Connectome architecture shapes large-scale cortical alterations in schizophrenia: a worldwide ENIGMA study
Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
R01 MH118695
NIMH NIH HHS - United States
R01 NS114628
NINDS NIH HHS - United States
R21 MH097196
NIMH NIH HHS - United States
R01 EB015611
NIBIB NIH HHS - United States
RF1 NS114628
NINDS NIH HHS - United States
RF1 MH123163
NIMH NIH HHS - United States
R01 AA012207
NIAAA NIH HHS - United States
S10 OD023696
NIH HHS - United States
I01 CX000227
CSRD VA - United States
R01 MH112583
NIMH NIH HHS - United States
PubMed
38336840
PubMed Central
PMC11371638
DOI
10.1038/s41380-024-02442-7
PII: 10.1038/s41380-024-02442-7
Knihovny.cz E-zdroje
- MeSH
- dospělí MeSH
- konektom * metody MeSH
- lidé středního věku MeSH
- lidé MeSH
- magnetická rezonanční tomografie * metody MeSH
- mladý dospělý MeSH
- mozek patologie patofyziologie MeSH
- mozková kůra patologie patofyziologie MeSH
- nervová síť patologie patofyziologie diagnostické zobrazování MeSH
- nervové dráhy patofyziologie patologie MeSH
- schizofrenie * patologie patofyziologie MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mladý dospělý MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
Schizophrenia is a prototypical network disorder with widespread brain-morphological alterations, yet it remains unclear whether these distributed alterations robustly reflect the underlying network layout. We tested whether large-scale structural alterations in schizophrenia relate to normative structural and functional connectome architecture, and systematically evaluated robustness and generalizability of these network-level alterations. Leveraging anatomical MRI scans from 2439 adults with schizophrenia and 2867 healthy controls from 26 ENIGMA sites and normative data from the Human Connectome Project (n = 207), we evaluated structural alterations of schizophrenia against two network susceptibility models: (i) hub vulnerability, which examines associations between regional network centrality and magnitude of disease-related alterations; (ii) epicenter mapping, which identifies regions whose typical connectivity profile most closely resembles the disease-related morphological alterations. To assess generalizability and specificity, we contextualized the influence of site, disease stages, and individual clinical factors and compared network associations of schizophrenia with that found in affective disorders. Our findings show schizophrenia-related cortical thinning is spatially associated with functional and structural hubs, suggesting that highly interconnected regions are more vulnerable to morphological alterations. Predominantly temporo-paralimbic and frontal regions emerged as epicenters with connectivity profiles linked to schizophrenia's alteration patterns. Findings were robust across sites, disease stages, and related to individual symptoms. Moreover, transdiagnostic comparisons revealed overlapping epicenters in schizophrenia and bipolar, but not major depressive disorder, suggestive of a pathophysiological continuity within the schizophrenia-bipolar-spectrum. In sum, cortical alterations over the course of schizophrenia robustly follow brain network architecture, emphasizing marked hub susceptibility and temporo-frontal epicenters at both the level of the group and the individual. Subtle variations of epicenters across disease stages suggest interacting pathological processes, while associations with patient-specific symptoms support additional inter-individual variability of hub vulnerability and epicenters in schizophrenia. Our work outlines potential pathways to better understand macroscale structural alterations, and inter- individual variability in schizophrenia.
Department of child and adolescent psychiatry TU Dresden Dresden Germany
Department of Pediatric Neurology University of California Irvine Irvine CA USA
Department of Psychiatry and Behavioral Health the Ohio State University Columbus OH USA
Department of Psychiatry and Human Behavior University of California Irvine Irvine CA USA
Department of Psychiatry and Mental Health University of Cape Town Cape Town South Africa
Department of Psychiatry and Psychotherapy Philipps University Marburg Marburg Germany
Department of Psychiatry Harvard Medical School Boston MA USA
Department of Psychiatry Pontificia Universidad Católica de Chile Santiago Chile
Department of Psychiatry University of Lübeck Lübeck Germany
Department of Psychiatry University of Marburg Rudolf Bultmann Str 8 35039 Marburg Germany
Division of Adult Psychiatry Department of Psychiatry Geneva University Hospitals Geneva Switzerland
Faculty of Medicine University of Queensland St Lucia QLD Australia
FIDMAG Germanes Hospitalàries Research Foundation and CIBERSAM ISCIII Barcelona Spain
Forschungszentrum Jülich Jülich Germany
Hospital Universitario Virgen del Rocío IBiS CSIC Universidad de Sevilla Seville Spain
Hunter Medical Research Institute Newcastle NSW Australia
Institut d'Investigacions Biomèdiques August Pi i Sunyer Barcelona Spain
Institute for Translational Psychiatry University of Münster Münster Germany
Max Planck Institute for Cognitive and Brain Sciences Leipzig Germany
McGill University Montreal Neurological Institute Montreal QC Canada
Mental Health Research Center Moscow Russian Federation
Minneapolis VA Health Care System Minneapolis MN USA
National Institute of Mental Health Topolova 748 250 67 Klecany Czech Republic
Queensland Brain Institute The University of Queensland St Lucia QLD Australia
Santa Lucia Foundation IRCCS Santa Lucia Rome Italy
School of Biomedical Science and Pharmacy University of Newcastle Newcastle NSW Australia
School of Clinical Medicine Discipline of Psychiatry UNSW Sydney Sydney NSW Australia
School of Medicine and Public Health University of Newcastle Newcastle NSW Australia
School of Medicine and Public Health University of Newcastle Newcastle NSW USA
School of Psychological Sciences University of Newcastle Newcastle NSW Australia
University of Basel Department of Psychiatry Basel Switzerland
University of Minnesota Department of Psychiatry and Behavioral Sciences Minneapolis MN USA
University of Minnesota Department of Psychology Minneapolis MN USA
University of Naples Department of Neuroscience Naples Italy
University of Pennsylvania Perelman School of Medicine Philadelphia PA USA
Zobrazit více v PubMed
Fornito A, Zalesky A, Breakspear M. The connectomics of brain disorders. Nat Rev Neurosci. 2015;16:159–72. 10.1038/nrn3901 PubMed DOI
Hansen JY, Shafiei G, Vogel JW, Smart K, Bearden CE, Hoogman M, et al. Local molecular and global connectomic contributions to cross-disorder cortical abnormalities. Nat Commun. 2022;13:1–17. 10.1038/s41467-022-32420-y PubMed DOI PMC
Repple J, Gruber M, Mauritz M, de Lange SC, Winter NR, Opel N, et al. Shared and specific patterns of structural brain connectivity across affective and psychotic disorders. Biol Psychiatry. 2022;93:178–86. 10.1016/j.biopsych.2022.05.031 PubMed DOI
van den Heuvel MP, Sporns O. A cross-disorder connectome landscape of brain dysconnectivity. Nat Rev Neurosci. 2019;20:435–46. 10.1038/s41583-019-0177-6 PubMed DOI PMC
van Erp TGM, Walton E, Hibar DP, Schmaal L, Jiang W, Glahn DC, et al. Cortical brain abnormalities in 4474 individuals with schizophrenia and 5098 control subjects via the Enhancing Neuro Imaging Genetics Through Meta Analysis (ENIGMA) Consortium. Biol Psychiatry. 2018;84:644–54. 10.1016/j.biopsych.2018.04.023 PubMed DOI PMC
Van Erp TGM, Hibar DP, Rasmussen JM, Glahn DC, Pearlson GD, Andreassen OA, et al. Subcortical brain volume abnormalities in 2028 individuals with schizophrenia and 2540 healthy controls via the ENIGMA consortium. Mol Psychiatry. 2016;21:547–53. 10.1038/mp.2015.63 PubMed DOI PMC
Hibar DP, Westlye LT, Doan NT, Jahanshad N, Cheung JW, Ching CRK, et al. Cortical abnormalities in bipolar disorder: An MRI analysis of 6503 individuals from the ENIGMA Bipolar Disorder Working Group. Mol Psychiatry. 2018;23:932–42. 10.1038/mp.2017.73 PubMed DOI PMC
Hibar DP, Westlye LT, Van Erp TGM, Rasmussen J, Leonardo CD, Faskowitz J, et al. Subcortical volumetric abnormalities in bipolar disorder. Mol Psychiatry. 2016;21:1710–6. 10.1038/mp.2015.227 PubMed DOI PMC
Schmaal L, Hibar DP, Sämann PG, Hall GB, Baune BT, Jahanshad N, et al. Cortical abnormalities in adults and adolescents with major depression based on brain scans from 20 cohorts worldwide in the ENIGMA Major Depressive Disorder Working Group. Mol Psychiatry. 2017;22:900–9. 10.1038/mp.2016.60 PubMed DOI PMC
Schmaal L, Veltman DJ, Van Erp TGM, Smann PG, Frodl T, Jahanshad N, et al. Subcortical brain alterations in major depressive disorder: findings from the ENIGMA Major Depressive Disorder working group. Mol Psychiatry. 2016;21:806–12. 10.1038/mp.2015.69 PubMed DOI PMC
Hettwer MD, Larivière S, Park BY, van den Heuvel OA, Schmaal L, Andreassen OA, et al. Coordinated cortical thickness alterations across six neurodevelopmental and psychiatric disorders. Nat Commun. 2022;13:1–14. 10.1038/s41467-022-34367-6 PubMed DOI PMC
Park BY, Kebets V, Larivière S, Hettwer MD, Paquola C, van Rooij D, et al. Multiscale neural gradients reflect transdiagnostic effects of major psychiatric conditions on cortical morphology. Commun Biol. 2022;5:1–14. 10.1038/s42003-022-03963-z PubMed DOI PMC
Cropley VL, Klauser P, Lenroot RK, Bruggemann J, Sundram S, Bousman C, et al. Accelerated gray and white matter deterioration with age in schizophrenia. Am J Psychiatry. 2017;174:286–95. 10.1176/appi.ajp.2016.16050610 PubMed DOI
Shafiei G, Markello RD, Makowski C, Talpalaru A, Kirschner M, Devenyi GA, et al. Spatial patterning of tissue volume loss in schizophrenia reflects brain network architecture. Biol Psychiatry. 2020;87:727–35. 10.1016/j.biopsych.2019.09.031 PubMed DOI
Wannan CMJ, Cropley VL, Chakravarty MM, Bousman C, Ganella EP, Bruggemann JM, et al. Evidence for network-based cortical thickness reductions in schizophrenia. Am J Psychiatry. 2019;176:552–63. 10.1176/appi.ajp.2019.18040380 PubMed DOI
Feeney DM, Baron JC. Diaschisis. Stroke. 1986;17:817–30. 10.1161/01.STR.17.5.817 PubMed DOI
Finger S, Koehler PJ, Jagella C. The Monakow concept of diaschisis: origins and perspectives. Arch Neurol. 2004;61:283–8. 10.1001/archneur.61.2.283 PubMed DOI
Kirschner M, Shafiei G, Markello RD, Makowski C, Talpalaru A, Hodzic-Santor B, et al. Latent clinical-anatomical dimensions of schizophrenia. Schizophr Bull. 2020;46:1426–38. 10.1093/schbul/sbaa097 PubMed DOI PMC
Hagmann P, Cammoun L, Gigandet X, Meuli R, Van Honey CJ, et al. Mapping the structural core of human cerebral cortex. PLoS Biol. 2008;6:e159. 10.1371/journal.pbio.0060159 PubMed DOI PMC
Buckner RL, Sepulcre J, Talukdar T, Krienen FM, Liu H, Hedden T, et al. Cortical hubs revealed by intrinsic functional connectivity: mapping, assessment of stability, and relation to Alzheimer’s disease. J Neurosci. 2009;29:1860. 10.1523/JNEUROSCI.5062-08.2009 PubMed DOI PMC
Avena-Koenigsberger A, Misic B, Sporns O. Communication dynamics in complex brain networks. Nat Rev Neurosci. 2017;19:17–33. 10.1038/nrn.2017.149 PubMed DOI
Zhou J, Gennatas ED, Kramer JH, Miller BL, Seeley WW. Predicting regional neurodegeneration from the healthy brain functional connectome. Neuron. 2012;73:1216. 10.1016/j.neuron.2012.03.004 PubMed DOI PMC
Zheng YQ, Zhang Y, Yau Y, Zeighami Y, Larcher K, Misic B, et al. Local vulnerability and global connectivity jointly shape neurodegenerative disease propagation. PLoS Biol. 2019;17:e3000495. 10.1371/journal.pbio.3000495 PubMed DOI PMC
de Haan W, Mott K, van Straaten ECW, Scheltens P, Stam CJ. Activity dependent degeneration explains hub vulnerability in Alzheimer’s disease. PLoS Comput Biol. 2012;8:e1002582. 10.1371/journal.pcbi.1002582 PubMed DOI PMC
Seeley WW, Crawford RK, Zhou J, Miller BL, Greicius MD. Neurodegenerative diseases target large-scale human brain networks. Neuron. 2009;62:42. 10.1016/j.neuron.2009.03.024 PubMed DOI PMC
Larivière S, Rodríguez-Cruces R, Royer J, Caligiuri ME, Gambardella A, Concha L, et al. Network-based atrophy modeling in the common epilepsies: a worldwide ENIGMA study. Sci Adv. 2020;6:6457–75.10.1126/sciadv.abc6457 PubMed DOI PMC
Shafiei G, Bazinet V, Dadar M, Manera AL, Collins DL, Dagher A, et al. Network structure and transcriptomic vulnerability shape atrophy in frontotemporal dementia. Brain. 2023;146:321–36. 10.1093/brain/awac069 PubMed DOI PMC
Zeighami Y, Ulla M, Iturria-Medina Y, Dadar M, Zhang Y, Larcher KMH, et al. Network structure of brain atrophy in de novo Parkinson’s disease. Elife. 2015;4:e08440. 10.7554/eLife.08440 PubMed DOI PMC
Yau Y, Zeighami Y, Baker TE, Larcher K, Vainik U, Dadar M, et al. Network connectivity determines cortical thinning in early Parkinson’s disease progression. Nat Commun. 2018;9:1–10. 10.1038/s41467-017-02416-0 PubMed DOI PMC
Vogel JW, Young AL, Oxtoby NP, Smith R, Ossenkoppele R, Strandberg OT, et al. Four distinct trajectories of tau deposition identified in Alzheimer’s disease. Nat Med. 2021;27:871–81. 10.1038/s41591-021-01309-6 PubMed DOI PMC
Marek S, Tervo-Clemmens B, Calabro FJ, Montez DF, Kay BP, Hatoum AS, et al. Reproducible brain-wide association studies require thousands of individuals. Nature. 2022;603:654–60. 10.1038/s41586-022-04492-9 PubMed DOI PMC
Larivière S, Paquola C, Park BY, Royer J, Wang Y, Benkarim O, et al. The ENIGMA Toolbox: multiscale neural contextualization of multisite neuroimaging datasets. Nat Methods. 2021;18:698–700. 10.1038/s41592-021-01186-4 PubMed DOI PMC
Thompson PM, Jahanshad N, Ching CRK, Salminen LE, Thomopoulos SI, Bright J, et al. ENIGMA and global neuroscience: A decade of large-scale studies of the brain in health and disease across more than 40 countries. Transl Psychiatry. 2020;10:1–28. 10.1038/s41398-020-0705-1 PubMed DOI PMC
Elam JS, Glasser MF, Harms MP, Sotiropoulos SN, Andersson JLR, Burgess GC, et al. The Human Connectome Project: a retrospective. Neuroimage. 2021;244:118543. 10.1016/j.neuroimage.2021.118543 PubMed DOI PMC
van Os J, Kapur S. Schizophrenia. Lancet. 2009;374:635–45. 10.1016/S0140-6736(09)60995-8 PubMed DOI
Patel Y, Parker N, Shin J, Howard D, French L, Thomopoulos SI, et al. Virtual histology of cortical thickness and shared neurobiology in 6 psychiatric disorders. JAMA Psychiatry. 2021;78:47–63. 10.1001/jamapsychiatry.2020.2694 PubMed DOI PMC
Opel N, Goltermann J, Hermesdorf M, Berger K, Baune BT, Dannlowski U. Cross-disorder analysis of brain structural abnormalities in six major psychiatric disorders: a secondary analysis of mega- and meta-analytical findings from the ENIGMA Consortium. Biol Psychiatry. 2020;88:678–86. 10.1016/j.biopsych.2020.04.027 PubMed DOI
Lee PH, Anttila V, Won H, Feng YCA, Rosenthal J, Zhu Z, et al. Genomic relationships, novel loci, and pleiotropic mechanisms across eight psychiatric disorders. Cell. 2019;179:1469–1482.e11. 10.1016/j.cell.2019.11.020 PubMed DOI PMC
Radonjić N V, Hess JL, Rovira P, Andreassen O, Buitelaar JK, Ching CRK, et al. Structural brain imaging studies offer clues about the effects of the shared genetic etiology among neuropsychiatric disorders. Mol Psychiatry. 2021;26:2101–10. 10.1038/s41380-020-01002-z PubMed DOI PMC
Anttila V, Bulik-Sullivan B, Finucane HK, Walters RK, Bras J, Duncan L, et al. Analysis of shared heritability in common disorders of the brain. Science. 2018;360:eaap8757. 10.1126/science.aap8757 PubMed DOI PMC
Ivleva EI, Clementz BA, Dutcher AM, Arnold SJM, Jeon-Slaughter H, Aslan S, et al. Brain structure biomarkers in the psychosis biotypes: findings from the bipolar-schizophrenia network for intermediate phenotypes. Biol Psychiatry. 2017;82:26–39. 10.1016/j.biopsych.2016.08.030 PubMed DOI PMC
Clementz BA, Sweeney JA, Hamm JP, Ivleva EI, Ethridge LE, Pearlson GD, et al. Identification of distinct psychosis biotypes using brain-based biomarkers. Am J Psychiatry. 2016;173:373–84. 10.1176/appi.ajp.2015.14091200 PubMed DOI PMC
Fischl B. FreeSurfer. NeuroImage. 2012;62:774–81. 10.1016/j.neuroimage.2012.01.021 PubMed DOI PMC
Fischl B, Salat DH, Busa E, Albert M, Dieterich M, Haselgrove C, et al. Whole brain segmentation: automated labeling of neuroanatomical structures in the human brain. Neuron. 2002;33:341–55. 10.1016/S0896-6273(02)00569-X PubMed DOI
Desikan RS, Ségonne F, Fischl B, Quinn BT, Dickerson BC, Blacker D, et al. An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest. Neuroimage. 2006;31:968–80. 10.1016/j.neuroimage.2006.01.021 PubMed DOI
Leek JT, Johnson WE, Parker HS, Jaffe AE, Storey JD, The SVA. package for removing batch effects and other unwanted variation in high-throughput experiments. Bioinformatics. 2012;28:882–3. 10.1093/bioinformatics/bts034 PubMed DOI PMC
Fortin JP, Cullen N, Sheline YI, Taylor WD, Aselcioglu I, Cook PA, et al. Harmonization of cortical thickness measurements across scanners and sites. Neuroimage. 2018;167:104–20. 10.1016/j.neuroimage.2017.11.024 PubMed DOI PMC
Worsley KJ, Taylor JE, Carbonell F, Chung MK, Duerden E, Bernhardt B, et al. SurfStat: A Matlab toolbox for the statistical analysis of univariate and multivariate surface and volumetric data using linear mixed effects models and random field theory. Neuroimage. 2009;47:S102.
Larivière S, Bayrak Ş, Vos de Wael R, Benkarim O, Herholz P, Rodriguez-Cruces R, et al. BrainStat: A toolbox for brain-wide statistics and multimodal feature associations. Neuroimage. 2023;266:119807. PubMed PMC
Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Ser B (Methodol). 1995;57:289–300.10.1111/j.2517-6161.1995.tb02031.x DOI
Van Essen DC, Ugurbil K, Auerbach E, Barch D, Behrens TEJ, Bucholz R, et al. The Human Connectome Project: a data acquisition perspective. Neuroimage. 2012;62:2222. 10.1016/j.neuroimage.2012.02.018 PubMed DOI PMC
Glasser MF, Sotiropoulos SN, Wilson JA, Coalson TS, Fischl B, Andersson JL, et al. The minimal preprocessing pipelines for the human connectome project. Neuroimage. 2013;80:105. 10.1016/j.neuroimage.2013.04.127 PubMed DOI PMC
Alexander-Bloch AF, Shou H, Liu S, Satterthwaite TD, Glahn DC, Shinohara RT, et al. On testing for spatial correspondence between maps of human brain structure and function. Neuroimage. 2018;178:540. 10.1016/j.neuroimage.2018.05.070 PubMed DOI PMC
Burt JB, Helmer M, Shinn M, Anticevic A, Murray JD. Generative modeling of brain maps with spatial autocorrelation. Neuroimage. 2020;220:117038. 10.1016/j.neuroimage.2020.117038 PubMed DOI
van den Heuvel MP, Sporns O. An anatomical substrate for integration among functional networks in human cortex. J Neurosci. 2013;33:14489–14500. 10.1523/JNEUROSCI.2128-13.2013 PubMed DOI PMC
Van Den Heuvel MP, Kahn RS, Goñi J, Sporns O. High-cost, high-capacity backbone for global brain communication. Proc Natl Acad Sci USA. 2012;109:11372–7. 10.1073/pnas.1203593109 PubMed DOI PMC
Grasby KL, Jahanshad N, Painter JN, Colodro-Conde L, Bralten J, Hibar DP, et al. The genetic architecture of the human cerebral cortex. Science. 2020;367:eaay6690. 10.1126/science.aay6690 PubMed DOI PMC
Grotzinger AD, Mallard TT, Liu Z, Seidlitz J, Ge T, Smoller JW. Multivariate genomic architecture of cortical thickness and surface area at multiple levels of analysis. Nat Commun. 2023;14:1–13. 10.1038/s41467-023-36605-x PubMed DOI PMC
Rubinov M, Bullmore E. Schizophrenia and abnormal brain network hubs. Dialogues Clin Neurosci. 2013;15:339. 10.31887/DCNS.2013.15.3/mrubinov PubMed DOI PMC
Crossley NA, Mechelli A, Scott J, Carletti F, Fox PT, Mcguire P, et al. The hubs of the human connectome are generally implicated in the anatomy of brain disorders. Brain. 2014;137:2382–95. 10.1093/brain/awu132 PubMed DOI PMC
Klauser P, Baker ST, Cropley VL, Bousman C, Fornito A, Cocchi L, et al. White matter disruptions in schizophrenia are spatially widespread and topologically converge on brain network hubs. Schizophr Bull. 2017;43:425–35. PubMed PMC
Saxena S, Caroni P. Selective neuronal vulnerability in neurodegenerative diseases: from stressor thresholds to degeneration. Neuron. 2011;71:35–48. 10.1016/j.neuron.2011.06.031 PubMed DOI
Sydnor VJ, Larsen B, Bassett DS, Alexander-Bloch A, Fair DA, Liston C, et al. Neurodevelopment of the association cortices: Patterns, mechanisms, and implications for psychopathology. Neuron. 2021;109:2820–46. 10.1016/j.neuron.2021.06.016 PubMed DOI PMC
Fatemi SH, Folsom TD. The neurodevelopmental hypothesis of schizophrenia, revisited. Schizophr Bull. 2009;35:528–48. 10.1093/schbul/sbn187 PubMed DOI PMC
Chopra S, Oldham S, Segal A, Holmes A, Sabaroedin K, Orchard ER, et al. Network constraints on longitudinal grey matter changes in first episode psychosis. 10.1101/2022.01.11.22268989.
Jalbrzikowski M, Hayes RA, Wood SJ, Nordholm D, Zhou JH, Fusar-Poli P, et al. Association of structural magnetic resonance imaging measures with psychosis onset in individuals at clinical high risk for developing psychosis: an ENIGMA Working Group Mega-analysis. JAMA Psychiatry. 2021;78:753–66. 10.1001/jamapsychiatry.2021.0638 PubMed DOI PMC
García-Cabezas MÁ, Zikopoulos B, Barbas H. The Structural Model: a theory linking connections, plasticity, pathology, development and evolution of the cerebral cortex. Brain Struct Funct. 2019;224:985–1008. 10.1007/s00429-019-01841-9 PubMed DOI PMC
Park BY, Bethlehem RAI, Paquola C, Larivière S, Rodríguez-Cruces R, Vos de Wael R, et al. An expanding manifold in transmodal regions characterizes adolescent reconfiguration of structural connectome organization. Elife. 2021;10:e64694. 10.7554/eLife.64694 PubMed DOI PMC
Honey CJ, Sporns O, Cammoun L, Gigandet X, Thiran JP, Meuli R, et al. Predicting human resting-state functional connectivity from structural connectivity. Proc Natl Acad Sci USA. 2009;106:2035–40. 10.1073/pnas.0811168106 PubMed DOI PMC
Rakic P. Specification of cerebral cortical areas. Science. 1988;241:170–6. 10.1126/science.3291116 PubMed DOI