Possible effect of OAS1 and TMPRSS6 but not DPP4 and ZNF335 polymorphisms on COVID-19 severity in the Czech population

. 2023 Dec ; 31 (4) : 235-239.

Jazyk angličtina Země Česko Médium print

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid38309700

OBJECTIVES: The acute respiratory syndrome, known as COVID-19, is characterised by high morbidity and increased mortality. Genetic factors may partially explain the differences in susceptibility to and severity of COVID-19. METHODS: We have analysed common functional polymorphisms within the OAS1 (rs4767027), TMPRSS6 (rs855791), DPP4 (rs3788979), and ZNF335 (rs3848719) genes in SARS-CoV-2 positive subjects (n = 521, different disease severity) and in population controls (n = 2,559 subjects, COVID-19 status unknown). RESULTS: Neither DPP4 nor ZNF335 were associated with disease susceptibility or severity in the Czech population in any of the models used for calculation. T allele carriers of the OAS1 polymorphism seem to be protective against symptomatic COVID-19 (p = 0.002 calculated for trend; asymptomatic, symptomatic, hospitalised). Similarly, within the TMPRSS6, minor TT homozygotes associated with lower plasma Fe concentrations were underrepresented in the overall patient group (p = 0.044; OR = 0.77, 95% CI: 0.59-0.99), and the difference was mainly driven by the severe COVID-19 subjects. In general, risky homozygotes of these two polymorphisms were less frequent than expected in the group of hospitalised COVID-19 survivors. CONCLUSIONS: Common variants within OAS1 (rs4767027) and TMPRSS6 (rs855791) play some role in COVID-19 pathology in the Czech Caucasian population. Whether the depletion of minor allele carriers of these two variants is associated with increased COVID-19 mortality, needs to be analysed in an external confirmatory study.

Zobrazit více v PubMed

Tuček M. COVID-19 in the Czech Republic 2020: probable transmission of the coronavirus SARS-CoV-2. Cent Eur J Public Health. 2021;29(2):159-61. DOI

Komenda M, Jarkovský J, Klimeš D, Panoška P, Šanca O, Gregor J, et al. Sharing datasets of the COVID-19 epidemic in the Czech Republic. PLoS One. 2022;17(4):e0267397. doi: 10.1371/journal.pone.0267397. DOI

Hippisley-Cox J, Young D, Coupland C, Channon KM, Tan PS, Harrison DA, et al. Risk of severe COVID-19 disease with ACE inhibitors and angiotensin receptor blockers: cohort study including 8.3 million people. Heart. 2020;106(19):1503-11. DOI

Zsichla L, Müller V. Risk factors of severe COVID-19: a review of host, viral and environmental factors. Viruses. 2023;15(1):175. doi: 10.3390/v15010175. DOI

Schmidt A, Groh AM, Frick JS, Vehreschild MJGT, Ludwig KU. Genetic predisposition and the variable course of infectious diseases. Dtsch Arztebl Int. 2022;119(8):117-23. DOI

Vannberg FO, Chapman SJ, Hill AV. Human genetic susceptibility to intracellular pathogens. Immunol Rev. 2011;240(1):105-16. DOI

Paces J, Strizova Z, Smrz D, Cerny J. COVID-19 and the immune system. Physiol Res. 2020;69(3):379-88.

Hubacek JA. Effects of selected inherited factors on susceptibility to SARS-CoV-2 infection and COVID-19 progression. Physiol Res. 2021;70(S2):S125-34. DOI

Delanghe JR, Speeckaert MM. Host polymorphisms and COVID-19 infection. Adv Clin Chem. 2022;107:41-77. DOI

Colona VL, Vasiliou V, Watt J, Novelli G, Reichardt JKV. Update on human genetic susceptibility to COVID-19: susceptibility to virus and response. Hum Genomics 2021;15(1):57. doi: 10.1186/s40246-021-00356-x. DOI

Edeas M, Saleh J, Peyssonnaux C. Iron: innocent bystander or vicious culprit in COVID-19 pathogenesis? Int J Infect Dis. 2020;97:303-5. DOI

Delanghe JR, De Buyzere ML, Speeckaert MM. Genetic polymorphisms in the host and COVID-19 infection. Adv Exp Med Biol. 2021;1318:109-18. DOI

Hubacek JA, Philipp T, Adamkova V, Majek O, Dusek L. A haemochromatosis-causing HFE mutation is associated with SARS-CoV-2 susceptibility in the Czech population. Clin Chim Acta. 2023;538:211-5. DOI

Lee P. Role of matriptase-2 (TMPRSS6) in iron metabolism. Acta Haematol. 2009;122(2-3):87-96. DOI

Galesloot TE, Geurts-Moespot AJ, den Heijer M, Sweep FC, Fleming RE, Kiemeney LA, et al. Associations of common variants in HFE and TMPRSS6 with iron parameters are independent of serum hepcidin in a general population: a replication study. J Med Genet. 2013;50(9):593-8. DOI

Esposito S, D'Abrosca G, Antolak A, Pedone PV, Isernia C, Malgieri G. Host and viral zinc-finger proteins in COVID-19. Int J Mol Sci. 2022;23(7):3711. doi: 10.3390/ijms23073711. DOI

Qin S, Xu W, Wang C, Jiang S, Dai W, Yang Y, et al. Analyzing master regulators and scRNA-seq of COVID-19 patients reveals an underlying anti-SARS-CoV-2 mechanism of ZNF proteins. Brief Bioinform. 2021;22(5):bbab118. doi: 10.1093/bib/bbab118. DOI

Shortt K, Chaudhary S, Grigoryev D, Heruth DP, Venkitachalam L, Zhang LQ, et al. Identification of novel single nucleotide polymorphisms associated with acute respiratory distress syndrome by exome-seq. PLoS One. 2014;9(11):e111953. doi: 10.1371/journal.pone.0111953. DOI

Solerte SB, Di Sabatino A, Galli M, Fiorina P. Dipeptidyl peptidase-4 (DPP4) inhibition in COVID-19. Acta Diabetol. 2020;57(7):779-83. DOI

Sebastián-Martín A, Sánchez BG, Mora-Rodríguez JM, Bort A, Díaz-Laviada I. Role of dipeptidyl peptidase-4 (DPP4) on COVID-19 physiopathology. Biomedicines. 2022;10(8):2026. doi: 10.3390/biomedicines10082026. DOI

Posadas-Sánchez R, Sánchez-Muñoz F, Guzmán-Martín CA, Hernández-Díaz Couder A, Rojas-Velasco G, Fragoso JM, et al. Dipeptidylpeptidase-4 levels and DPP4 gene polymorphisms in patients with COVID-19. Association with disease and with severity. Life Sci. 2021;276:119410. doi: 10.1016/j.lfs.2021.119410. DOI

Zeberg H, Pääbo S. The major genetic risk factor for severe COVID-19 is inherited from Neanderthals. Nature. 2020;587:610-2. DOI

Zhou S, Butler-Laporte G, Nakanishi T, Morrison DR, Afilalo J, Afilalo M, et al. A Neanderthal OAS1 isoform protects individuals of European ancestry against COVID-19 susceptibility and severity. Nat Med. 2020;27(7835):659-67. DOI

Hubacek JA, Dusek L, Majek O, Adamek V, Cervinkova T, Dlouha D, et al. CCR5Delta32 deletion as a protective factor in Czech first-wave COVID-19 subjects. Physiol Res. 2021;70(1):111-5.

Hubacek JA, Dusek L, Majek O, Adamek V, Cervinkova T, Dlouha D, et al. ACE I/D polymorphism in Czech first-wave SARS-CoV-2-positive survivors. Clin Chim Acta. 2021;519:206-9. DOI

Hubacek JA, Philipp T, Adamkova V, Majek O, Dusek L. ABCA3 and LZTFL1 polymorphisms and risk of COVID-19 in the Czech Population. Physiol Res. 2023;72(4):539-43. DOI

Cífková R, Skodová Z, Bruthans J, Adámková V, Jozífová M, Galovcová M, et al. Longitudinal trends in major cardiovascular risk factors in the Czech population between 1985 and 2007/8. Czech MONICA and Czech post-MONICA. Atherosclerosis. 2010;211(2):676-81. DOI

Hubácek JA, Adámková V, Ceska R, Poledne R, Horínek A, Vráblík M. New variants in the apolipoprotein AV gene in individuals with extreme triglyceride levels. Physiol Res. 2004;53(2):225-8. DOI

Gokul A, Arumugam T, Ramsuran V. Genetic ethnic differences in human 2'-5'-oligoadenylate synthetase and disease associations: a systematic review. Genes (Basel). 2023;14(2):527. doi: 10.3390/genes14020527. DOI

COVID-19 Host Genetics Initiative. Mapping the human genetic architecture of COVID-19. Nature. 2021;600(7889):472-7.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...