Invading plants remain undetected in a lag phase while they explore suitable climates
Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
I 4011
Austrian Science Fund FWF - Austria
264740629
Deutsche Forschungsgemeinschaft (German Research Foundation)
67985939
Academy of Sciences of the Czech Republic | Ústav Organické Chemie a Biochemie, Akademie Věd České Republiky (Institute of Organic Chemistry and Biochemistry, CAS)
67985939
Academy of Sciences of the Czech Republic | Parazitologický ústav, Akademie Věd České Republiky (Institute of Parasitology AS CR)
PubMed
38332027
DOI
10.1038/s41559-023-02313-4
PII: 10.1038/s41559-023-02313-4
Knihovny.cz E-zdroje
- MeSH
- fylogeneze MeSH
- klimatické změny * MeSH
- rostliny MeSH
- tropické klima MeSH
- zavlečené druhy * MeSH
- Publikační typ
- časopisecké články MeSH
Successful alien species may experience a period of quiescence, known as the lag phase, before becoming invasive and widespread. The existence of lags introduces severe uncertainty in risk analyses of aliens as the present state of species is a poor predictor of future distributions, invasion success and impact. Predicting a species' ability to invade and pose negative impacts requires a quantitative understanding of the commonality and magnitude of lags, environmental factors and mechanisms likely to terminate lag. Using herbarium and climate data, we analysed over 5,700 time series (species × regions) in 3,505 naturalized plant species from nine regions in temperate and tropical climates to quantify lags and test whether there have been shifts in the species' climatic space during the transition from the lag phase to the expansion phase. Lags were identified in 35% of the assessed invasion events. We detected phylogenetic signals for lag phases in temperate climate regions and that annual self-fertilizing species were less likely to experience lags. Where lags existed, they had an average length of 40 years and a maximum of 320 years. Lengthy lags (>100 years) were more likely to occur in perennial plants and less frequent in self-pollinating species. For 98% of the species with a lag phase, the climate spaces sampled during the lag period differed from those in the expansion phase based on the assessment of centroid shifts or degree of climate space overlap. Our results highlight the importance of functional traits for the onset of the expansion phase and suggest that climate discovery may play a role in terminating the lag phase. However, other possibilities, such as sampling issues and climate niche shifts, cannot be ruled out.
Campus Institute Data Science Göttingen Germany
Centre of Biodiversity and Sustainable Land Use University of Göttingen Göttingen Germany
Department of Biodiversity Macroecology and Biogeography University of Göttingen Göttingen Germany
Department of Ecology Faculty of Science Charles University Prague Czech Republic
Department of Plant Sciences University of California Davis Davis CA USA
Ecology Department of Biology University of Konstanz Konstanz Germany
School of BioSciences Faculty of Science University of Melbourne Parkville Victoria Australia
Zobrazit více v PubMed
Pyšek, P. & Richardson, D. M. Invasive species, environmental change and management, and health. Annu. Rev. Environ. Resour. 35, 25–55 (2010). DOI
Simberloff, D. et al. Impacts of biological invasions: what’s what and the way forward. Trends Ecol. Evol. 28, 58–66 (2013). PubMed DOI
Hulme, P. E. Trade, transport and trouble: managing invasive species pathways in an era of globalization. J. Appl. Ecol. 46, 10–18 (2009). DOI
Pimentel, D., Zuniga, R. & Morrison, D. Update on the environmental and economic costs associated with alien-invasive species in the United States. Ecol. Econ. 52, 273–288 (2005). DOI
Kowarik, I. in Plant Invasions: General Aspects and Special Problems, (eds Pysek, P. et al.) 15–38 (SPB Academic Publishing, Amsterdam, 1995).
Hawks, J. Lag times of biological invasions. John Hawks Weblog http://johnhawks.net/weblog/topics/evolution/invasive/lag-time-invasive-species-2010.html (2010).
Crooks, J. A. Lag times and exotic species: the ecology and management of biological invasions in slow-motion. Ecoscience 12, 316–329 (2005). DOI
Pysek, P. & Prach, K. Plant invasions and the role of riparian habitats: a comparison of four species alien to Central Europe. J. Biogeogr. 20, 413–420 (1993). DOI
Cunningham, D. C., Woldendorp, G., Burgess, M. B. & Barry, S. C. Prioritising Sleeper Weeds for Eradication: Selection of Species Based on Potential Impacts on Agriculture and Feasibility of Eradication (Bureau of Rural Sciences, 2003).
Simberloff, D. Non-natives: 141 scientists object. Nature 475, 36 (2011). PubMed DOI
Seabloom, E. W. et al. Human impacts, plant invasion, and imperiled plant species in California. Ecol. Appl. 16, 1338–1350 (2006). PubMed DOI
Essl, F. et al. Socioeconomic legacy yields an invasion debt. Proc. Natl Acad. Sci. USA 108, 203–207 (2011). PubMed DOI
van Kleunen, M., Bossdorf, O. & Dawson, W. The ecology and evolution of alien plants. Annu. Rev. Ecol. Evol. Syst. 49, 25–47 (2018). DOI
Duncan, R. P. Time lags and the invasion debt in plant naturalisations. Ecol. Lett. 24, 1363–1374 (2021). PubMed DOI
Pyšek, P. & Richardson, D. M. The biogeography of naturalization in alien plants. J. Biogeogr. 33, 2040–2050 (2006). DOI
Milbau, A. & Stout, J. C. Factors associated with alien plants transitioning from casual, to naturalized, to invasive. Conserv. Biol. 22, 308–317 (2008). PubMed DOI
Marsico, T. D. et al. Underutilized resources for studying the evolution of invasive species during their introduction, establishment, and lag phases. Evol. Appl. 3, 203–219 (2010). PubMed DOI PMC
Lososová, Z. et al. Alien plants invade more phylogenetically clustered community types and cause even stronger clustering. Glob. Ecol. Biogeogr. 24, 786–794 (2015). DOI
Colautti, R. I. & Lau, J. A. Contemporary evolution during invasion: evidence for differentiation, natural selection, and local adaptation. Mol. Ecol. 24, 1999–2017 (2015). PubMed DOI
Wangen, S. R. & Webster, C. R. Potential for multiple lag phases during biotic invasions: reconstructing an invasion of the exotic tree Acer platanoides: lag phases and biotic invasions. J. Appl. Ecol. 43, 258–268 (2006). DOI
Colautti, R. I. & Barrett, S. C. H. Rapid adaptation to climate facilitates range expansion of an invasive plant. Science 342, 364–366 (2013). PubMed DOI
Chapman, D. S., Scalone, R., Štefanić, E. & Bullock, J. M. Mechanistic species distribution modeling reveals a niche shift during invasion. Ecology 98, 1671–1680 (2017). PubMed DOI
Lockwood, J. L., Cassey, P. & Blackburn, T. The role of propagule pressure in explaining species invasions. Trends Ecol. Evol. 20, 223–228 (2005). PubMed DOI
Meza Torres, E. I., Cerne, B., Ulke, A. G. & Morbelli, M. A. Distribution of Ophioglossum reticulatum L. in South America. A case of long-distance jump dispersal? Int. J. Biometeorol. 59, 137–150 (2014). PubMed DOI
Rödder, D. Human footprint, facilitated jump dispersal, and the potential distribution of the invasive Eleutherodactylus johnstonei Barbour 1914 (Anura Eleutherodactylidae). Trop. Zool. 22, 205–217 (2009).
Geerts, S. et al. The absence of fire can cause a lag phase: The invasion dynamics of Banksia ericifolia (Proteaceae). Austral Ecol. 38, 931–941 (2013). DOI
McClaran, M. P. & Anable, M. E. Spread of introduced Lehmann lovegrass along a grazing intensity gradient. J. Appl. Ecol. 29, 92–98 (1992). DOI
Dawson, W., Burslem, D. F. R. P. & Hulme, P. E. Factors explaining alien plant invasion success in a tropical ecosystem differ at each stage of invasion. J. Ecol. 97, 657–665 (2009). DOI
Pyšek, P. et al. Naturalized alien flora of the world: species diversity, taxonomic and phylogenetic patterns, geographic distribution and global hotspots of plant invasion. Preslia 89, 203–274 (2017). DOI
Van Kleunen, M., Dawson, W., Schlaepfer, D., Jeschke, J. M. & Fischer, M. Are invaders different? A conceptual framework of comparative approaches for assessing determinants of invasiveness: comparisons on determinants of invasiveness. Ecol. Lett. 13, 947–958 (2010). PubMed DOI
Soberón, J. Grinnellian and Eltonian niches and geographic distributions of species. Ecol. Lett. 10, 1115–1123 (2007). PubMed DOI
Peterson, A. T. et al. Ecological Niches and Geographic Distributions (MPB-49) (Princeton Univ. Press, 2011).
Soberón, J. M. Niche and area of distribution modeling: a population ecology perspective. Ecography 33, 159–167 (2010). DOI
Moore, D. A., Overton, M. W., Chebel, R. C., Truscott, M. L. & BonDurant, R. H. Evaluation of factors that affect embryonic loss in dairy cattle. J. Am. Vet. Med. Assoc. 226, 1112–1118 (2005). PubMed DOI
Guisan, A., Petitpierre, B., Broennimann, O., Daehler, C. & Kueffer, C. Unifying niche shift studies: insights from biological invasions. Trends Ecol. Evol. 29, 260–269 (2014). PubMed DOI
Stralberg, D. et al. Re-shuffling of species with climate disruption: a no-analog future for California birds? PLoS ONE 4, e6825 (2009). PubMed DOI PMC
Broennimann, O. et al. Evidence of climatic niche shift during biological invasion. Ecol. Lett. 10, 701–709 (2007). PubMed DOI
Petitpierre, B. et al. Climatic niche shifts are rare among terrestrial plant invaders. Science 335, 1344–1348 (2012). PubMed DOI
Richardson, D. M. & Pyšek, P. Naturalization of introduced plants: ecological drivers of biogeographical patterns. N. Phytol. 196, 383–396 (2012). DOI
Keitt, T. H., Lewis, M. A. & Holt, R. D. Allee effects, invasion pinning, and species’ borders. Am. Nat. 157, 203–216 (2001). PubMed DOI
Hyndman, R. J., Mesgaran, M. B. & Cousens, R. D. Statistical issues with using herbarium data for the estimation of invasion lag-phases. Biol. Invasions 17, 3371–3381 (2015). DOI
Mesgaran, M. B., Cousens, R. D. & Webber, B. L. Here be dragons: a tool for quantifying novelty due to covariate range and correlation change when projecting species distribution models. Divers. Distrib. 20, 1147–1159 (2014). DOI
Gallagher, R. V., Randall, R. P. & Leishman, M. R. Trait differences between naturalized and invasive plant species independent of residence time and phylogeny. Conserv. Biol. https://doi.org/10.1111/cobi.12399 (2014).
Larkin, D. J. Lengths and correlates of lag phases in upper-Midwest plant invasions. Biol. Invasions 14, 827–838 (2012). DOI
Moodley, D., Geerts, S., Richardson, D. M. & Wilson, J. R. U. Different traits determine introduction, naturalization and invasion success in woody plants: Proteaceae as a test case. PLoS ONE 8, e75078 (2013). PubMed DOI PMC
Godoy, O., Valladares, F. & Castro-Díez, P. The relative importance for plant invasiveness of trait means, and their plasticity and integration in a multivariate framework. N. Phytol. 195, 912–922 (2012). DOI
Aikio, S., Duncan, R. P. & Hulme, P. E. Lag-phases in alien plant invasions: separating the facts from the artefacts. Oikos 119, 370–378 (2010). DOI
Daehler, C. C. Short lag times for invasive tropical plants: evidence from experimental plantings in Hawai’i. PLoS ONE 4, e4462 (2009). PubMed DOI PMC
Hewitt, J. E., Norkko, J., Kauppi, L., Villnäs, A. & Norkko, A. Species and functional trait turnover in response to broad‐scale change and an invasive species. Ecosphere 7, e01289 (2016). DOI
Funk, J. L., Standish, R. J., Stock, W. D. & Valladares, F. Plant functional traits of dominant native and invasive species in Mediterranean-climate ecosystems. Ecology 97, 75–83 (2016). PubMed DOI
Küster, E. C., Kühn, I., Bruelheide, H. & Klotz, S. Trait interactions help explain plant invasion success in the German flora. J. Ecol. 96, 860–868 (2008). DOI
Moles, A. T., Gruber, M. A. M. & Bonser, S. P. A new framework for predicting invasive plant species. J. Ecol. 96, 13–17 (2007). DOI
Blomberg, S. P., Garland, T. & Ives, A. R. Testing for phylogenetic signal in comparative data: behavioral traits are more labile. Evolution 57, 717–745 (2003). PubMed
Kembel, S. W. et al. Picante: R tools for integrating phylogenies and ecology. Bioinformatics 26, 1463–1464 (2010). PubMed DOI
Kriticos, D. J. et al. CliMond: global high-resolution historical and future scenario climate surfaces for bioclimatic modelling. Methods Ecol. Evol. 3, 53–64 (2012). DOI
Pyšek, P., Jarošík, V., Pergl, J. & Wild, J. Colonization of high altitudes by alien plants over the last two centuries. Proc. Natl Acad. Sci. USA 108, 439–440 (2011). PubMed DOI
Walther, G.-R. et al. Alien species in a warmer world: risks and opportunities. Trends Ecol. Evol. 24, 686–693 (2009). PubMed DOI
Kriticos, D. J., Sutherst, R. W., Brown, J. R., Adkins, S. W. & Maywald, G. F. Climate change and the potential distribution of an invasive alien plant: Acacia nilotica ssp. indica in Australia. J. Appl. Ecol. 40, 111–124 (2003). DOI
Zachariah Atwater, D. & Barney, J. N. Climatic niche shifts in 815 introduced plant species affect their predicted distributions. Glob. Ecol. Biogeogr. 30, 1671–1684 (2021). DOI
Beaumont, L. Evidence for climate niche and biome shifts between native and novel ranges in plant species introduced to Australia. J. Ecol. 98, 790–799 (2010). DOI
Merow, C., Bois, S. T., Allen, J. M., Xie, Y. & Silander, J. A. Jr. Climate change both facilitates and inhibits invasive plant ranges in New England. Proc. Natl Acad. Sci. USA 114, E3276–E3284 (2017). PubMed DOI PMC
Ehler, L. E. Invasion biology and biological control. Biol. Control 13, 127–133 (1998). DOI
Richardson, D. M., Allsopp, N., D’Antonio, C. M., Milton, S. J. & Rejmánek, M. Plant invasions—the role of mutualisms. Biol. Rev. Camb. Philos. Soc. 75, 65–93 (2000). PubMed
Arim, M., Abades, S. R., Neill, P. E., Lima, M. & Marquet, P. A. Spread dynamics of invasive species. Proc. Natl Acad. Sci. USA 103, 374–378 (2006). PubMed DOI
Randall, R. P. The Introduced Flora of Australia and Its Weed Status (2007) (CRC for Australian Weed Management Department of Agriculture and Food, Western Australia, accessed May 2016); https://www.une.edu.au/__data/assets/pdf_file/0019/52372/2007.-The-introduced-flora-of-Australia-and-its-weed-status.pdf
Dodd, A. J., Burgman, M. A., McCarthy, M. A. & Ainsworth, N. The changing patterns of plant naturalization in Australia. Divers. Distrib. 21, 1038–1050 (2015). DOI
Council of Heads of Australasian Herbaria (The Australasian Virtual Herbarium, accessed 2016); https://avh.chah.org.au/
New Zealand National Herbarium Network (The New Zealand Virtual Herbarium, accessed 2016); www.virtualherbarium.org.nz
van Kleunen, M. et al. Global exchange and accumulation of non-native plants. Nature 525, 100–103 (2015). PubMed DOI
GBIF Secretariat (The Global Biodiversity Information Facility, accessed 2019); https://www.gbif.org
Delisle, F., Lavoie, C., Jean, M. & Lachance, D. Reconstructing the spread of invasive plants: taking into account biases associated with herbarium specimens: invasive plants and herbarium specimens. J. Biogeogr. 30, 1033–1042 (2003). DOI
Pyšek, P., Sádlo, J., Mandák, B. & Jarosík, V. Czech alien flora and the historical pattern of its formation: what came first to Central Europe? Oecologia 135, 122–130 (2003). PubMed DOI
Williamson, M., Pyšek, P., Jarošík, V. & Prach, K. On the rates and patterns of spread of alien plants in the Czech Republic, Britain, and Ireland. Ecoscience 12, 424–433 (2005). DOI
Kattge, J. et al. TRY plant trait database—enhanced coverage and open access. Glob. Chang. Biol. 26, 119–188 (2020). PubMed DOI
Parr, C. S. et al. The Encyclopedia of Life v2: providing global access to knowledge about life on Earth. Biodivers. Data J. 2, e1079 (2014). DOI
Klotz, S., Kühn, I. & Durka, W. BIOFLOR. Eine Datenbank mit Biologischökologischen merkmalen zur Flora von Deutschland. (Bundesamt für Naturschutz, Bonn, 2002).
Fitter, A. H. & Peat, H. J. The ecological flora database. J. Ecol. 82, 415–425 (1994). DOI
National Plant Data Team PLANTS Database 2006 (USDA, accessed June 2016); http://plants.usda.gov
Hojsgaard, D., Klatt, S., Baier, R., Carman, J. G. & Hörandl, E. Taxonomy and biogeography of apomixis in angiosperms and associated biodiversity characteristics. CRC Crit. Rev. Plant Sci. 33, 414–427 (2014). PubMed DOI PMC
Barney, J. N. North American history of two invasive plant species: phytogeographic distribution, dispersal vectors, and multiple introductions. Biol. Invasions 8, 703–717 (2006). DOI
Mesgaran, M. B. et al. Importance of distribution function selection for hydrothermal time models of seed germination. Weed Res. 53, 89–101 (2013). DOI
Haque, M. M., Nipperess, D., Baumgartner, J. & Beaumont, L. J. A journey through time: exploring temporal patterns amongst digitized plant specimens from Australia. Syst. Biodivers. 16, 604–613 (2018). DOI
Cousens, R. & Mortimer, M. Dynamics of weed populations 346 (Cambridge Univ. Press, 1995); https://doi.org/10.1017/CBO9780511608629
Dodd, A. J., McCarthy, M. A., Ainsworth, N. & Burgman, M. A. Identifying hotspots of alien plant naturalisation in Australia: approaches and predictions. Biol. Invasions 18, 631–645 (2016). DOI
Mahalanobis, P. C. On the generalised distance in statistics. Proc. Natl Acad. Sci. India 2, 49–55 (1936).
R Core Team R: a language and environment for statistical computing (R Foundation for Statistical Computing, 2019).
MATLAB v.7.10.0 (R2020a) (MathWorks, 2020).
Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G. & Jarvis, A. Very high resolution interpolated climate surfaces for global land areas. Int. J. Climatol. 25, 1965–1978 (2005). DOI
Webber, B. L. et al. Modelling horses for novel climate courses: insights from projecting potential distributions of native and alien Australian acacias with correlative and mechanistic models: modelling Australian acacias. Divers. Distrib. 17, 978–1000 (2011). DOI
Nuñez, M. A. & Medley, K. A. Pine invasions: climate predicts invasion success; something else predicts failure. Divers. Distrib. 17, 703–713 (2011). DOI
Hijmans, R. J. & Graham, C. H. The ability of climate envelope models to predict the effect of climate change on species distributions. Glob. Chang. Biol. 12, 2272–2281 (2006). DOI
Parravicini, V., Azzurro, E., Kulbicki, M. & Belmaker, J. Niche shift can impair the ability to predict invasion risk in the marine realm: an illustration using Mediterranean fish invaders. Ecol. Lett. 18, 246–253 (2015). PubMed DOI
Gallagher, R. V., Beaumont, L. J., Hughes, L. & Leishman, M. R. Evidence for climatic niche and biome shifts between native and novel ranges in plant species introduced to Australia. J. Ecol. 98, 790–799 (2010). DOI
Felsenstein, J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39, 783–791 (1985). PubMed DOI
Webb, C. O., Ackerly, D. D., McPeek, M. A. & Donoghue, M. J. Phylogenies and community ecology. Annu. Rev. Ecol. Syst. 33, 475–505 (2002). DOI
Chamberlain S. brranching: Fetch 'Phylogenies' from Many Sources. (R package, 2023).
Garland, T. Jr & Ives, A. R. Using the past to predict the present: confidence intervals for regression equations in phylogenetic comparative methods. Am. Nat. 155, 346–364 (2000). PubMed DOI
Paradis, E., Claude, J. & Strimmer, K. APE: analyses of phylogenetics and evolution in R language. Bioinformatics 20, 289–290 (2004). PubMed DOI
Cadotte, M. W., Hamilton, M. A. & Murray, B. R. Phylogenetic relatedness and plant invader success across two spatial scales. Divers. Distrib. 15, 481–488 (2009). DOI
Paradis, E. & Claude, J. Analysis of comparative data using generalized estimating equations. J. Theor. Biol. 218, 175–185 (2002). PubMed DOI
van Kleunen, M. et al. The global naturalized alien flora (GloNAF) database. Ecology https://doi.org/10.1002/ecy.2542 (2018).