The effect of site-specific recombinases XerCD on the removal of over-replicated chromosomal DNA through outer membrane vesicles in bacteria
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
TRR51
Deutsche Forschungsgemeinschaft
GX19-28778X
Czech Science Foundation
PubMed
38349173
PubMed Central
PMC10913375
DOI
10.1128/spectrum.02343-23
Knihovny.cz E-zdroje
- Klíčová slova
- DNA repair, DNA replication, outer membrane vesicles,
- MeSH
- DNA-nukleotidyltransferasy * MeSH
- DNA MeSH
- Escherichia coli * genetika metabolismus MeSH
- integrasy genetika MeSH
- proteiny z Escherichia coli * genetika MeSH
- rekombinace genetická MeSH
- rekombinasy genetika metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- DNA-nukleotidyltransferasy * MeSH
- DNA MeSH
- integrasy MeSH
- proteiny z Escherichia coli * MeSH
- rekombinasy MeSH
- Site-specific recombinase MeSH Prohlížeč
Outer membrane vesicles (OMVs) are universally produced by Gram-negative bacteria and play important roles in symbiotic and pathogenic interactions. The DNA from the lumen of OMVs from the Alphaproteobacterium Dinoroseobacter shibae was previously shown to be enriched for the region around the terminus of replication ter and specifically for the recognition sequence dif of the two site-specific recombinases XerCD. These enzymes are highly conserved in bacteria and play an important role in the last phase of cell division. Here, we show that a similar enrichment of ter and dif is found in the DNA inside OMVs from Prochlorococcus marinus, Pseudomonas aeruginosa, Vibrio cholerae, and Escherichia coli. The deletion of xerC or xerD in E. coli reduced the enrichment peak directly at the dif sequence, while the enriched DNA region around ter became broader, demonstrating that either enzyme influences the DNA content inside the lumen of OMVs. We propose that the intra-vesicle DNA originated from over-replication repair and the XerCD enzymes might play a role in this process, providing them with a new function in addition to resolving chromosome dimers.IMPORTANCEImprecise termination of replication can lead to over-replicated parts of bacterial chromosomes that have to be excised and removed from the dividing cell. The underlying mechanism is poorly understood. Our data show that outer membrane vesicles (OMVs) from diverse Gram-negative bacteria are enriched for DNA around the terminus of replication ter and the site-specific XerCD recombinases influence this enrichment. Clearing the divisome from over-replicated parts of the bacterial chromosome might be a so far unrecognized and conserved function of OMVs.
Zobrazit více v PubMed
Gill S, Catchpole R, Forterre P. 2019. Extracellular membrane vesicles in the three domains of life and beyond. FEMS Microbiol Rev 43:273–303. doi:10.1093/femsre/fuy042 PubMed DOI PMC
Toyofuku M, Schild S, Kaparakis-Liaskos M, Eberl L. 2023. Composition and functions of bacterial membrane vesicles. Nat Rev Microbiol 21:415–430. doi:10.1038/s41579-023-00875-5 PubMed DOI
Fulsundar S, Harms K, Flaten GE, Johnsen PJ, Chopade BA, Nielsen KM. 2014. Gene transfer potential of outer membrane vesicles of Acinetobacter baylyi and effects of stress on vesiculation. Appl Environ Microbiol 80:3469–3483. doi:10.1128/AEM.04248-13 PubMed DOI PMC
Hagemann S, Stöger L, Kappelmann M, Hassl I, Ellinger A, Velimirov B. 2014. DNA-bearing membrane vesicles produced by Ahrensia kielensis and Pseudoalteromonas marina. J Basic Microbiol 54:1062–1072. doi:10.1002/jobm.201300376 PubMed DOI
Pierson T, Matrakas D, Taylor YU, Manyam G, Morozov VN, Zhou W, van Hoek ML. 2011. Proteomic characterization and functional analysis of outer membrane vesicles of Francisella novicida suggests possible role in virulence and use as a vaccine. J Proteome Res 10:954–967. doi:10.1021/pr1009756 PubMed DOI
Sharpe SW, Kuehn MJ, Mason KM. 2011. Elicitation of epithelial cell-derived immune effectors by outer membrane vesicles of nontypeable Haemophilus influenzae. Infect Immun 79:4361–4369. doi:10.1128/IAI.05332-11 PubMed DOI PMC
Maldonado R, Wei R, Kachlany SC, Kazi M, Balashova NV. 2011. Cytotoxic effects of Kingella kingae outer membrane vesicles on human cells. Microb Pathog 51:22–30. doi:10.1016/j.micpath.2011.03.005 PubMed DOI PMC
Schaar V, Nordström T, Mörgelin M, Riesbeck K. 2011. Moraxella catarrhalis outer membrane vesicles carry β-lactamase and promote survival of Streptococcus pneumoniae and Haemophilus influenzae by inactivating amoxicillin. Antimicrob Agents Chemother 55:3845–3853. doi:10.1128/AAC.01772-10 PubMed DOI PMC
Biller SJ, Schubotz F, Roggensack SE, Thompson AW, Summons RE, Chisholm SW. 2014. Bacterial vesicles in marine ecosystems. Science 343:183–186. doi:10.1126/science.1243457 PubMed DOI
Ho MH, Chen CH, Goodwin JS, Wang BY, Xie H. 2015. Functional advantages of Porphyromonas gingivalis vesicles. PLoS One 10:e0123448. doi:10.1371/journal.pone.0123448 PubMed DOI PMC
Frias A, Manresa A, de Oliveira E, López-Iglesias C, Mercade E. 2010. Membrane vesicles: a common feature in the extracellular matter of cold-adapted antarctic bacteria. Microb Ecol 59:476–486. doi:10.1007/s00248-009-9622-9 PubMed DOI
Pérez-Cruz C, Carrión O, Delgado L, Martinez G, López-Iglesias C, Mercade E. 2013. New type of outer membrane vesicle produced by the gram- negative bacterium Shewanella vesiculoSa M7T: implications for DNA content. Appl Environ Microbiol 79:1874–1881. doi:10.1128/AEM.03657-12 PubMed DOI PMC
Orench-Rivera N, Kuehn MJ. 2016. Environmentally controlled bacterial vesicle-mediated export. Cell Microbiol 18:1525–1536. doi:10.1111/cmi.12676 PubMed DOI PMC
Langlete P, Krabberød AK, Winther-Larsen HC. 2019. Vesicles from Vibrio cholerae contain AT-rich DNA and shorter mRNAs that do not correlate with their protein products. Front Microbiol 10:2708. doi:10.3389/fmicb.2019.02708 PubMed DOI PMC
Renelli M, Matias V, Lo RY, Beveridge TJ. 2004. DNA-containing membrane vesicles of Pseudomonas aeruginosa PAO1 and their genetic transformation potential. Microbiology (Reading) 150:2161–2169. doi:10.1099/mic.0.26841-0 PubMed DOI
Bitto NJ, Chapman R, Pidot S, Costin A, Lo C, Choi J, D’Cruze T, Reynolds EC, Dashper SG, Turnbull L, Whitchurch CB, Stinear TP, Stacey KJ, Ferrero RL. 2017. Bacterial membrane vesicles transport their DNA cargo into host cells. Sci Rep 7:7072. doi:10.1038/s41598-017-07288-4 PubMed DOI PMC
Chatterjee S, Mondal A, Mitra S, Basu S. 2017. Acinetobacter baumannii transfers the blaNDM-1 gene via outer membrane vesicles. J Antimicrob Chemother 72:2201–2207. doi:10.1093/jac/dkx131 PubMed DOI
Xu J, Mei C, Zhi Y, Liang Z-X, Zhang X, Wang H-J. 2022. Comparative genomics analysis and outer membrane vesicle-mediated horizontal antibiotic-resistance gene transfer in Avibacterium paragallinarum. Microbiol Spectr 10:e0137922. doi:10.1128/spectrum.01379-22 PubMed DOI PMC
Li P, Luo W, Xiang TX, Jiang Y, Liu P, Wei DD, Fan L, Huang S, Liao W, Liu Y, Zhang W. 2022. Horizontal gene transfer via OMVs co-carrying virulence and antimicrobial-resistant genes is a novel way for the dissemination of carbapenem-resistant hypervirulent Klebsiella pneumoniae. Front Microbiol 13:945972. doi:10.3389/fmicb.2022.945972 PubMed DOI PMC
Tang B, Yang A, Liu P, Wang Z, Jian Z, Chen X, Yan Q, Liang X, Liu W. 2023. Outer membrane vesicles transmitting BLA NDM-1 mediate the emergence of carbapenem-resistant hypervirulent Klebsiella pneumoniae. Antimicrob Agents Chemother 67:e0144422. doi:10.1128/aac.01444-22 PubMed DOI PMC
Mug-Opstelten D, Witholt B. 1978. Preferential release of new outer membrane fragments by exponentially growing Escherichia coli. Biochim Biophys Acta 508:287–295. doi:10.1016/0005-2736(78)90331-0 PubMed DOI
Lee E-Y, Bang JY, Park GW, Choi D-S, Kang JS, Kim H-J, Park K-S, Lee J-O, Kim Y-K, Kwon K-H, Kim K-P, Gho YS. 2007. Global proteomic profiling of native outer membrane vesicles derived from Escherichia coli. Proteomics 7:3143–3153. doi:10.1002/pmic.200700196 PubMed DOI
Yaron S, Kolling GL, Simon L, Matthews KR. 2000. Vesicle-mediated transfer of virulence genes from Escherichia coli O157:H7 to other enteric bacteria. Appl Environ Microbiol 66:4414–4420. doi:10.1128/AEM.66.10.4414-4420.2000 PubMed DOI PMC
Bielaszewska M, Daniel O, Karch H, Mellmann A. 2020. Dissemination of the blaCTX-M-15 gene among Enterobacteriaceae via outer membrane vesicles. J Antimicrob Chemother 75:2442–2451. doi:10.1093/jac/dkaa214 PubMed DOI
Bielaszewska M, Rüter C, Bauwens A, Greune L, Jarosch K-A, Steil D, Zhang W, He X, Lloubes R, Fruth A, Kim KS, Schmidt MA, Dobrindt U, Mellmann A, Karch H. 2017. Host cell interactions of outer membrane vesicle-associated virulence factors of enterohemorrhagic Escherichia coli O157: Intracellular delivery, trafficking and mechanisms of cell injury. PLOS Pathog 13:e1006159. doi:10.1371/journal.ppat.1006159 PubMed DOI PMC
Yañez A, Garduño RA, Contreras-Rodríguez A. 2022. Editorial: what is known and what remains to be discovered about bacterial outer membrane vesicles. Front Microbiol 13:929696. doi:10.3389/fmicb.2022.929696 PubMed DOI PMC
Avila-Calderón ED, Ruiz-Palma MDS, Aguilera-Arreola MG, Velázquez-Guadarrama N, Ruiz EA, Gomez-Lunar Z, Witonsky S, Contreras-Rodríguez A. 2021. Outer membrane vesicles of gram-negative bacteria: an outlook on biogenesis. Front Microbiol 12:557902. doi:10.3389/fmicb.2021.557902 PubMed DOI PMC
Kulp A, Kuehn MJ. 2010. Biological functions and biogenesis of secreted bacterial outer membrane vesicles. Annu Rev Microbiol 64:163–184. doi:10.1146/annurev.micro.091208.073413 PubMed DOI PMC
Toyofuku M, Schild S, Kaparakis-Liaskos M, Eberl L. 2023. Composition and functions of bacterial membrane vesicles. Nat Rev Microbiol 21:415–430. doi:10.1038/s41579-023-00875-5 PubMed DOI
Turnbull L, Toyofuku M, Hynen AL, Kurosawa M, Pessi G, Petty NK, Osvath SR, Cárcamo-Oyarce G, Gloag ES, Shimoni R, Omasits U, Ito S, Yap X, Monahan LG, Cavaliere R, Ahrens CH, Charles IG, Nomura N, Eberl L, Whitchurch CB. 2016. Explosive cell lysis as a mechanism for the biogenesis of bacterial membrane vesicles and biofilms. Nat Commun 7:11220. doi:10.1038/ncomms11220 PubMed DOI PMC
Wang H, Beier N, Boedeker C, Sztajer H, Henke P, Neumann-Schaal M, Mansky J, Rohde M, Overmann J, Petersen J, Klawonn F, Kucklick M, Engelmann S, Tomasch J, Wagner-Döbler I, Jansson JK, Gruber-Vodicka HR. 2021. Dinoroseobacter shibae outer membrane vesicles are enriched for the chromosome dimer resolution site dif. mSystems 6:e00693-20. doi:10.1128/mSystems.00693-20 PubMed DOI PMC
Val M-E, Kennedy SP, El Karoui M, Bonné L, Chevalier F, Barre F-X. 2008. Ftsk-dependent dimer resolution on multiple chromosomes in the pathogen Vibrio cholerae. PLoS Genet 4:e1000201. doi:10.1371/journal.pgen.1000201 PubMed DOI PMC
Kono N, Arakawa K, Tomita M. 2011. Comprehensive prediction of chromosome dimer resolution sites in bacterial genomes. BMC Genomics 12:19. doi:10.1186/1471-2164-12-19 PubMed DOI PMC
Sherratt DJ, Søballe B, Barre F-X, Filipe S, Lau I, Massey T, Yates J. 2004. Recombination and chromosome segregation. Philos Trans R Soc Lond B Biol Sci 359:61–69. doi:10.1098/rstb.2003.1365 PubMed DOI PMC
Bebel A, Karaca E, Kumar B, Stark WM, Barabas O. 2016. Structural snapshots of Xer recombination reveal activation by synaptic complex remodeling and DNA bending. Elife 5:1–23. doi:10.7554/eLife.19706 PubMed DOI PMC
Aussel L, Barre FX, Aroyo M, Stasiak A, Stasiak AZ, Sherratt D. 2002. FtsK is a DNA motor protein that activates chromosome dimer resolution by switching the catalytic state of the XerC and XerD recombinases. Cell 108:195–205. doi:10.1016/s0092-8674(02)00624-4 PubMed DOI
Liao Q, Ren Z, Wiesler EE, Fuqua C, Wang X. 2022. A dicentric bacterial chromosome requires XerC/D site-specific recombinases for resolution. Curr Biol 32:3609–3618. doi:10.1016/j.cub.2022.06.050 PubMed DOI PMC
Du S, Lutkenhaus J. 2017. Assembly and activation of the Escherichia coli divisome. Mol Microbiol 105:177–187. doi:10.1111/mmi.13696 PubMed DOI PMC
Graumann PL. 2014. Chromosome architecture and segregation in prokaryotic cells. J Mol Microbiol Biotechnol 24:291–300. doi:10.1159/000369100 PubMed DOI
Baba T, Ara T, Hasegawa M, Takai Y, Okumura Y, Baba M, Datsenko KA, Tomita M, Wanner BL, Mori H. 2006. Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio collection. Mol Syst Biol 2:2. doi:10.1038/msb4100050 PubMed DOI PMC
Tomasch J, Wang H, Hall ATK, Patzelt D, Preusse M, Petersen J, Brinkmann H, Bunk B, Bhuju S, Jarek M, Geffers R, Lang AS, Wagner-Döbler I. 2018. Packaging of Dinoroseobacter shibae DNA into gene transfer agent particles is not random. Genome Biol Evol 10:359–369. doi:10.1093/gbe/evy005 PubMed DOI PMC
Langmead B, Salzberg SL. 2012. Fast gapped-read alignment with Bowtie 2. Nat Methods 9:357–359. doi:10.1038/nmeth.1923 PubMed DOI PMC
Quinlan AR, Hall IM. 2010. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 26:841–842. doi:10.1093/bioinformatics/btq033 PubMed DOI PMC
Zeileis A, Grothendieck G. 2005. Zoo: S3 infrastructure for regular and irregular time series. J Stat Softw 14. doi:10.18637/jss.v014.i06 DOI
Robinson MD, McCarthy DJ, Smyth GK. 2010. edgeR: a bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26:139–140. doi:10.1093/bioinformatics/btp616 PubMed DOI PMC
Johnston EL, Zavan L, Bitto NJ, Petrovski S, Hill AF, Kaparakis-Liaskos M. 2023. Planktonic and biofilm-derived Pseudomonas aeruginosa outer membrane vesicles facilitate horizontal gene tranfer of plasmid DNA. Microbiol Spectr 11:e0517922. doi:10.1128/spectrum.05179-22 PubMed DOI PMC
Castillo F, Benmohamed A, Szatmari G. 2017. Xer site specific recombination: double and single recombinase systems. Front Microbiol 8:453. doi:10.3389/fmicb.2017.00453 PubMed DOI PMC
Midonet C, Barre F-X. 2014. Xer site-specific recombination: promoting vertical and horizontal transmission of genetic information. Microbiol Spectr 2:1–18. doi:10.1128/microbiolspec.MDNA3-0056-2014 PubMed DOI
Keller AN, Xin Y, Boer S, Reinhardt J, Baker R, Arciszewska LK, Lewis PJ, Sherratt DJ, Löwe J, Grainge I. 2016. Activation of Xer-recombination at dif: structural basis of the FtsKγ-XerD interaction. Sci Rep 6:33357. doi:10.1038/srep33357 PubMed DOI PMC
De Septenville AL, Duigou S, Boubakri H, Michel B. 2012. Replication fork reversal after replication-transcription collision. PLoS Genet 8:e1002622. doi:10.1371/journal.pgen.1002622 PubMed DOI PMC
Wendel BM, Courcelle CT, Courcelle J. 2014. Completion of DNA replication in Escherichia coli. Proc Natl Acad Sci U S A 111:16454–16459. doi:10.1073/pnas.1415025111 PubMed DOI PMC
Hiasa H, Marians KJ. 1994. Tus prevents overreplication of oriC plasmid DNA. J Biol Chem 269:26959–26968. PubMed
Lloyd RG, Rudolph CJ. 2016. 25 years on and no end in sight: a perspective on the role of RecG protein. Curr Genet 62:827–840. doi:10.1007/s00294-016-0589-z PubMed DOI PMC
Bloor AE, Cranenburgh RM. 2006. An efficient method of selectable marker gene excision by Xer recombination for gene replacement in bacterial chromosomes. Appl Environ Microbiol 72:2520–2525. doi:10.1128/AEM.72.4.2520-2525.2006 PubMed DOI PMC
Debowski AW, Gauntlett JC, Li H, Liao T, Sehnal M, Nilsson HO, Marshall BJ, Benghezal M. 2012. Xer-cise in Helicobacter pylori: one-step transformation for the construction of markerless gene deletions. Helicobacter 17:435–443. doi:10.1111/j.1523-5378.2012.00969.x PubMed DOI
Fournes F, Crozat E, Pages C, Tardin C, Salomé L, Cornet F, Rousseau P. 2016. FtsK translocation permits discrimination between an endogenous and an imported Xer/dif recombination complex. Proc Natl Acad Sci U S A 113:7882–7887. doi:10.1073/pnas.1523178113 PubMed DOI PMC
Nolivos S, Pages C, Rousseau P, Le Bourgeois P, Cornet F. 2010. Are two better than one? analysis of an FtsK/Xer recombination system that uses a single recombinase. Nucleic Acids Res 38:6477–6489. doi:10.1093/nar/gkq507 PubMed DOI PMC
Grainge I, Lesterlin C, Sherratt DJ. 2011. Activation of XerCD-dif recombination by the FtsK DNA translocase. Nucleic Acids Res 39:5140–5148. doi:10.1093/nar/gkr078 PubMed DOI PMC
Bhowmik BK, Clevenger AL, Zhao H, Rybenkov VV. 2018. Segregation but not replication of the Pseudomonas aeruginosa chromosome terminates at Dif. mBio 9:1–13. doi:10.1128/mBio.01088-18 PubMed DOI PMC
Mulcair MD, Schaeffer PM, Oakley AJ, Cross HF, Neylon C, Hill TM, Dixon NE. 2006. A molecular mousetrap determines polarity of termination of DNA replication in E. coli. Cell 125:1309–1319. doi:10.1016/j.cell.2006.04.040 PubMed DOI