Unravelling the neglected role of ultraviolet radiation on stomata: A meta-analysis with implications for modelling ecosystem-climate interactions

. 2024 May ; 47 (5) : 1769-1781. [epub] 20240205

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu metaanalýza, časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid38314642

Grantová podpora
Science Foundation Ireland - Ireland

Stomata play a pivotal role in regulating gas exchange between plants and the atmosphere controlling water and carbon cycles. Accordingly, we investigated the impact of ultraviolet-B radiation, a neglected environmental factor varying with ongoing global change, on stomatal morphology and function by a Comprehensive Meta-Analysis. The overall UV effect at the leaf level is to decrease stomatal conductance, stomatal aperture and stomatal size, although stomatal density was increased. The significant decline in stomatal conductance is marked (6% in trees and >10% in grasses and herbs) in short-term experiments, with more modest decreases noted in long-term UV studies. Short-term experiments in growth chambers are not representative of long-term field UV effects on stomatal conductance. Important consequences of altered stomatal function are hypothesized. In the short term, UV-mediated stomatal closure may reduce carbon uptake but also water loss through transpiration, thereby alleviating deleterious effects of drought. However, in the long term, complex changes in stomatal aperture, size, and density may reduce the carbon sequestration capacity of plants and increase vegetation and land surface temperatures, potentially exacerbating negative effects of drought and/or heatwaves. Therefore, the expected future strength of carbon sink capacity in high-UV regions is likely overestimated.

Zobrazit více v PubMed

Ainsworth, E.A. & Rogers, A. (2007) The response of photosynthesis and stomatal conductance to rising [CO2]: mechanisms and environmental interactions. Plant, Cell & Environment, 30(3), 258–270.

Aphalo, P.J., Albert, A., Björn, L.O., McLeod, A., Robson, T.M. & Rosenquist, E. (Eds.) (2012) Beyond the visible: a handbook of best practice in plant UV photobiology. Helsinki: University of Helsinki, Division of Plant Biology, pp. 176.

Ač, A., Malenovský, Z., Olejníčková, J., Gallé, A., Rascher, U. & Mohammed, G. (2015) Meta‐analysis assessing potential of steady‐state chlorophyll fluorescence for remote sensing detection of plant water, temperature and nitrogen stress. Remote Sensing of Environment, 168, 420–436.

Barnes, P.W., Bornman, J.F., Pandey, K.K., Bernhard, G.H., Bais, A.F., Neale, R.E. et al. (2021) The success of the Montreal protocol in mitigating interactive effects of stratospheric ozone depletion and climate change on the environment. Global Change Biology, 27(22), 5681–5683.

Barnes, P.W., Flint, S.D., Ryel, R.J., Tobler, M.A., Barkley, A.E. & Wargent, J.J. (2015) Rediscovering leaf optical properties: new insights into plant acclimation to solar UV radiation. Plant Physiology and Biochemistry, 93, 94–100.

Barnes, P.W., Robson, T.M., Zepp, R.G., Bornman, J.F., Jansen, M.A.K., Ossola, R. et al. (2023) Interactive effects of changes in UV radiation and climate on terrestrial ecosystems, biogeochemical cycles, and feedbacks to the climate system. Photochemical & Photobiological Sciences: Official Journal of the European Photochemistry Association and the European Society for Photobiology, 22, 1049–1091.

Bartoszek, K., Matuszko, D. & Soroka, J. (2020) Relationships between cloudiness, aerosol optical thickness, and sunshine duration in Poland. Atmospheric Research, 245, 105097.

Bernado, W.P., Baroni, D.F., Ruas, K.F., Santos, A.R., de Souza, S.B., Passos, L.C. et al. (2022) Ultraviolet radiation underlies metabolic energy reprograming in Coffea arabica and Coffea canephora genotypes. Scientia Horticulturae, 295, 110881.

Bernhard, G.H., Bais, A.F., Aucamp, P.J., Klekociuk, A.R., Liley, J.B. & McKenzie, R.L. (2023) Stratospheric ozone, UV radiation, and climate interactions. Photochemical & Photobiological Sciences, 22, 937–989.

Bond, B.J. (2000) Age‐related changes in photosynthesis of woody plants. Trends in Plant Science, 5, 349–353.

Booth, B.B.B., Jones, C.D., Collins, M., Totterdell, I.J., Cox, P.M., Sitch, S. et al. (2012) High sensitivity of future global warming to land carbon cycle processes. Environmental Research Letters, 7(2), 024002.

Borenstein, M., Hedges, L.V., Higgins, J.P.T. & Rothstein, H.R. (2009) Introduction to meta‐analysis. New York: Wiley.

Brodführer, U. (1955) Der einfluss einer abgestuften dosierung von ultravioletter sonnenstrahlung auf das wachstum der pflanzen. Planta, 45, 1–56.

Brodribb, T.J., Powers, J., Cochard, H. & Choat, B. (2020) Hanging by a thread? Forests and drought. Science, 368(6488), 261–266.

Caldwell, M.M., Teramura, A.H. & Tevini, M. (1989) The changing solar ultraviolet climate and the ecological consequences for higher plants. Trends in Ecology & Evolution, 4(12), 363–367.

Day, T.A. (1993) Relating UV‐B radiation screening effectiveness of foliage to absorbing‐compound concentration and anatomical characteristics in a diverse group of plants. Oecologia, 95, 542–550.

Day, T.A., Vogelmann, T.C. & DeLucia, E.H. (1992) Are some plant life forms more effective than others in screening out ultraviolet‐B radiation? Oecologia, 92, 513–519.

Doheny‐Adams, T., Hunt, L., Franks, P.J., Beerling, D.J. & Gray, J.E. (2012) Genetic manipulation of stomatal density influences stomatal size, plant growth and tolerance to restricted water supply across a growth carbon dioxide gradient. Philosophical Transactions of the Royal Society, B: Biological Sciences, 367, 547–555.

Dow, G.J., Bergmann, D.C. & Berry, J.A. (2014) An integrated model of stomatal development and leaf physiology. New Phytologist, 201, 1218–1226.

Drake, J.E., Tjoelker, M.G., Vårhammar, A., Medlyn, B.E., Reich, P.B., Leigh, A. et al. (2018) Trees tolerate an extreme heatwave via sustained transpirational cooling and increased leaf thermal tolerance. Global Change Biology, 24(6), 2390–2402.

Drake, P.L., Froend, R.H. & Franks, P.J. (2013) Smaller, faster stomata: scaling of stomatal size, rate of response, and stomatal conductance. Journal of Experimental Botany, 64, 495–505.

Duffy, K.A., Schwalm, C.R., Arcus, V.L., Koch, G.W., Liang, L.L. & Schipper, L.A. (2021) How close are we to the temperature tipping point of the terrestrial biosphere? Science Advances, 7(3), eaay1052.

Duval, S., Tweedie, R., Duval, S. & Tweedie, R. (2000) A nonparametric “trim and fill” method of accounting for publication bias in meta‐analysis. Journal of the American Statistical Association, 95(449), 89–98.

Egger, M., Smith, G.D., Schneider, M. & Minder, C. (1997) Bias in meta‐analysis detected by a simple, graphical test. BMJ, 315(7109), 629–634.

Ehleringer, J.R., Hall, A.E. & Farquhar, G.D. (1993) Introduction: water use in relation to productivity. In: Ehleringer, J.R., Hall, A.E. & Farquhar, G.D. (Eds.) Stable isotopes and plant carbon–water relations. New York: Academic Press, pp. 3–8.

Eleftheratos, K., Kapsomenakis, J., Fountoulakis, I., Zerefos, C.S., Jöckel, P., Dameris, M. et al. (2022) Ozone, DNA‐active UV radiation, and cloud changes for the near‐global mean and at high latitudes due to enhanced greenhouse gas concentrations. Atmospheric Chemistry and Physics, 22(19), 12827–12855.

Farman, J.C., Gardiner, B.G. & Shanklin, J.D. (1985) Large losses of total ozone in Antarctica reveal seasonal ClOx/NOx interaction. Nature, 315(6016), 207–210.

Field, C.B., Jackson, R.B. & Mooney, H.A. (1995) Stomatal responses to increased CO2: implications from the plant to the global scale. Plant, Cell & Environment, 18, 1214–1225.

Flint, S.D., Jordan, P.W. & Caldwell, M.M. (1985) Plant protective response to enhanced UV‐B radiation under field conditions: leaf optical properties and photosynthesis. Photochemistry and Photobiology, 41(1), 95–99.

Gaberščik, A., Vončina, M., Trošt, T., Germ, M. & Olof Björn, L. (2002) Growth and production of buckwheat (Fagopyrum esculentum) treated with reduced, ambient, and enhanced UV‐B radiation. Journal of Photochemistry and Photobiology, B: Biology, 66(1), 30–36.

Ge, X.M., Hu, X., Zhang, J., Huang, Q.M., Gao, Y., Li, Z.Q. et al. (2020) UV RESISTANCE LOCUS8 mediates ultraviolet‐B‐induced stomatal closure in an ethylene‐dependent manner. Plant Science, 301, 110679.

Grossiord, C., Buckley, T.N., Cernusak, L.A., Novick, K.A., Poulter, B., Siegwolf, R.T.W. et al. (2020) Plant responses to rising vapor pressure deficit. New Phytologist, 226(6), 1550–1566.

Guerrieri, R., Belmecheri, S., Ollinger, S.V., Asbjornsen, H., Jennings, K., Xiao, J. et al. (2019) Disentangling the role of photosynthesis and stomatal conductance on rising forest water‐use efficiency. Proceedings of the National Academy of Sciences of the United States of America, 116(34), 16909–16914.

Heijde, M. & Ulm, R. (2012) UV‐B photoreceptor‐mediated signalling in plants. Trends in Plant Science, 17(4), 230–237.

IPCC. (2021). Changing state of the climate system. In: Masson‐Delmotte, V., Zhai, P., Pirani, A., Connors, S.L., Péan, C. & Berger, S. (Eds.) Climate change 2021: the physical science basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, United Kingdom and New York, NY, USA: Cambridge University Press. https://doi.org/10.1017/9781009157896

Jansen, M.A.K., Ač, A., Klem, K. & Urban, O. (2022) A meta‐analysis of the interactive effects of UV and drought on plants. Plant, Cell & Environment, 45(1), 41–54.

Jansen, M.A.K., Gaba, V. & Greenberg, B.M. (1998) Higher plants and UV‐B radiation: balancing damage, repair and acclimation. Trends in Plant Science, 3(4), 131–135.

Jansen, M.A.K. & Van Den Noort, R.E. (2000) Ultraviolet‐B radiation induces complex alterations in stomatal behaviour. Physiologia Plantarum, 110, 189–194.

Jarvis, A.J. & Davies, W.J. (1998) The coupled response of stomatal conductance to photosynthesis and transpiration. Journal of Experimental Botany, 49, 399–406.

KNMI. (2023) Klimaat van Nederland. Available from: https://www.knmi.nl/klimaat [Accessed 1st November 2023].

Kováč, D., Novotný, J., Šigut, L., Ač, A., Peñuelas, J., Grace, J. et al. (2023) Estimation of photosynthetic dynamics in forests from daily measured fluorescence and PRI data with adjustment for canopy shadow fraction. Science of the Total Environment, 898, 166386.

Lawson, T. & Blatt, M.R. (2014) Stomatal size, speed, and responsiveness impact on photosynthesis and water use efficiency. Plant Physiology, 164(4), 1556–1570.

Li, Q., Hou, J., He, N., Xu, L. & Zhang, Z. (2021) Changes in leaf stomatal traits of different aged temperate forest stands. Journal of Forestry Research, 32(3), 927–936.

Liang, X., Wang, D., Ye, Q., Zhang, J., Liu, M., Liu, H. et al. (2023) Stomatal responses of terrestrial plants to global change. Nature Communications, 14(1), 2188.

Liao, X., Liu, W., Yang, H.Q. & Jenkins, G.I. (2020) A dynamic model of UVR8 photoreceptor signalling in UV‐B‐acclimated Arabidopsis. New Phytologist, 227(3), 857–866.

Lichtenthaler, H.K., Ač, A., Marek, M.V., Kalina, J. & Urban, O. (2007) Differences in pigment composition, photosynthetic rates and chlorophyll fluorescence images of sun and shade leaves of four tree species. Plant Physiology and Biochemistry, 45(8), 577–588.

Light, R.J. & Pillemer, D.B. (1984) Summing up: The science of reviewing research. Cambridge, MA: Harvard University Press.

Liu, C., Li, Y., Xu, L., Chen, Z. & He, N. (2019) Variation in leaf morphological, stomatal, and anatomical traits and their relationships in temperate and subtropical forests. Scientific Reports, 9(1), 5803.

Liu, H., Koren, I., Altaratz, O. & Chekroun, M.D. (2023) Opposing trends of cloud coverage over land and ocean under global warming. Atmospheric Chemistry and Physics, 23, 6559–6569.

Marchin, R.M., Backes, D., Ossola, A., Leishman, M.R., Tjoelker, M.G. & Ellsworth, D.S. (2022) Extreme heat increases stomatal conductance and drought‐induced mortality risk in vulnerable plant species. Global Change Biology, 28(3), 1133–1146.

Marchin, R.M., Medlyn, B.E., Tjoelker, M.G. & Ellsworth, D.S. (2023) Decoupling between stomatal conductance and photosynthesis occurs under extreme heat in broadleaf tree species regardless of water access. Global Change Biology, 29, 6319–6335.

Miner, G.L., Bauerle, W.L. & Baldocchi, D.D. (2017) Estimating the sensitivity of stomatal conductance to photosynthesis: a review. Plant, Cell & Environment, 40(7), 1214–1238.

Mittler, R. (2006) Abiotic stress, the field environment and stress combination. Trends in Plant Science, 11, 15–19.

Naidu, S.L., Sullivan, J.H., Teramura, A.H. & DeLucia, E.H. (1993) The effects of ultraviolet‐B radiation on photosynthesis of different aged needles in field‐grown loblolly pine. Tree Physiology, 12(2), 151–162.

Neugart, S., Tobler, M.A. & Barnes, P.W. (2021) Rapid adjustment in epidermal UV sunscreen: comparison of optical measurement techniques and response to changing solar UV radiation conditions. Physiologia Plantarum, 173(3), 725–735.

Nogués, S., Allen, D.J., Morison, J.I.L. & Baker, N.R. (1999) Characterization of stomatal closure caused by ultraviolet‐B radiation. Plant Physiology, 121(2), 489–496.

O'Sullivan, M., Friedlingstein, P., Sitch, S., Anthoni, P., Arneth, A., Arora, V.K. et al. (2022) Process‐oriented analysis of dominant sources of uncertainty in the land carbon sink. Nature Communications, 13(1), 4781.

Peñuelas, J., Hunt, J.M., Ogaya, R. & Jump, A.S. (2008) Twentieth century changes of tree‐ring δ13C at the southern range‐edge of Fagus sylvatica: increasing water‐use efficiency does not avoid the growth decline induced by warming at low altitudes. Global Change Biology, 14(5), 1076–1088.

Purcell, C., Batke, S.P., Yiotis, C., Caballero, R., Soh, W.K., Murray, M. et al. (2018) Increasing stomatal conductance in response to rising atmospheric CO2. Annals of Botany, 121(6), 1137–1149.

Qaderi, M.M. & Reid, D.M. (2005) Growth and physiological responses of canola (Brassica napus) to UV‐B and CO2 under controlled environment conditions. Physiologia Plantarum, 125(2), 247–259.

Qaderi, M.M., Yeung, E.C. & Reid, D.M. (2008) Growth and physiological responses of an invasive alien species, Silene noctiflora, during two developmental stages to four levels of ultraviolet‐B radiation. Écoscience, 15, 150–159.

Quaas, J., Jia, H., Smith, C., Albright, A.L., Aas, W., Bellouin, N. et al. (2022) Robust evidence for reversal of the trend in aerosol effective climate forcing. Atmospheric Chemistry and Physics, 22(18), 12221–12239.

Raoult, N., Jupp, T., Booth, B. & Cox, P. (2023) Combining local model calibration with the emergent constraint approach to reduce uncertainty in the tropical land carbon cycle feedback. Earth System Dynamics, 14, 723–731.

Reichstein, M., Bahn, M., Ciais, P., Frank, D., Mahecha, M.D., Seneviratne, S.I. et al. (2013) Climate extremes and the carbon cycle. Nature, 500(7462), 287–295.

Robson, T.M., Klem, K., Urban, O. & Jansen, M.A. (2015) Re‐interpreting plant morphological responses to UV‐B radiation. Plant, Cell & Environment, 38(5), 856–866.

Rousseaux, M.C., Flint, S.D., Searles, P.S., Caldwell, M.M., Rousseaux, M.C., Flint, S.D. et al. (2004) Plant responses to current solar ultraviolet‐B radiation and to supplemented solar ultraviolet‐B radiation simulating ozone depletion: an experimental comparison. Photochemistry and Photobiology, 80(2), 224–230.

Schewe, J., Gosling, S.N., Reyer, C., Zhao, F., Ciais, P., Elliott, J. et al. (2019) State‐of‐the‐art global models underestimate impacts from climate extremes. Nature Communications, 10(1), 1005.

Šprtová, M., Marek, M.V., Nedbal, L., Prášil, O. & Kalina, J. (1999) Seasonal changes of photosynthetic assimilation of Norway spruce under the impact of enhanced UV‐B radiation. Plant Science, 142(1), 37–45.

van de Staaij, J.W.M., Bolink, E., Rozema, J. & Ernst, W.H.O. (1997) The impact of elevated UV‐B (280–320 nm) radiation levels on the reproduction of a highland and a lowland population of Silene vulgaris. Plant Ecology, 128, 173–179.

Strange, B.M., Monson, R.K., Szejner, P., Ehleringer, J. & Hu, J. (2023) The North American monsoon buffers forests against the ongoing megadrought in the Southwestern United States. Global Change Biology, 29, 4354–4367.

Sun, Y., Yan, F., Cui, X. & Liu, F. (2014) Plasticity in stomatal size and density of potato leaves under different irrigation and phosphorus regimes. Journal of Plant Physiology, 171(14), 1248–1255.

Teramura, A.H. (1983) Effects of ultraviolet‐B radiation on the growth and yield of crop plants. Physiologia Plantarum, 58(3), 415–427.

Tossi, V., Lamattina, L., Jenkins, G.I. & Cassia, R.O. (2014) Ultraviolet‐B‐induced stomatal closure in Arabidopsis is regulated by the UV RESISTANCE LOCUS8 photoreceptor in a nitric oxide‐dependent mechanism. Plant Physiology, 164(4), 2220–2230.

Tripathi, R., Rai, K., Singh, S., Agrawal, M. & Agrawal, S.B. (2019) Role of supplemental UV‐B in changing the level of ozone toxicity in two cultivars of sunflower: growth, seed yield and oil quality. Ecotoxicology, 28, 277–293.

Trouillier, M., van der Maaten‐Theunissen, M., Scharnweber, T., Würth, D., Burger, A., Schnittler, M. et al. (2019) Size matters—a comparison of three methods to assess age‐and size‐dependent climate sensitivity of trees. Trees, 33, 183–192.

Urban, J., Ingwers, M.W., McGuire, M.A. & Teskey, R.O. (2017) Increase in leaf temperature opens stomata and decouples net photosynthesis from stomatal conductance in Pinus taeda and Populus deltoides  × nigra. Journal of Experimental Botany, 68(7), 1757–1767.

Urban, O., Kosvancova, M., Marek, M.V. & Lichtenthaler, H.K. (2007) Induction of photosynthesis and importance of limitations during the induction phase in sun and shade leaves of five ecologically contrasting tree species from the temperate zone. Tree Physiology, 27(8), 1207–1215.

Veselá, B., Holub, P., Urban, O., Surá, K., Hodaňová, P., Oravec, M. et al. (2022) UV radiation and drought interact differently in grass and forb species of a mountain grassland. Plant Science, 325, 111488.

Wargent, J.J., Gegas, V.C., Jenkins, G.I., Doonan, J.H. & Paul, N.D. (2009) UVR8 in Arabidopsis thaliana regulates multiple aspects of cellular differentiation during leaf development in response to ultraviolet B radiation. New Phytologist, 183(2), 315–326.

Wargent, J.J. & Jordan, B.R. (2013) From ozone depletion to agriculture: understanding the role of UV radiation in sustainable crop production. New Phytologist, 197(4), 1058–1076.

Wild, M., Wacker, S., Yang, S. & Sanchez‐Lorenzo, A. (2021) Evidence for clear‐sky dimming and brightening in central Europe. Geophysical Research Letters, 48(6), e2020GL092216.

Williams, T.B., Dodd, I.C., Sobeih, W.Y. & Paul, N.D. (2022) Ultraviolet radiation causes leaf warming due to partial stomatal closure. Horticulture Research, 9, uhab066.

Wong, S.C., Cowan, I.R. & Farquhar, G.D. (1979) Stomatal conductance correlates with photosynthetic capacity. Nature, 282(5737), 424–426.

Wu, J., Serbin, S.P., Ely, K.S., Wolfe, B.T., Dickman, L.T., Grossiord, C. et al. (2020) The response of stomatal conductance to seasonal drought in tropical forests. Global Change Biology, 26(2), 823–839.

Xu, Z., Tian, Y., Liu, Z. & Xia, X. (2023) Comprehensive effects of atmosphere and soil drying on stomatal behavior of different plant types. Water, 15(9), 1675.

Zhu, K., Wang, A., Wu, J., Yuan, F., Guan, D., Jin, C. et al. (2020) Effects of nitrogen additions on mesophyll and stomatal conductance in Manchurian ash and Mongolian oak. Scientific Reports, 10(1), 10038.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...