Bacterial diversity, community structure and function in association of potato scabby tubers during storage in northern Thailand
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
N42A650203
National Research Council of Thailand
PubMed
38315309
DOI
10.1007/s12223-024-01140-9
PII: 10.1007/s12223-024-01140-9
Knihovny.cz E-zdroje
- Klíčová slova
- Amplicon metagenomic sequencing, Bacterial community structure, Bacterial diversity, Functional gene profile, Plant pathogenic bacteria, Potato scabby tubers,
- MeSH
- Bacteria * genetika klasifikace izolace a purifikace MeSH
- biodiverzita MeSH
- DNA bakterií genetika MeSH
- fylogeneze MeSH
- hlízy rostlin * mikrobiologie MeSH
- metagenomika MeSH
- mikrobiota MeSH
- nemoci rostlin * mikrobiologie MeSH
- RNA ribozomální 16S * genetika MeSH
- skladování potravin * MeSH
- Solanum tuberosum * mikrobiologie MeSH
- teplota MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Thajsko MeSH
- Názvy látek
- DNA bakterií MeSH
- RNA ribozomální 16S * MeSH
Potato scab is a common potato tuber disease that affects quality and cost in the marketplace, shortening storage, and increasing the chance for secondary infection. The tubers with disease severity of 1 to 4 are accepted and stored in potato storage for cheap selling in Thailand. However, there are few studies of the bacterial community of the scabby tuber during storage. Thus, we aim to elucidate the diversity, structure, and function of the bacterial community of 30-day storage potato scabby tubers stored in different temperatures using 16S amplicon metagenomic sequencing. Bacterial communities of storage potato scabby tubers (Spunta cultivar) collected from different storage temperatures, 4 °C (MEP1) and 6 °C (MEP2), were characterized using 16S rRNA amplicon metagenomic sequencing. The alpha-diversity abundance in the bacteriome of the scabby tubers stored at 6 °C was higher than in those stored at 4 °C. Actinobacteria (34.7%) was a dominant phylum in MEP1, while Proteobacteria (39.9%) was predominant in MEP2. The top 10 genera of both communities were Rhizobium group, Streptomyces, Pectobacterium, Ruminococcus, Cellulomonas, Promicromonospora, Prevotella, Enterobacter, Pedobacter, and Paenarthrobacter. Moreover, functional profile prediction of both communities reveals essential genes in the pathosystem: nos, bglA, and cebEFG-msiK for potato scab disease and phc and peh operons for rot disease. Our findings are the first study to explore details of the bacteriome of the accepted potato scabby tubers for selling during storage in Thailand and strongly indicate that although potatoes were stored at low temperatures, diseases still occur by secondary pathogens.
Department of Biology Faculty of Science Chiang Mai University Chiang Mai 50200 Thailand
Department of Plant Pathology Faculty of Agriculture Kasetsart University Bangkok 10900 Thailand
Zobrazit více v PubMed
Andrade MHML, Niederheitmann M, de Paula Ribeiro SRR, Oliveira LC, Pozza ED, Pinto CABP (2019) Development and validation of a standard area diagram to assess common scab in potato tubers. Eur J Plant Pathol 154:739–750. https://doi.org/10.1007/s10658-019-01697-z DOI
Bolyen E, Rideout JR, Dillon MR, Bokulichet NA, Abnet CCC et al (2019) Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat Biotechnol 37:852–857. https://doi.org/10.1038/s41587-019-0209-9 PubMed DOI PMC
Breitenwieser F, Doll EV, Clavel T, Scherer S, Wenning M (2020) Complementary use of cultivation and high-throughput amplicon sequencing reveals high biodiversity within raw milk microbiota. Front Microbiol 11:e1557. https://doi.org/10.3389/fmicb.2020.01557 DOI
Buchholz F, Antonielli L, Kostić T, Sessitsch A, Mitter B (2019) The bacterial community in potato is recruited from soil and partly inherited across generations. PLoS ONE 14:e0223691. https://doi.org/10.1371/journal.pone.0223691 PubMed DOI PMC
Çalişkan M, Bakhsh A, Jabran K (2022) Potato production worldwide. Academic Press, London
Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJ, Holmes SP (2016) DADA2: High-resolution sample inference from Illumina amplicon data. Nat Methods 13:581–583. https://doi.org/10.1038/nmeth.3869 PubMed DOI PMC
Chen H, Boutros PC (2011) VennDiagram: a package for the generation of highly-customizable Venn and Euler diagrams in R. BMC Bioinform 12:e35. https://doi.org/10.1186/1471-2105-12-35 DOI
Chen S, Zhou Y, Chen Y, Gu J (2018) fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinform 34:i884–i890. https://doi.org/10.1093/bioinformatics/bty560 DOI
Chen Q, Meyer WA, Zhang Q, White JF (2020) 16S rRNA metagenomic analysis of the bacterial community associated with turf grass seeds from low moisture and high moisture climates. PeerJ 10:e8417. https://doi.org/10.7717/peerj.8417 DOI
Dees MW, Wanner L (2012) In search of better management of potato common scab. Potato Res 55:249–268. https://doi.org/10.1007/s11540-012-9206-9 DOI
Diallo S, Crépin A, Barbey C, Orange N, Burini JF, Latour X (2011) Mechanisms and recent advances in biological control mediated through the potato rhizosphere. FEMS Microbiol Ecol 75:351–364. https://doi.org/10.1111/j.1574-6941.2010.01023.x PubMed DOI
Douglas GM, Maffei VJ, Zaneveld JR, Yurgel SN, Brown JR, Taylor CM, Huttenhower C, Langille MGI (2020) PICRUSt2 for prediction of metagenome functions. Nat Biotechnol 38:685–688. https://doi.org/10.1038/s41587-020-0548-6 PubMed DOI PMC
FAO (2022) Food and agriculture data, Food and Agriculture Organization of the United Nations. https://www.fao.org/faostat/en/ . Accessed 26 April 2023
Felsenstein J (1981) Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17:368–376. https://doi.org/10.1007/BF01734359 PubMed DOI
Felsenstein J (1985) Confidence limits in phylogenies: an approach using the bootstrap. Evolution 39:783–791. https://doi.org/10.1111/j.1558-5646.1985.tb00420.x PubMed DOI
Fiers M, Edel-Hermann V, Chatot C, Hingrats YL, Alabouvette C, Steinberg C (2012) Potato soil-borne diseases. a review. Agron Sustain Dev 32:93–132. https://doi.org/10.1007/s13593-011-0035-z DOI
Fry BA, Loria R (2002) Thaxtomin A: evidence for a plant cell wall target. Physiol Mol Plant Pathol 60:1–8. https://doi.org/10.1006/pmpp.2001.0371 DOI
Hussain T (2016) Potatoes: ensuring food for the future. Adv Plants Agric Res 3:178–182. https://doi.org/10.15406/apar.2016.03.00117
Johnson M, Zaretskaya I, Raytselis Y, Merezhuk Y, McGinnis S, Madden TL (2008a) NCBI BLAST: a better web interface. Nucleic Acids Res 36:W5-9. https://doi.org/10.1093/nar/gkn201 PubMed DOI PMC
Johnson EG, Sparks JP, Dzikovski B, Crane BR, Gibson DM, Loria R (2008b) Plant-pathogenic Streptomyces species produce nitric oxide synthase-derived nitric oxide in response to host signals. Chem Biol 15:43–50. https://doi.org/10.1016/j.chembiol.2007.11.014 PubMed DOI
Jourdan S, Francis I, Kim M et al (2016) The CebE/MsiK transporter is a doorway to the cello-oligosaccharide-mediated induction of Streptomyces scabies pathogenicity. Sci Rep 6:27144. https://doi.org/10.1038/srep27144 PubMed DOI PMC
Kanehisa M, Sato Y, Kawashima M, Furumichi M, Tanabe M (2016) KEGG as a reference resource for gene and protein annotation. Nucleic Acids Res 44:D457–D462. https://doi.org/10.1093/nar/gkv1070 PubMed DOI
Kimura MA (1980) Simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120. https://doi.org/10.1007/BF01731581 PubMed DOI
Kittipadakul P, Jaipeng B, Slater A, Stevenson W, Jansky S (2016) Potato production in Thailand. Am J Potato Res 93:380–385. https://doi.org/10.1007/s12230-016-9511-y DOI
Kobayashi A, Kobayashi YO, Someya N, Ikeda S (2015) Community analysis of root- and tuber-associated bacteria in field-grown potato plants harboring different resistance levels against common scab. Microbes Environ 30:301–309. https://doi.org/10.1264/jsme2.ME15109 PubMed DOI PMC
Kõiv V, Arbo K, Maiväli Ü, Kisand V, Roosaare M, Remm M et al (2019) Endophytic bacterial communities in peels and pulp of five root vegetables. PLoS ONE 14:e0210542. https://doi.org/10.1371/journal.pone.0210542 PubMed DOI PMC
Kong X, Chang X, Feng X, Han G, Chen X, Xiangning C (2020) Study on microbial diversity of fresh-cut potatoes in different storage periods. IOP Conf Ser Earth Environ Sci 565:012064. https://doi.org/10.1088/1755-1315/565/1/012064 DOI
Kumar S, Stecher G, Li M, Knyaz C, Tamura K (2018) MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol 35:1547–1549. https://doi.org/10.1093/molbev/msy096 PubMed DOI PMC
Li Z, Zhao W, Ma Y, Liang H, Wang D, Zhao X (2022) Shifts in the bacterial community related to quality properties of vacuum-packaged peeled potatoes during storage. Foods 11:1147. https://doi.org/10.3390/foods11081147
Liu YX, Qin Y, Chen T, Lu M, Qian X, Guo X, Bai Y (2021) A practical guide to amplicon and metagenomic analysis of microbiome data. Protein Cell 12:315–330. https://doi.org/10.1007/s13238-020-00724-8 PubMed DOI
Majumdar R, Strausbaugh CA, Galewski PJ, Minocha R, Rogers CW (2022) Cell-wall-degrading enzymes-related genes originating from Rhizoctonia solani increase sugar beet root damage in the presence of Leuconostoc mesenteroides. Int J Mol Sci 23:1366. https://doi.org/10.3390/ijms23031366 PubMed DOI PMC
Marković S, Popović T, Berić T, Dimkić I, Jelušić A, Iličić R, Stanković S (2022) Metabarcoding approach for evaluation of bacterial diversity in soft rotting potato tubers and corresponding geocaulospheres. Potato Res. https://doi.org/10.1007/s11540-022-09601-9 DOI
Mole BM, Baltrus DA, Dangl JL, Grant SR (2007) Global virulence regulation networks in phytopathogenic bacteria. Trends Microbiol 15:363–371. https://doi.org/10.1016/j.tim.2007.06.005 PubMed DOI
Nicole WRM, Christine G, Holger H, Michael S, Gabriele B, Kornelia S (2010) Bacterial diversity on the surface of potato tubers in soil and the influence of the plant genotype. FEMS Microbiol Ecol 74:114–123. https://doi.org/10.1111/j.1574-6941.2010.00936.x DOI
Parks DH, Tyson GW, Hugenholtz P, Beiko RG (2014) STAMP: statistical analysis of taxonomic and functional profiles. Bioinform 30:3123–3124. https://doi.org/10.1093/bioinformatics/btu494 DOI
Pinhero RG, Coffin R, Yada RY (2009) Post-harvest storage of potatoes. In: Singh J, Kaur L (ed) Advances in potato chemistry and technology. Academic Press, London, pp 339–370. https://doi.org/10.1016/B978-0-12-374349-7.00012-X
Pinhero RG, Yada RY (2016) Postharvest storage of potatoes. In: Singh J, Kaur L (2ed) Advances in potato chemistry and technology. Academic Press, London, pp 283–314. https://doi.org/10.1016/B978-0-12-800002-1.00010-8
Puri RR, Adachi F, Omichi M, Yuichi S, Akihiro Y, Shohei H, Md Arshad A, Kazuhito I (2019) Metagenomic study of endophytic bacterial community of sweet potato (Ipomoea batatas) cultivated in different soil and climatic conditions. World J Microbiol Biotechnol 35:176. https://doi.org/10.1007/s11274-019-2754-2 PubMed DOI
Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, Peplies J, Glöckner FO (2013) The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res 41:D590-596. https://doi.org/10.1093/nar/gks1219 PubMed DOI
Rosenzweig N, Tiedje JM, Quensen JF, Meng Q, Hao JJ (2012) Microbial communities associated with potato common scab-suppressive soil determined by pyrosequencing analyses. Plant Dis 96:718–725. https://doi.org/10.1094/PDIS-07-11-0571 PubMed DOI
Scheible WR, Fry B, Kochevenko A, Schindelasch D, Zimmerli L, Somerville S, Loria R, Somerville CR (2003) An Arabidopsis mutant resistant to thaxtomin A, a cellulose synthesis inhibitor from Streptomyces species. Plant Cell 15:1781–1794. https://doi.org/10.1105/tpc.013342 PubMed DOI PMC
Seipke RF, Song L, Bicz J, Laskaris P, Yaxley AM, Challis GL, Loria R (2011) The plant pathogen Streptomyces scabies 87–22 has a functional pyochelin biosynthetic pathway that is regulated by TetR- and AfsR-family proteins. Microbiology 157:2681–2693. https://doi.org/10.1099/mic.0.047977-0 PubMed DOI
Sessitsch A, Howieson JG, Perret X, Antoun H, Martínez-Romero E (2002) Advances in Rhizobium research. Crit Rev Plant Sci 21:323–378. https://doi.org/10.1080/0735-260291044278 DOI
Shi W, Su G, Li M, Wang B, Lin R, Yang Y, Wei T, Zhou B, Gao Z (2021) Distribution of bacterial endophytes in the non-lesion tissues of potato and their response to potato common scab. Front Microbiol 12:616013. https://doi.org/10.3389/fmicb.2021.616013 PubMed DOI PMC
Song J, Kong ZQ, Zhang DD, Chen JY, Dai XF, Li R (2021) Rhizosphere microbiomes of potato cultivated under Bacillus subtilis treatment influence the quality of potato tubers. Int J Mol Sci 22:12065. https://doi.org/10.3390/ijms222112065 PubMed DOI PMC
Xie T, Shen S, Hao Y, Li W, Wang J (2022) Comparative analysis of microbial community diversity and dynamics on diseased tubers during potato storage in different regions of Qinghai China. Front Genet 13:818940. https://doi.org/10.3389/fgene.2022.818940 PubMed DOI PMC
Zhao S, Han X, Liu B, Wang S, Guan W, Wu Z, Theodorakis PE (2022) Shelf-life prediction model of fresh-cut potato at different storage temperatures. J Food Eng 317:110867. https://doi.org/10.1016/j.jfoodeng.2021.110867 DOI
Zheng Y, Xiao G, Zhou W, Gao Y, Li Z, Du G, Chen B (2020) Midgut microbiota diversity of potato tuber moth associated with potato tissue consumed. BMC Microbiol 20:58. https://doi.org/10.1186/s12866-020-01740-8 PubMed DOI PMC