Clinical and molecular study of radiation-induced gliomas
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
204220
Grantová Agentura, Univerzita Karlova
PRIMUS/19/MED/06
Grantová Agentura, Univerzita Karlova
LX22NPO5102
European Union
MH CZ-DRO,00064203
University Hospital Motol
NU21-07-00419
Ministerstvo Zdravotnictví Ceské Republiky
NU23-08-00460
Ministerstvo Zdravotnictví Ceské Republiky
PubMed
38326438
PubMed Central
PMC10850080
DOI
10.1038/s41598-024-53434-0
PII: 10.1038/s41598-024-53434-0
Knihovny.cz E-zdroje
- MeSH
- astrocytom * patologie MeSH
- gliom * genetika radioterapie MeSH
- lidé MeSH
- mutace MeSH
- nádory mozku * genetika radioterapie MeSH
- protoonkogenní proteiny B-Raf genetika MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- protoonkogenní proteiny B-Raf MeSH
In this study, we provide a comprehensive clinical and molecular biological characterization of radiation-induced gliomas (RIG), including a risk assessment for developing gliomas. A cohort of 12 patients who developed RIG 9.5 years (3-31 years) after previous cranial radiotherapy for brain tumors or T-cell acute lymphoblastic leukemia was established. The derived risk of RIG development based on our consecutive cohort of 371 irradiated patients was 1.6% at 10 years and 3.02% at 15 years. Patients with RIG glioma had a dismal prognosis with a median survival of 7.3 months. We described radiology features that might indicate the suspicion of RIG rather than the primary tumor recurrence. Typical molecular features identified by molecular biology examination included the absence of Histon3 mutation, methylation profile of pedHGG-RTK1 and the presence of recurrent PDGFRA amplification and CDKN2A/B deletion. Of the two long-term surviving patients, one had gliomatosis cerebri, and the other had pleomorphic xanthoastrocytoma with BRAF V600E mutation. In summary, our experience highlights the need for tissue diagnostics to allow detailed molecular biological characterization of the tumor, differentiation of the secondary tumor from the recurrence of the primary disease and potentially finding a therapeutic target.
Division of Pediatric Glioma Research Hopp Children's Cancer Center Heidelberg Germany
German Cancer Research Center Heidelberg Germany
Proton Therapy Center Czech Budínova 1a 180 00 Prague Czech Republic
Zobrazit více v PubMed
Ohno M, Miyakita Y, Takahashi M, Yanagisawa S, Tamura Y, Kawauchi D, et al. Assessment of therapeutic outcome and role of reirradiation in patients with radiation-induced glioma. Radiat. Oncol. 2022;17:85. doi: 10.1186/s13014-022-02054-x. PubMed DOI PMC
Relling MV, Rubnitz JE, Rivera GK, Boyett JM, Hancock ML, Felix CA, et al. High incidence of secondary brain tumours after radiotherapy and antimetabolites. Lancet Lond. Engl. 1999;354:34–39. doi: 10.1016/S0140-6736(98)11079-6. PubMed DOI
Maluf FC, DeAngelis LM, Raizer JJ, Abrey LE. High-grade gliomas in patients with prior systemic malignancies. Cancer. 2002;94:3219–3224. doi: 10.1002/cncr.10595. PubMed DOI
Donson AM, Erwin NS, Kleinschmidt-DeMasters BK, Madden JR, Addo-Yobo SO, Foreman NK. Unique molecular characteristics of radiation-induced glioblastoma. J. Neuropathol. Exp. Neurol. 2007;66:740–749. doi: 10.1097/nen.0b013e3181257190. PubMed DOI
Brat DJ, James CD, Jedlicka AE, Connolly DC, Chang E, Castellani RJ, et al. Molecular genetic alterations in radiation-induced astrocytomas. Am. J. Pathol. 1999;154:1431–1438. doi: 10.1016/S0002-9440(10)65397-7. PubMed DOI PMC
DeSisto J, Lucas JTJ, Xu K, Donson A, Lin T, Sanford B, et al. Comprehensive molecular characterization of pediatric radiation-induced high-grade glioma. Nat. Commun. 2021;12:5531. doi: 10.1038/s41467-021-25709-x. PubMed DOI PMC
Deng MY, Sturm D, Pfaff E, Sill M, Stichel D, Balasubramanian GP, et al. Radiation-induced gliomas represent H3-/IDH-wild type pediatric gliomas with recurrent PDGFRA amplification and loss of CDKN2A/B. Nat. Commun. 2021;12:5530. doi: 10.1038/s41467-021-25708-y. PubMed DOI PMC
Paugh BS, Qu C, Jones C, Liu Z, Adamowicz-Brice M, Zhang J, et al. Integrated molecular genetic profiling of pediatric high-grade gliomas reveals key differences with the adult disease. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2010;28:3061–3068. doi: 10.1200/JCO.2009.26.7252. PubMed DOI PMC
Nakao T, Sasagawa Y, Nobusawa S, Takabatake Y, Sabit H, Kinoshita M, et al. Radiation-induced gliomas: A report of four cases and analysis of molecular biomarkers. Brain. Tumor. Pathol. 2017;34:149–154. doi: 10.1007/s10014-017-0292-x. PubMed DOI
Onishi S, Yamasaki F, Amatya VJ, Takayasu T, Yonezawa U, Taguchi A, et al. Characteristics and therapeutic strategies of radiation-induced glioma: case series and comprehensive literature review. J. Neurooncol. 2022;159:531–538. doi: 10.1007/s11060-022-04090-9. PubMed DOI
Cahan WG, Woodard HQ, Higinbotham NL, Stewart FW, Coley BL. Sarcoma arising in irradiated bone: Report of eleven cases. Cancer Interdiscip. Int. J. Am. Cancer Soc. 1998;82(1):8–34. PubMed
Castel D, Philippe C, Calmon R, Le Dret L, Truffaux N, Boddaert N, et al. Histone H3F3A and HIST1H3B K27M mutations define two subgroups of diffuse intrinsic pontine gliomas with different prognosis and phenotypes. Acta Neuropathol. 2015;130:815–827. doi: 10.1007/s00401-015-1478-0. PubMed DOI PMC
Agaimy A, Terracciano LM, Dirnhofer S, Tornillo L, Foerster A, Hartmann A, et al. V600E BRAF mutations are alternative early molecular events in a subset of KIT/PDGFRA wildtype gastrointestinal stromal tumours. J. Clin. Pathol. 2009;62:613–616. doi: 10.1136/jcp.2009.064550. PubMed DOI
Pathak P, Kumar A, Jha P, Purkait S, Faruq M, Suri A, et al. Genetic alterations related to BRAF-FGFR genes and dysregulated MAPK/ERK/mTOR signaling in adult pilocytic astrocytoma. Brain Pathol. 2017;27:580–589. doi: 10.1111/bpa.12444. PubMed DOI PMC
Capper D, Jones DTW, Sill M, Hovestadt V, Schrimpf D, Sturm D, et al. DNA methylation-based classification of central nervous system tumours. Nature. 2018;555:469–474. doi: 10.1038/nature26000. PubMed DOI PMC
Slavc I, Mayr L, Stepien N, Gojo J, Aliotti Lippolis M, Azizi AA, Chocholous M, Baumgartner A, Hedrich CS, Holm S, Sehested A. Improved long-term survival of patients with recurrent medulloblastoma treated with a “MEMMAT-like” metronomic antiangiogenic approach. Cancers. 2022;14(20):5128. doi: 10.3390/cancers14205128. PubMed DOI PMC
Stary J, Zimmermann M, Campbell M, Castillo L, Dibar E, Donska S, et al. Intensive chemotherapy for childhood acute lymphoblastic leukemia: Results of the randomized intercontinental trial ALL IC-BFM 2002. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2014;32:174–184. doi: 10.1200/JCO.2013.48.6522. PubMed DOI
Zapletalová D, Andre N, Deak L, Kyr M, Bajciova V, Múdry P, Dubska L, Demlová R, Pavelka Z, Zitterbart K, Skotáková J. Metronomic chemotherapy with the COMBAT regimen in advanced pediatric malignancies: A multicenter experience. Oncology. 2012;82(5):249–260. doi: 10.1159/000336483. PubMed DOI
Grogan PT, Helgager JJ, Deming DA, Howard SP, Jenkins RB, Robins HI. Case report: Radiographic complete response of radiation-induced glioblastoma to front-line radiotherapy: A report and molecular characterization of two unique cases. Front. Neurol. 2023;21(14):1099424. doi: 10.3389/fneur.2023.1099424. PubMed DOI PMC
Leary JB, Anderson-Mellies A, Green AL. Population-based analysis of radiation-induced gliomas after cranial radiotherapy for childhood cancers. Neuro-Oncol. Adv. 2022;4(1):vdac159. doi: 10.1093/noajnl/vdac159. PubMed DOI PMC
Neglia JP, Robison LL, Stovall M, Liu Y, Packer RJ, Hammond S, et al. New primary neoplasms of the central nervous system in survivors of childhood cancer: A report from the childhood cancer survivor study. J. Natl. Cancer Inst. 2006;98:1528–1537. doi: 10.1093/jnci/djj411. PubMed DOI
Whitehouse JP, Howlett M, Federico A, Kool M, Endersby R, Gottardo NG. Defining the molecular features of radiation-induced glioma: A systematic review and meta-analysis. Neuro-Oncol. Adv. 2021;3:vdab109. doi: 10.1093/noajnl/vdab109. PubMed DOI PMC