Clinical and molecular study of radiation-induced gliomas

. 2024 Feb 07 ; 14 (1) : 3118. [epub] 20240207

Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid38326438

Grantová podpora
204220 Grantová Agentura, Univerzita Karlova
PRIMUS/19/MED/06 Grantová Agentura, Univerzita Karlova
LX22NPO5102 European Union
MH CZ-DRO,00064203 University Hospital Motol
NU21-07-00419 Ministerstvo Zdravotnictví Ceské Republiky
NU23-08-00460 Ministerstvo Zdravotnictví Ceské Republiky

Odkazy

PubMed 38326438
PubMed Central PMC10850080
DOI 10.1038/s41598-024-53434-0
PII: 10.1038/s41598-024-53434-0
Knihovny.cz E-zdroje

In this study, we provide a comprehensive clinical and molecular biological characterization of radiation-induced gliomas (RIG), including a risk assessment for developing gliomas. A cohort of 12 patients who developed RIG 9.5 years (3-31 years) after previous cranial radiotherapy for brain tumors or T-cell acute lymphoblastic leukemia was established. The derived risk of RIG development based on our consecutive cohort of 371 irradiated patients was 1.6% at 10 years and 3.02% at 15 years. Patients with RIG glioma had a dismal prognosis with a median survival of 7.3 months. We described radiology features that might indicate the suspicion of RIG rather than the primary tumor recurrence. Typical molecular features identified by molecular biology examination included the absence of Histon3 mutation, methylation profile of pedHGG-RTK1 and the presence of recurrent PDGFRA amplification and CDKN2A/B deletion. Of the two long-term surviving patients, one had gliomatosis cerebri, and the other had pleomorphic xanthoastrocytoma with BRAF V600E mutation. In summary, our experience highlights the need for tissue diagnostics to allow detailed molecular biological characterization of the tumor, differentiation of the secondary tumor from the recurrence of the primary disease and potentially finding a therapeutic target.

Zobrazit více v PubMed

Ohno M, Miyakita Y, Takahashi M, Yanagisawa S, Tamura Y, Kawauchi D, et al. Assessment of therapeutic outcome and role of reirradiation in patients with radiation-induced glioma. Radiat. Oncol. 2022;17:85. doi: 10.1186/s13014-022-02054-x. PubMed DOI PMC

Relling MV, Rubnitz JE, Rivera GK, Boyett JM, Hancock ML, Felix CA, et al. High incidence of secondary brain tumours after radiotherapy and antimetabolites. Lancet Lond. Engl. 1999;354:34–39. doi: 10.1016/S0140-6736(98)11079-6. PubMed DOI

Maluf FC, DeAngelis LM, Raizer JJ, Abrey LE. High-grade gliomas in patients with prior systemic malignancies. Cancer. 2002;94:3219–3224. doi: 10.1002/cncr.10595. PubMed DOI

Donson AM, Erwin NS, Kleinschmidt-DeMasters BK, Madden JR, Addo-Yobo SO, Foreman NK. Unique molecular characteristics of radiation-induced glioblastoma. J. Neuropathol. Exp. Neurol. 2007;66:740–749. doi: 10.1097/nen.0b013e3181257190. PubMed DOI

Brat DJ, James CD, Jedlicka AE, Connolly DC, Chang E, Castellani RJ, et al. Molecular genetic alterations in radiation-induced astrocytomas. Am. J. Pathol. 1999;154:1431–1438. doi: 10.1016/S0002-9440(10)65397-7. PubMed DOI PMC

DeSisto J, Lucas JTJ, Xu K, Donson A, Lin T, Sanford B, et al. Comprehensive molecular characterization of pediatric radiation-induced high-grade glioma. Nat. Commun. 2021;12:5531. doi: 10.1038/s41467-021-25709-x. PubMed DOI PMC

Deng MY, Sturm D, Pfaff E, Sill M, Stichel D, Balasubramanian GP, et al. Radiation-induced gliomas represent H3-/IDH-wild type pediatric gliomas with recurrent PDGFRA amplification and loss of CDKN2A/B. Nat. Commun. 2021;12:5530. doi: 10.1038/s41467-021-25708-y. PubMed DOI PMC

Paugh BS, Qu C, Jones C, Liu Z, Adamowicz-Brice M, Zhang J, et al. Integrated molecular genetic profiling of pediatric high-grade gliomas reveals key differences with the adult disease. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2010;28:3061–3068. doi: 10.1200/JCO.2009.26.7252. PubMed DOI PMC

Nakao T, Sasagawa Y, Nobusawa S, Takabatake Y, Sabit H, Kinoshita M, et al. Radiation-induced gliomas: A report of four cases and analysis of molecular biomarkers. Brain. Tumor. Pathol. 2017;34:149–154. doi: 10.1007/s10014-017-0292-x. PubMed DOI

Onishi S, Yamasaki F, Amatya VJ, Takayasu T, Yonezawa U, Taguchi A, et al. Characteristics and therapeutic strategies of radiation-induced glioma: case series and comprehensive literature review. J. Neurooncol. 2022;159:531–538. doi: 10.1007/s11060-022-04090-9. PubMed DOI

Cahan WG, Woodard HQ, Higinbotham NL, Stewart FW, Coley BL. Sarcoma arising in irradiated bone: Report of eleven cases. Cancer Interdiscip. Int. J. Am. Cancer Soc. 1998;82(1):8–34. PubMed

Castel D, Philippe C, Calmon R, Le Dret L, Truffaux N, Boddaert N, et al. Histone H3F3A and HIST1H3B K27M mutations define two subgroups of diffuse intrinsic pontine gliomas with different prognosis and phenotypes. Acta Neuropathol. 2015;130:815–827. doi: 10.1007/s00401-015-1478-0. PubMed DOI PMC

Agaimy A, Terracciano LM, Dirnhofer S, Tornillo L, Foerster A, Hartmann A, et al. V600E BRAF mutations are alternative early molecular events in a subset of KIT/PDGFRA wildtype gastrointestinal stromal tumours. J. Clin. Pathol. 2009;62:613–616. doi: 10.1136/jcp.2009.064550. PubMed DOI

Pathak P, Kumar A, Jha P, Purkait S, Faruq M, Suri A, et al. Genetic alterations related to BRAF-FGFR genes and dysregulated MAPK/ERK/mTOR signaling in adult pilocytic astrocytoma. Brain Pathol. 2017;27:580–589. doi: 10.1111/bpa.12444. PubMed DOI PMC

Capper D, Jones DTW, Sill M, Hovestadt V, Schrimpf D, Sturm D, et al. DNA methylation-based classification of central nervous system tumours. Nature. 2018;555:469–474. doi: 10.1038/nature26000. PubMed DOI PMC

Slavc I, Mayr L, Stepien N, Gojo J, Aliotti Lippolis M, Azizi AA, Chocholous M, Baumgartner A, Hedrich CS, Holm S, Sehested A. Improved long-term survival of patients with recurrent medulloblastoma treated with a “MEMMAT-like” metronomic antiangiogenic approach. Cancers. 2022;14(20):5128. doi: 10.3390/cancers14205128. PubMed DOI PMC

Stary J, Zimmermann M, Campbell M, Castillo L, Dibar E, Donska S, et al. Intensive chemotherapy for childhood acute lymphoblastic leukemia: Results of the randomized intercontinental trial ALL IC-BFM 2002. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2014;32:174–184. doi: 10.1200/JCO.2013.48.6522. PubMed DOI

Zapletalová D, Andre N, Deak L, Kyr M, Bajciova V, Múdry P, Dubska L, Demlová R, Pavelka Z, Zitterbart K, Skotáková J. Metronomic chemotherapy with the COMBAT regimen in advanced pediatric malignancies: A multicenter experience. Oncology. 2012;82(5):249–260. doi: 10.1159/000336483. PubMed DOI

Grogan PT, Helgager JJ, Deming DA, Howard SP, Jenkins RB, Robins HI. Case report: Radiographic complete response of radiation-induced glioblastoma to front-line radiotherapy: A report and molecular characterization of two unique cases. Front. Neurol. 2023;21(14):1099424. doi: 10.3389/fneur.2023.1099424. PubMed DOI PMC

Leary JB, Anderson-Mellies A, Green AL. Population-based analysis of radiation-induced gliomas after cranial radiotherapy for childhood cancers. Neuro-Oncol. Adv. 2022;4(1):vdac159. doi: 10.1093/noajnl/vdac159. PubMed DOI PMC

Neglia JP, Robison LL, Stovall M, Liu Y, Packer RJ, Hammond S, et al. New primary neoplasms of the central nervous system in survivors of childhood cancer: A report from the childhood cancer survivor study. J. Natl. Cancer Inst. 2006;98:1528–1537. doi: 10.1093/jnci/djj411. PubMed DOI

Whitehouse JP, Howlett M, Federico A, Kool M, Endersby R, Gottardo NG. Defining the molecular features of radiation-induced glioma: A systematic review and meta-analysis. Neuro-Oncol. Adv. 2021;3:vdab109. doi: 10.1093/noajnl/vdab109. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...