

Carol Davila University of Medicine and Pharmacy Bucharest Romania

Center for Translational Medicine Semmelweis University Budapest Hungary

Department for Determinants of Chronic Diseases National Institute for Public Health and the Environment Bilthoven The Netherlands

Department of Biology University of Pisa Pisa Italy

Department of Biomedical Sciences Humanitas University Milan Italy

Department of Diagnostics and Public Health ARC Net Centre for Applied Research on Cancer University of Verona Verona Italy

Department of Digestive Tract Diseases Medical University of Lodz Lodz Poland

Department of Gastroenterology San Carlo Hospital Potenza Italy

Department of General Visceral and Thoracic Surgery University of Hamburg Medical Institutions Hamburg Germany

Department of General Visceral and Transplant Surgery Heidelberg University Hospital Heidelberg Germany

Department of Medicine Laboratory Medicine University of Padova Padua Italy

Department of Molecular Biology of Cancer Institute of Experimental Medicine of the Czech Academy of Sciences Prague Czech Republic

Department of Oncology Faculty of Medicine and Dentistry Palacky University Olomouc Czech Republic

Department of Oncology Fondazione IRCCS Casa Sollievo della Sofferenza Hospital San Giovanni Rotondo FG Italy

Department of Pathology Cancer Center Amsterdam Amsterdam UMC University of Amsterdam Amsterdam the Netherlands

Department of Radiology and Oncology Institute of Cancer of São Paulo São Paulo Brazil

Department of Surgery Erasmus MC University Medical Center Rotterdam The Netherlands

Department of Surgery Fondazione IRCCS Casa Sollievo della Sofferenza Hospital San Giovanni Rotondo FG Italy

Department of Surgery Oncology and Gastroenterology University of Padova Padua Italy

Department of Surgery University Hospital Kralovske Vinohrady 3rd Faculty of Medicine Charles University Prague Czech Republic

Digestive and Liver Disease Unit S Andrea Hospital Rome Italy

Division of Clinical Epidemiology and Aging Research German Cancer Research Center Heidelberg Germany

Division of Gastroenterology and Research Laboratory Fondazione IRCCS Casa Sollievo della Sofferenza Hospital San Giovanni Rotondo FG Italy

Division of General and Transplant Surgery Pisa University Hospital Pisa Italy

Division of Pancreatic Diseases Heart and Vascular Center Semmelweis University Budapest Hungary

Division of Preventive Oncology German Cancer Research Center and National Center for Tumor Diseases Heidelberg Germany

Endoscopic Unit Department of Gastroenterology IRCCS Humanitas Research Hospital Milan Italy

Gastroenterology and Gastrointestinal Endoscopy Unit IRCCS San Raffaele Scientific Institute Vita Salute San Raffaele University Milan Italy

Gastroenterology Department and Institute for Digestive Research Lithuanian University of Health Sciences Kaunas Lithuania

General Surgery Unit Department of Translational Research and New Technologies in Medicine and Surgery University of Pisa Pisa Italy

Genomic Epidemiology Group German Cancer Research Center In Neuenheimer Feld 280 69120 Heidelberg Germany

German Cancer Consortium German Cancer Research Center Heidelberg Germany

Institute for Translational Medicine Medical School University of Pécs Pécs Hungary

Institute of Biology and Medical Genetics Institute of Physiology 1st Faculty of Medicine Charles University Prague Czech Republic

János Szentágothai Research Center University of Pécs Pécs Hungary

Laboratory for Applied Science and Technology in Health Carlos Chagas Institute Curitiba PR Brazil

Laboratory for Experimental Oncology and Radiobiology Center of Experimental Molecular Medicine Amsterdam UMC Location University of Amsterdam Amsterdam the Netherlands

Laboratory of Biology Medical School National and Kapodistrian University of Athens Athens Greece

Network Aging Research Heidelberg University Heidelberg Germany

Pancreatic Unit IRCCS Humanitas Research Hospital Milan Italy

PancreatoBiliary Endoscopy and Endosonography Division Pancreas Translational and Clinical Research Center San Raffaele Scientific Institute Milan Italy

Zobrazit více v PubMed

Siegel RL, Miller KD, Fuchs HE, Jemal A. Cancer statistics, 2022. CA Cancer J Clin. 2022;72(1):7–33. doi: 10.3322/caac.21708. PubMed DOI

Afghani E, Klein AP. Pancreatic adenocarcinoma: trends in epidemiology, risk factors, and outcomes. Hematol Oncol Clin N Am. 2022;36(5):879–895. doi: 10.1016/j.hoc.2022.07.002. PubMed DOI PMC

Klein AP. Pancreatic cancer epidemiology: understanding the role of lifestyle and inherited risk factors. Nat Rev Gastroenterol Hepatol. 2021;18(7):493–502. doi: 10.1038/s41575-021-00457-x. PubMed DOI PMC

Ushio J, Kanno A, Ikeda E, et al. Pancreatic ductal adenocarcinoma: epidemiology and risk factors. Diagnostics. 2021;11(3):562. doi: 10.3390/diagnostics11030562. PubMed DOI PMC

Klein AP. Genetic susceptibility to pancreatic cancer. Mol Carcinog. 2012;51(1):14–24. doi: 10.1002/mc.20855. PubMed DOI PMC

Buniello A, MacArthur JAL, Cerezo M, et al. The NHGRI-EBI GWAS Catalog of published genome-wide association studies, targeted arrays and summary statistics 2019. Nucleic Acids Res. 2019;47(D1):D1005–D1012. doi: 10.1093/nar/gky1120. PubMed DOI PMC

Zhang Y, Qi G, Park JH, Chatterjee N. Estimation of complex effect-size distributions using summary-level statistics from genome-wide association studies across 32 complex traits. Nat Genet. 2018;50(9):1318–1326. doi: 10.1038/s41588-018-0193-x. PubMed DOI

Gentiluomo M, Canzian F, et al. Germline genetic variability in pancreatic cancer risk and prognosis. Semin Cancer Biol. 2022;79:105–131. doi: 10.1016/j.semcancer.2020.08.003. PubMed DOI

Childs EJ, Mocci E, Campa D, et al. Common variation at 2p13.3, 3q29, 7p13 and 17q25.1 associated with susceptibility to pancreatic cancer. Nat Genet. 2015;47(8):911–916. doi: 10.1038/ng.3341. PubMed DOI PMC

Zhang YD, Hurson AN, Zhang H, et al. Assessment of polygenic architecture and risk prediction based on common variants across fourteen cancers. Nat Commun. 2020;11(1):3353. doi: 10.1038/s41467-020-16483-3. PubMed DOI PMC

Corradi C, Gentiluomo M, Gajdán L, et al. Genome-wide scan of long noncoding RNA single-nucleotide polymorphisms and pancreatic cancer susceptibility. Int J Cancer. 2021;148(11):2779–2788. doi: 10.1002/ijc.33475. PubMed DOI

Lu Y, Corradi C, Gentiluomo M, et al. Association of genetic variants affecting microRNAs and pancreatic cancer risk. Front Genet. 2021;12:693933. doi: 10.3389/fgene.2021.693933. PubMed DOI PMC

Pistoni L, Gentiluomo M, Lu Y, et al. Associations between pancreatic expression quantitative traits and risk of pancreatic ductal adenocarcinoma. Carcinogenesis. 2021;42(8):1037–1045. doi: 10.1093/carcin/bgab057. PubMed DOI

Gentiluomo M, Lu Y, Canzian F, Campa D. Genetic variants in taste-related genes and risk of pancreatic cancer. Mutagenesis. 2019;34(5–6):391–394. doi: 10.1093/mutage/gez032. PubMed DOI

Gentiluomo M, García PP, Galeotti AA, et al. Genetic variability of the ABCC2 gene and clinical outcomes in pancreatic cancer patients. Carcinogenesis. 2019;40(4):544–550. doi: 10.1093/carcin/bgz006. PubMed DOI

Walsh N, Zhang H, Hyland PL, et al. Agnostic pathway/gene set analysis of genome-wide association data identifies associations for pancreatic cancer. J Natl Cancer Inst. 2019;111(6):557–567. doi: 10.1093/jnci/djy155. PubMed DOI PMC

Pennacchio LA, Bickmore W, Dean A, Nobrega MA, Bejerano G. Enhancers: five essential questions. Nat Rev Genet. 2013;14(4):288–295. doi: 10.1038/nrg3458. PubMed DOI PMC

Wray GA, Hahn MW, Abouheif E, et al. The evolution of transcriptional regulation in eukaryotes. Mol Biol Evol. 2003;20(9):1377–1419. doi: 10.1093/molbev/msg140. PubMed DOI

Johnston AD, Simões-Pires CA, Thompson TV, Suzuki M, Greally JM. Functional genetic variants can mediate their regulatory effects through alteration of transcription factor binding. Nat Commun. 2019;10(1):3472. doi: 10.1038/s41467-019-11412-5. PubMed DOI PMC

Lin Y, Nakatochi M, Hosono Y, et al. Genome-wide association meta-analysis identifies GP2 gene risk variants for pancreatic cancer. Nat Commun. 2020;11(1):3175. doi: 10.1038/s41467-020-16711-w. PubMed DOI PMC

Campa D, Rizzato C, Capurso G, et al. Genetic susceptibility to pancreatic cancer and its functional characterisation: the PANcreatic Disease ReseArch (PANDoRA) consortium. Dig Liver Dis Off J Ital Soc Gastroenterol Ital Assoc Study Liver. 2013;45(2):95–99. doi: 10.1016/j.dld.2012.09.014. PubMed DOI

Riboli E, Hunt KJ, Slimani N, et al. European prospective investigation into cancer and nutrition (EPIC): study populations and data collection. Public Health Nutr. 2002;5(6B):1113–1124. doi: 10.1079/PHN2002394. PubMed DOI

Löw M, Stegmaier C, Ziegler H, Rothenbacher D, Brenner H, ESTHER Study Epidemiological investigations of the chances of preventing, recognizing early and optimally treating chronic diseases in an elderly population (ESTHER study) Dtsch Med Wochenschr. 2004;129(49):2643–2647. doi: 10.1055/s-2004-836089. PubMed DOI

Kumar S, Ambrosini G, Bucher P. SNP2TFBS—a database of regulatory SNPs affecting predicted transcription factor binding site affinity. Nucleic Acids Res. 2017;45(D1):D139–D144. doi: 10.1093/nar/gkw1064. PubMed DOI PMC

Nasser J, Bergman DT, Fulco CP, et al. Genome-wide enhancer maps link risk variants to disease genes. Nature. 2021;593(7858):238–243. doi: 10.1038/s41586-021-03446-x21. PubMed DOI PMC

Kent WJ, Sugnet CW, Furey TS, et al. The human genome browser at UCSC. Genome Res. 2002;12(6):996–1006. doi: 10.1101/gr.229102. PubMed DOI PMC

French JD, Edwards SL. The role of noncoding variants in heritable disease. Trends Genet. 2020;36(11):880–891. doi: 10.1016/j.tig.2020.07.004. PubMed DOI

Farh KKH, Marson A, Zhu J, et al. Genetic and epigenetic fine mapping of causal autoimmune disease variants. Nature. 2015;518(7539):337–343. doi: 10.1038/nature1383. PubMed DOI PMC

Gong Y, Qiu W, Ning X, et al. CCDC34 is up-regulated in bladder cancer and regulates bladder cancer cell proliferation, apoptosis and migration. Oncotarget. 2015;6(28):25856–25867. doi: 10.18632/oncotarget.4624. PubMed DOI PMC

Liu LB, Huang J, Zhong JP, et al. High expression of CCDC34 Is associated with poor survival in cervical cancer patients. Med Sci Monit Int Med J Exp Clin Res. 2018;24:8383–8390. doi: 10.12659/MSM.913346. PubMed DOI PMC

Geng W, Liang W, Fan Y, Ye Z, Zhang L. Overexpression of CCDC34 in colorectal cancer and its involvement in tumor growth, apoptosis and invasion. Mol Med Rep. 2018;17(1):465–473. doi: 10.3892/mmr.2017.7860. PubMed DOI PMC

Qi W, Shao F, Huang Q. Expression of coiled-coil domain containing 34 (CCDC34) and its prognostic significance in pancreatic adenocarcinoma. Med Sci Monit Int Med J Exp Clin Res. 2017;23:6012–6018. doi: 10.12659/msm.907951. PubMed DOI PMC

Glinka A, Dolde C, Kirsch N, et al. LGR4 and LGR5 are R-spondin receptors mediating Wnt/β-catenin and Wnt/PCP signaling. EMBO Rep. 2011;12(10):1055–1061. doi: 10.1038/embor.2011.175. PubMed DOI PMC

Fan G, Ye D, Zhu S, et al. RTL1 promotes melanoma proliferation by regulating Wnt/β-catenin signaling. Oncotarget. 2017;8(62):106026–106037. doi: 10.18632/oncotarget.22523. PubMed DOI PMC

van Andel H, Ren Z, Koopmans I, et al. Aberrantly expressed LGR4 empowers Wnt signaling in multiple myeloma by hijacking osteoblast-derived R-spondins. Proc Natl Acad Sci. 2017;114(2):376–381. doi: 10.1073/pnas.1618650114. PubMed DOI PMC

Wang Z, Yin P, Sun Y, et al. LGR4 maintains HGSOC cell epithelial phenotype and stem-like traits. Gynecol Oncol. 2020;159(3):839–849. doi: 10.1016/j.ygyno.2020.09.020. PubMed DOI

Kang YE, Kim JM, Kim KS, et al. Upregulation of RSPO2-GPR48/LGR4 signaling in papillary thyroid carcinoma contributes to tumor progression. Oncotarget. 2017;8(70):114980–114994. doi: 10.18632/oncotarget.22692. PubMed DOI PMC

Modi S, Kir D, Banerjee S, Saluja A. Control of apoptosis in treatment and biology of pancreatic cancer. J Cell Biochem. 2016;117(2):279–288. doi: 10.1002/jcb.25284. PubMed DOI PMC

Mazerbourg S, Bouley DM, Sudo S, et al. Leucine-rich repeat-containing, G protein-coupled receptor 4 null mice exhibit intrauterine growth retardation associated with embryonic and perinatal lethality. Mol Endocrinol Baltim Md. 2004;18(9):2241–2254. doi: 10.1210/me.2004-0133. PubMed DOI

Onda T, Uzawa K, Nakashima D, et al. Lin-7C/VELI3/MALS-3: an essential component in metastasis of human squamous cell carcinoma. Cancer Res. 2007;67(20):9643–9648. doi: 10.1158/0008-5472.CAN-07-1911. PubMed DOI

Shinawi M, Sahoo T, Maranda B, et al. 11p14.1 microdeletions associated with ADHD, autism, developmental delay, and obesity. Am J Med Genet A. 2011;155A(6):1272–1280. doi: 10.1002/ajmg.a.33878. PubMed DOI

Jung SW, Lee J, Cho AE. Elucidating the bacterial membrane disruption mechanism of human α-defensin 5: a theoretical study. J Phys Chem B. 2017;121(4):741–748. doi: 10.1021/acs.jpcb.6b11806. PubMed DOI

Yang E, Shen J. The roles and functions of Paneth cells in Crohn's disease: a critical review. Cell Prolif. 2021;54(1):e12958. doi: 10.1111/cpr.12958. PubMed DOI PMC

Selsted ME, Ouellette AJ. Mammalian defensins in the antimicrobial immune response. Nat Immunol. 2005;6:551–557. doi: 10.1038/ni1206. PubMed DOI

Tobi M, Kim M, Weinstein DH, et al. Prospective markers for early diagnosis and prognosis of sporadic pancreatic ductal adenocarcinoma. Dig Dis Sci. 2013;58:744–750. doi: 10.1007/s10620-012-2387-x. PubMed DOI

Cunha DM, Koike MK, Barbeiro DF, et al. Increased intestinal production of α-defensins in aged rats with acute pancreatic injury. Exp Gerontol. 2014;60:215–219. doi: 10.1016/j.exger.2014.11.008. PubMed DOI

Shimizu Y, Nakamura K, Kikuchi M, et al. Lower human defensin 5 in elderly people compared to middle-aged is associated with differences in the intestinal microbiota composition: the DOSANCO health study. Geroscience. 2022;44(2):997–1009. doi: 10.1007/s11357-021-00398-y. PubMed DOI PMC

Zhang JJ, Zhu Y, Xie KL, et al. Yin Yang-1 suppresses invasion and metastasis of pancreatic ductal adenocarcinoma by downregulating MMP10 in a MUC4/ErbB2/p38/MEF2C-dependent mechanism. Mol Cancer. 2014;13(1):130. doi: 10.1186/1476-4598-13-130. PubMed DOI PMC

Mahawithitwong P, Ohuchida K, Ikenaga N, et al. Kindlin-1 expression is involved in migration and invasion of pancreatic cancer. Int J Oncol. 2013;42(4):1360–1366. doi: 10.3892/ijo. PubMed DOI

Wang L, Ai M, Nie M, et al. EHF promotes colorectal carcinoma progression by activating TGF-β1 transcription and canonical TGF-β signaling. Cancer Sci. 2020;111(7):2310–2324. doi: 10.1111/cas.14444. PubMed DOI PMC

Zhou T, Liu J, Xie Y, et al. ESE3/EHF, a promising target of rosiglitazone, suppresses pancreatic cancer stemness by downregulating CXCR4. Gut. 2022;71(2):357–371. doi: 10.1136/gutjnl-2020-321952. PubMed DOI PMC

Liu J, Jiang W, Zhao K, et al. Tumoral EHF predicts the efficacy of anti-PD1 therapy in pancreatic ductal adenocarcinoma. J Exp Med. 2019;216(3):656–673. doi: 10.1084/jem.2018074920. PubMed DOI PMC

Merz S, Breunig M, Melzer MK, et al. Single-cell profiling of GP2-enriched pancreatic progenitors to simultaneously create acinar, ductal, and endocrine organoids. Theranostics. 2023;13(6):1949–1973. doi: 10.7150/thno.78323. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...