The Search for Antidotes Against Ricin
Jazyk angličtina Země Nizozemsko Médium print
Typ dokumentu časopisecké články, přehledy
Grantová podpora
2216/2023-2024
Excelence project PrF UHK
PubMed
38350844
DOI
10.2174/0113895575270509231121060105
PII: MRMC-EPUB-137680
Knihovny.cz E-zdroje
- Klíčová slova
- Ricin inhibitors, chemical warfare, drug design, medicinal chemistry, ribosome-inactivating protein., ricin A chain,
- MeSH
- antidota * chemie farmakologie MeSH
- chemické bojové látky chemie MeSH
- lidé MeSH
- ricin * antagonisté a inhibitory chemie MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- antidota * MeSH
- chemické bojové látky MeSH
- ricin * MeSH
The castor plant (Ricinus communis) is primarily known for its seeds, which contain a unique fatty acid called ricinoleic acid with several industrial and commercial applications. Castor seeds also contain ricin, a toxin considered a chemical and biological warfare agent. Despite years of investigation, there is still no effective antidote or vaccine available. However, some progress has been made, and the development of an effective treatment may be on the horizon. To provide an updated overview of this issue, we have conducted a comprehensive review of the literature on the current state of research in the fight against ricin. This review is based on the reported research and aims to address the challenges faced by researchers, as well as highlight the most successful cases achieved thus far. Our goal is to encourage the scientific community to continue their efforts in this critical search.
Zobrazit více v PubMed
Zhou K.; Fu Z.; Chen M.; Lin Y.; Pan K.; Structure of trichosanthin at 1.88 Å resolution. Proteins 1994,19(1),4-13 PubMed DOI
Funatsu G.; Islam M.R.; Minami Y.; Sung-Sil K.; Kimura M.; Conserved amino acid residues in ribosome-inactivating proteins from plants. Biochimie 1991,73(7-8),1157-1161 PubMed DOI
Endo Y.; Tsurugi K.; Yutsudo T.; Takeda Y.; Ogasawara T.; Igarashi K.; Site of action of a Vero toxin (VT2) from Escherichia coli O157:H7 and of Shiga toxin on eukaryotic ribosomes. Eur J Biochem 1988,171(1-2),45-50 PubMed DOI
May M.J.; Hartley M.R.; Roberts L.M.; Krieg P.A.; Osborn R.W.; Lord J.M.; Ribosome inactivation by ricin A chain: A sensitive method to assess the activity of wild-type and mutant polypeptides. EMBO J 1989,8(1),301-308 PubMed DOI
Janik E.; Ceremuga M.; Saluk-Bijak J.; Bijak M.; Biological toxins as the potential tools for bioterrorism. Int J Mol Sci 2019,20(5),1181 PubMed DOI
Patel V.R.; Dumancas G.G.; Viswanath L.C.K.; Maples R.; Subong B.J.J.; Castor oil: Properties, uses, and optimization of processing parameters in commercial production. Lipid Insights 2016,9,1-12 DOI
Doan L.G.; Ricin: Mechanism of toxicity, clinical manifestations, and vaccine development. A review. J Toxicol Clin Toxicol 2004,42(2),201-208 PubMed DOI
Challoner K.R.; McCarron M.M.; Castor bean intoxication. Ann Emerg Med 1990,19(10),1177-1183 PubMed DOI
Balint G.A.; Ricin: The toxic protein of castor oil seeds. Toxicology 1974,2(1),77-102 PubMed DOI
Robb J.G.; Laben R.C.; Walker H.G.; Herring V.; Castor meal in dairy rations. J Dairy Sci 1974,57(4),443-450 DOI
Lima R.L.S.; Severino L.S.; Sampaio L.R.; Sofiatti V.; Gomes J.A.; Beltrão N.E.M.; Blends of castor meal and castor husks for optimized use as organic fertilizer. Ind Crops Prod 2011,33(2),364-368 DOI
Ebbecke M.; Hünefeld D.; Schaper A.; Desl H.; Increasing frequency of serious or fatal poisonings in dogs caused by organic fertilizers during the summer of 2001 in Germany. Clin Toxicol 2002,40,346-347
Lim H.; Kim H.J.; Cho Y.S.; A case of ricin poisoning following ingestion of Korean castor bean. Emerg Med J 2009,26(4),301-302 PubMed DOI
Wedin G.P.; Neal J.S.; Everson G.W.; Krenzelok E.P.; Castor bean poisoning. Am J Emerg Med 1986,4(3),259-261 PubMed DOI
Arnold H.L.; Poisoning from castor beans. Science 1924,59(1539),577-577 PubMed DOI
Targosz D.; Winnik L.; Szkolnicka B.; Suicidal poisoning with castor bean (Ricinus communis) extract injected subcutaneously: Case report. J Toxicol Clin Toxicol 2002,40,398
Coopman V.; De Leeuw M.; Cordonnier J.; Jacobs W.; Suicidal death after injection of a castor bean extract (Ricinus communis L.). Forensic Sci Int 2009,189(1-3),e13-e20 PubMed DOI
Hutchinson L.T.R.; Poisoning by castor-oil seeds. Ind Med Gaz 1900,35(5),196-197 PubMed
Knight B.; Ricin--a potent homicidal poison. BMJ 1979,1(6159),350-351 PubMed
Worbs S.; Köhler K.; Pauly D.; Avondet M.A.; Schaer M.; Dorner M.B.; Dorner B.G.; Ricinus communis intoxications in human and veterinary medicine-a summary of real cases. Toxins 2011,3(10),1332-1372 PubMed DOI
Audi J.; Belson M.; Patel M.; Schier J.; Osterloh J.; Ricin poisoning. JAMA 2005,294(18),2342-2351 PubMed DOI
Pita R.; Romero A.; Toxins as weapons: A historical review. Forensic Sci Rev 2014,26(2),85-96 PubMed
Augerson W.; A review of the scientific literature as it pertains to gulf war illnesses. Chemical and Biological Warfare Agents 2000 DOI
Jansen H.J.; Breeveld F.J.; Stijnis C.; Grobusch M.P.; Biological warfare, bioterrorism, and biocrime. Clin Microbiol Infect 2014,20(6),488-496 PubMed DOI
Eitzen E.M.; Takafuji E.T.; Historical overview of biological warfare. Medical aspects of chemical and biologial warfare 1997,415-423
Musshoff F.; Madea B.; Ricin poisoning and forensic toxicology. Drug Test Anal 2009,1(4),184-191 PubMed DOI
Sphyris N.; Lord J.M.; Wales R.; Roberts L.M.; Mutational analysis of the Ricinus lectin B-chains. Galactose-binding ability of the 2 γ subdomain of Ricinus communis agglutinin B-chain. J Biol Chem 1995,270(35),20292-20297 PubMed DOI
Spooner R.A.; Smith D.C.; Easton A.J.; Roberts L.M.; Lord M.J.; Retrograde transport pathways utilised by viruses and protein toxins. Virol J 2006,3(1),26 PubMed DOI
Bassik M.C.; Kampmann M.; Lebbink R.J.; Wang S.; Hein M.Y.; Poser I.; Weibezahn J.; Horlbeck M.A.; Chen S.; Mann M.; Hyman A.A.; LeProust E.M.; McManus M.T.; Weissman J.S.; A systematic mammalian genetic interaction map reveals pathways underlying ricin susceptibility. Cell 2013,152(4),909-922 PubMed DOI
Tian S.; Muneeruddin K.; Choi M.Y.; Tao L.; Bhuiyan R.H.; Ohmi Y.; Furukawa K.; Furukawa K.; Boland S.; Shaffer S.A.; Adam R.M.; Dong M.; Genome-wide CRISPR screens for Shiga toxins and ricin reveal Golgi proteins critical for glycosylation. PLoS Biol 2018,16(11),e2006951 PubMed DOI
Wu Y.; Taisne C.; Mahtal N.; Forrester A.; Lussignol M.; Cintrat J.C.; Esclatine A.; Gillet D.; Barbier J.; Autophagic degradation is involved in cell protection against ricin toxin. Toxins (Basel) 2023,15(5),304 PubMed DOI
Spooner R.A.; Watson P.D.; Marsden C.J.; Smith D.C.; Moore K.A.H.; Cook J.P.; Lord J.M.; Roberts L.M.; Protein disulphide-isomerase reduces ricin to its A and B chains in the endoplasmic reticulum. Biochem J 2004,383(2),285-293 DOI
Bellisola G.; Fracasso G.; Ippoliti R.; Menestrina G.; Rosén A.; Soldà S.; Udali S.; Tomazzolli R.; Tridente G.; Colombatti M.; Reductive activation of ricin and ricin A-chain immunotoxins by protein disulfide isomerase and thioredoxin reductase. Biochem Pharmacol 2004,67(9),1721-1731 PubMed DOI
Endo Y.; Tsurugi K.; The RNA N-glycosidase activity of ricin A-chain. The characteristics of the enzymatic activity of ricin A-chain with ribosomes and with rRNA. J Biol Chem 1988,263(18),8735-8739 PubMed DOI
Lord J.M.; Roberts L.M.; Robertus J.D.; Ricin: Structure, mode of action, and some current applications. FASEB J 1994,8(2),201-208 PubMed DOI
Olsnes S.; The history of ricin, abrin and related toxins. Toxicon 2004,44(4),361-370 PubMed DOI
Olsnes S.; Fernandez-Puentes C.; Carrasco L.; Vazquez D.; Ribosome inactivation by the toxic lectins abrin and ricin. Kinetics of the enzymic activity of the toxin A-chains. Eur J Biochem 1975,60(1),281-288 PubMed DOI
Olson M.A.; Carra J.H.; Roxas-Duncan V.; Wannemacher R.W.; Smith L.A.; Millard C.B.; Finding a new vaccine in the ricin protein fold. Protein Eng Des Sel 2004,17(4),391-397 PubMed DOI
Deeks E.D.; Cook J.P.; Day P.J.; Smith D.C.; Roberts L.M.; Lord J.M.; The low lysine content of ricin A chain reduces the risk of proteolytic degradation after translocation from the endoplasmic reticulum to the cytosol. Biochemistry 2002,41(10),3405-3413 PubMed DOI
Perkel J.M.; The software that powers scientific illustration. Nature 2020,582(7810),137-138 PubMed DOI
Franke H.; Scholl R.; Aigner A.; Ricin and Ricinus communis in pharmacology and toxicology-from ancient use and “Papyrus Ebers” to modern perspectives and “poisonous plant of the year 2018”. Naunyn Schmiedebergs Arch Pharmacol 2019,392(10),1181-1208 PubMed DOI
Ho M.C.; Sturm M.B.; Almo S.C.; Schramm V.L.; Transition state analogues in structures of ricin and saporin ribosome-inactivating proteins. Proc Natl Acad Sci 2009,106(48),20276-20281 PubMed DOI
Pincus S.H.; Smallshaw J.E.; Song K.; Berry J.; Vitetta E.S.; Passive and active vaccination strategies to prevent ricin poisoning. Toxins 2011,3(9),1163-1184 PubMed DOI
Brey R.N.; Mantis N.J.; Pincus S.H.; Vitetta E.S.; Smith L.A.; Roy C.J.; Recent advances in the development of vaccines against ricin. Hum Vaccin Immunother 2016,12(5),1196-1201 PubMed DOI
Maddaloni M.; Cooke C.; Wilkinson R.; Stout A.V.; Eng L.; Pincus S.H.; Immunological characteristics associated with the protective efficacy of antibodies to ricin. J Immunol 2004,172(10),6221-6228 PubMed DOI
Smallshaw J.; Firan A.; Fulmer J.R.; Ruback S.L.; Ghetie V.; Vitetta E.S.; A novel recombinant vaccine which protects mice against ricin intoxication. Vaccine 2002,20(27-28),3422-3427 PubMed DOI
Smallshaw J.E.; Vitetta E.S.; Ricin vaccine development 2011,259-272
Carra J.H.; Wannemacher R.W.; Tammariello R.F.; Lindsey C.Y.; Dinterman R.E.; Schokman R.D.; Smith L.A.; Improved formulation of a recombinant ricin A-chain vaccine increases its stability and effective antigenicity. Vaccine 2007,25(21),4149-4158 PubMed DOI
McLain D.E.; Lewis B.S.; Chapman J.L.; Wannemacher R.W.; Lindsey C.Y.; Smith L.A.; Protective effect of two recombinant ricin subunit vaccines in the New Zealand white rabbit subjected to a lethal aerosolized ricin challenge: Survival, immunological response, and histopathological findings. Toxicol Sci 2012,126(1),72-83 PubMed DOI
Smallshaw J.E.; Richardson J.A.; Pincus S.; Schindler J.; Vitetta E.S.; Preclinical toxicity and efficacy testing of RiVax, a recombinant protein vaccine against ricin. Vaccine 2005,23(39),4775-4784 PubMed DOI
Smallshaw J.E.; Ghetie V.; Rizo J.; Fulmer J.R.; Trahan L.L.; Ghetie M.A.; Vitetta E.S.; Genetic engineering of an immunotoxin to eliminate pulmonary vascular leak in mice. Nat Biotechnol 2003,21(4),387-391 PubMed DOI
Smallshaw J.E.; Richardson J.A.; Vitetta E.S.; RiVax, a recombinant ricin subunit vaccine, protects mice against ricin delivered by gavage or aerosol. Vaccine 2007,25(42),7459-7469 PubMed DOI
Vitetta E.S.; Smallshaw J.E.; Coleman E.; Jafri H.; Foster C.; Munford R.; Schindler J.; A pilot clinical trial of a recombinant ricin vaccine in normal humans. Proc Natl Acad Sci 2006,103(7),2268-2273 PubMed DOI
Roy C.J.; Ehrbar D.; Van Slyke G.; Doering J.; Didier P.J.; Doyle-Meyers L.; Donini O.; Vitetta E.S.; Mantis N.J.; Serum antibody profiling identifies vaccine-induced correlates of protection against aerosolized ricin toxin in rhesus macaques. NPJ Vaccines 2022,7(1),164 PubMed DOI
McLain D.E.; Horn T.L.; Detrisac C.J.; Lindsey C.Y.; Smith L.A.; Progress in biological threat agent vaccine development: A repeat-dose toxicity study of a recombinant ricin toxin A-chain (rRTA) 1-33/44-198 vaccine (RVEc) in male and female New Zealand white rabbits. Int J Toxicol 2011,30(2),143-152 PubMed DOI
Porter A.; Phillips G.; Smith L.; Erwin-Cohen R.; Tammariello R.; Hale M.; DaSilva L.; Evaluation of a ricin vaccine candidate (RVEc) for human toxicity using an in vitro vascular leak assay. Toxicon 2011,58(1),68-75 PubMed DOI
O’Hara J.M.; Brey R.N.; Mantis N.J.; Comparative efficacy of two leading candidate ricin toxin a subunit vaccines in mice. Clin Vaccine Immunol 2013,20(6),789-794 PubMed DOI
Pittman P.R.; Reisler R.B.; Lindsey C.Y.; Güereña F.; Rivard R.; Clizbe D.P.; Chambers M.; Norris S.; Smith L.A.; Safety and immunogenicity of ricin vaccine, RVEc™, in a Phase 1 clinical trial. Vaccine 2015,33(51),7299-7306 PubMed DOI
Rasetti-Escargueil C.; Avril A.; Medical countermeasures against ricin intoxication. Toxins 2023,15(2),100 PubMed DOI
Rocha-Santos A.; Chaves E.J.F.; Grillo I.B.; de Freitas A.S.; Araújo D.A.M.; Rocha G.B.; Thermochemical and quantum descriptor calculations for gaining insight into ricin toxin A (RTA) Inhibitors. ACS Omega 2021,6(13),8764-8777 PubMed DOI
Chaves E.J.F.; Gomes da Cruz L.E.; Padilha I.Q.M.; Silveira C.H.; Araujo D.A.M.; Rocha G.B.; Discovery of RTA ricin subunit inhibitors: A computational study using PM7 quantum chemical method and steered molecular dynamics. J Biomol Struct Dyn 2022,40(12),5427-5445 PubMed DOI
Botelho F.D.; dos Santos M.C.; Gonçalves A.S.; Kuca K.; Valis M.; LaPlante S.R.; França T.C.C.; de Almeida J.S.F.D.; Ligand-based virtual screening, molecular docking, molecular dynamics, and mm-pbsa calculations towards the identification of potential novel ricin inhibitors. Toxins 2020,12(12),746 PubMed DOI
Botelho F.D.; Santos M.C.; Gonçalves A.S.; França T.C.; LaPlante S.R.; de Almeida J.S.; Identification of novel potential ricin inhibitors by virtual screening, molecular docking, molecular dynamics and MM-PBSA calculations: A drug repurposing approach. J Biomol Struct Dyn 2020,1-11 PubMed
Jasheway K.; Pruet J.; Anslyn E.V.; Robertus J.D.; Structure-based design of ricin inhibitors. Toxins 2011,3(10),1233-1248 PubMed DOI
Pruet J.M.; Saito R.; Manzano L.A.; Jasheway K.R.; Wiget P.A.; Kamat I.; Anslyn E.V.; Robertus J.D.; Optimized 5-membered heterocycle-linked pterins for the inhibition of Ricin Toxin A. ACS Med Chem Lett 2012,3(7),588-591 PubMed DOI
França T.C.C.; Botelho F.D.; Drummond M.L.; LaPlante S.R.; Theoretical investigation of repurposed drugs potentially capable of binding to the catalytic site and the secondary binding pocket of subunit a of ricin. ACS Omega 2022,7(36),32805-32815 PubMed DOI
Pruet J.M.; Jasheway K.R.; Manzano L.A.; Bai Y.; Anslyn E.V.; Robertus J.D.; 7-Substituted pterins provide a new direction for ricin A chain inhibitors. Eur J Med Chem 2011,46(9),3608-3615 PubMed DOI
Saito R.; Pruet J.M.; Manzano L.A.; Jasheway K.; Monzingo A.F.; Wiget P.A.; Kamat I.; Anslyn E.V.; Robertus J.D.; Peptide-conjugated pterins as inhibitors of ricin toxin A. J Med Chem 2013,56(1),320-329 PubMed DOI
Wiget P.A.; Manzano L.A.; Pruet J.M.; Gao G.; Saito R.; Monzingo A.F.; Jasheway K.R.; Robertus J.D.; Anslyn E.V.; Sulfur incorporation generally improves Ricin inhibition in pterin-appended glycine-phenylalanine dipeptide mimics. Bioorg Med Chem Lett 2013,23(24),6799-6804 PubMed DOI
Monzingo A.F.; Robertus J.D.; X-ray analysis of substrate analogs in the ricin A-chain active site. J Mol Biol 1992,227(4),1136-1145 PubMed DOI
Yan X.; Hollis T.; Svinth M.; Day P.; Monzingo A.F.; Milne G.W.A.; Robertus J.D.; Structure-based identification of a ricin inhibitor. J Mol Biol 1997,266(5),1043-1049 PubMed DOI
Bai Y.; Monzingo A.F.; Robertus J.D.; The X-ray structure of ricin A chain with a novel inhibitor. Arch Biochem Biophys 2009,483(1),23-28 PubMed DOI
Zhao X.; Li H.; Li J.; Liu K.; Wang B.; Wang Y.; Li X.; Zhong W.; Novel small molecule retrograde transport blocker confers post-exposure protection against ricin intoxication. Acta Pharm Sin B 2020,10(3),498-511 PubMed DOI
Seaman M.N.J.; Peden A.A.; Ricin toxin hits a retrograde roadblock. Cell 2010,141(2),222-224 PubMed DOI
Park J.G.; Kahn J.N.; Tumer N.E.; Pang Y.P.; Chemical structure of Retro-2, a compound that protects cells against ribosome-inactivating proteins. Sci Rep 2012,2(1),631 PubMed DOI
Li X.P.; Harijan R.K.; Cao B.; Kahn J.N.; Pierce M.; Tsymbal A.M.; Roberge J.Y.; Augeri D.; Tumer N.E.; Synthesis and structural characterization of ricin inhibitors targeting ribosome binding using fragment-based methods and structure-based design. J Med Chem 2021,64(20),15334-15348 PubMed DOI
Li X.P.; Harijan R.K.; Kahn J.N.; Schramm V.L.; Tumer N.E.; Small molecule inhibitors targeting the interaction of ricin toxin A subunit with ribosomes. ACS Infect Dis 2020,6(7),1894-1905 PubMed DOI
Bai Y.; Watt B.; Wahome P.G.; Mantis N.J.; Robertus J.D.; Identification of new classes of ricin toxin inhibitors by virtual screening. Toxicon 2010,56(4),526-534 PubMed DOI
Abagyan R.; Totrov M.; Kuznetsov D.; ICM—A new method for protein modeling and design: Applications to docking and structure prediction from the distorted native conformation. J Comput Chem 1994,15(5),488-506 DOI
Jones G.; Willett P.; Glen R.C.; Leach A.R.; Taylor R.; Development and validation of a genetic algorithm for flexible docking 1 1Edited by F. E. Cohen. J Mol Biol 1997,267(3),727-748 PubMed DOI
Mishra V.; Siva Prasad C.V.S.; Ligand based virtual screening to find novel inhibitors against plant toxin Ricin by using the ZINC database. Bioinformation 2011,7(1),46-51 PubMed DOI
Korb O.; Stützle T.; Exner T.E.; Empirical scoring functions for advanced protein-ligand docking with PLANTS. J Chem Inf Model 2009,49(1),84-96 PubMed DOI
Boittier E.D.; Tang Y.Y.; Buckley M.E.; Schuurs Z.P.; Richard D.J.; Gandhi N.S.; Assessing molecular docking tools to guide targeted drug discovery of CD38 inhibitors. Int J Mol Sci 2020,21(15),5183 PubMed DOI
Pagadala N.S.; Syed K.; Tuszynski J.; Software for molecular docking: A review. 2017,9(2),91-102 DOI
Abraham M.J.; Murtola T.; Schulz R.; Páll S.; Smith J.C.; Hess B.; Lindahl E.; GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX 2015,1-2,19-25 DOI
Nelson M.T.; Humphrey W.; Gursoy A.; Dalke A.; Kalé L.V.; Skeel R.D.; Schulten K.; NAMD: A parallel, object-oriented molecular dynamics program. Int J High Perform Comput Appl 1996,10(4),251-268 DOI
Phillips J.C.; Hardy D.J.; Maia J.D.C.; Stone J.E.; Ribeiro J.V.; Bernardi R.C.; Buch R.; Fiorin G.; Hénin J.; Jiang W.; McGreevy R.; Melo M.C.R.; Radak B.K.; Skeel R.D.; Singharoy A.; Wang Y.; Roux B.; Aksimentiev A.; Luthey-Schulten Z.; Kalé L.V.; Schulten K.; Chipot C.; Tajkhorshid E.; Scalable molecular dynamics on CPU and GPU architectures with NAMD. J Chem Phys 2020,153(4),044130 PubMed DOI
Godal A.; Fodstad Ø.; Pihl A.; Antibody formation against the cytotoxic proteins abrin and ricin in humans and mice. Int J Cancer 1983,32(4),515-521 PubMed DOI
Houston L.L.; Protection of mice from ricin poisoning by treatment with antibodies directed against ricin. J Toxicol Clin Toxicol 1982,19(4),385-389 PubMed DOI
Pelat T.; Hust M.; Hale M.; Lefranc M.P.; Dübel S.; Thullier P.; Isolation of a human-like antibody fragment (scFv) that neutralizes ricin biological activity. BMC Biotechnol 2009,9(1),60 PubMed DOI
Wang Y.; Guo L.; Zhao K.; Chen J.; Feng J.; Sun Y.; Li Y.; Shen B.; Novel chimeric anti-ricin antibody C4C13 with neutralizing activity against ricin toxicity. Biotechnol Lett 2007,29(12),1811-1816 PubMed DOI
Pratt T.S.; Pincus S.H.; Hale M.L.; Moreira A.L.; Roy C.J.; Tchou-Wong K.M.; Oropharyngeal aspiration of ricin as a lung challenge model for evaluation of the therapeutic index of antibodies against ricin A-chain for post-exposure treatment. Exp Lung Res 2007,33(8-9),459-481 PubMed DOI
Vance D.J.; Tremblay J.M.; Mantis N.J.; Shoemaker C.B.; Stepwise engineering of heterodimeric single domain camelid VHH antibodies that passively protect mice from ricin toxin. J Biol Chem 2013,288(51),36538-36547 PubMed DOI
Poli M.A.; Rivera V.R.; Pitt M.L.; Vogel P.; Aerosolized specific antibody protects mice from lung injury associated with aerosolized ricin exposure. Toxicon 1996,34(9),1037-1044 PubMed DOI
Foxwell B.; Detre S.; Donovan T.; Thorpe P.; The use of anti-ricin antibodies to protect mice intoxicated with ricin. Toxicology 1985,34(1),79-88 PubMed DOI
McGuinness C.R.; Mantis N.J.; Characterization of a novel high-affinity monoclonal immunoglobulin G antibody against the ricin B subunit. Infect Immun 2006,74(6),3463-3470 PubMed DOI
Vance D.J.; Poon A.Y.; Mantis N.J.; Sites of vulnerability on ricin B chain revealed through epitope mapping of toxin-neutralizing monoclonal antibodies. PLoS One 2020,15(11),e0236538 PubMed DOI
Yermakova A.; Mantis N.J.; Protective immunity to ricin toxin conferred by antibodies against the toxin’s binding subunit (RTB). Vaccine 2011,29(45),7925-7935 PubMed DOI
Hu W.G.; Yin J.; Chau D.; Hu C.C.; Lillico D.; Yu J.; Negrych L.M.; Cherwonogrodzky J.W.; Conformation-dependent high-affinity potent ricin-neutralizing monoclonal antibodies. Biomed Res Int 2013,2013,471346 DOI
Prigent J.; Panigai L.; Lamourette P.; Sauvaire D.; Devilliers K.; Plaisance M.; Volland H.; Créminon C.; Simon S.; Neutralising antibodies against ricin toxin. PLoS One 2011,6(5),e20166 PubMed DOI
Orsini Delgado M.L.; Avril A.; Prigent J.; Dano J.; Rouaix A.; Worbs S.; Dorner B.G.; Rougeaux C.; Becher F.; Fenaille F.; Livet S.; Volland H.; Tournier J.N.; Simon S.; Ricin antibodies’ neutralizing capacity against different ricin isoforms and cultivars. Toxins 2021,13(2),100 PubMed DOI
Rong Y.; Torres-Velez F.J.; Ehrbar D.; Doering J.; Song R.; Mantis N.J.; An intranasally administered monoclonal antibody cocktail abrogates ricin toxin-induced pulmonary tissue damage and inflammation. Hum Vaccin Immunother 2020,16(4),793-807 PubMed DOI
Rong Y.; Pauly M.; Guthals A.; Pham H.; Ehrbar D.; Zeitlin L.; Mantis N.J.; A humanized monoclonal antibody cocktail to prevent pulmonary ricin intoxication. Toxins 2020,12(4),215 PubMed DOI
Yu H.; Li S.; Xu N.; Liu W.; Ricin toxin and its neutralizing antibodies: A review. Toxicon 2022,214,47-53 PubMed DOI