The Search for Antidotes Against Ricin

. 2024 ; 24 (12) : 1148-1161.

Jazyk angličtina Země Nizozemsko Médium print

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid38350844

Grantová podpora
2216/2023-2024 Excelence project PrF UHK

The castor plant (Ricinus communis) is primarily known for its seeds, which contain a unique fatty acid called ricinoleic acid with several industrial and commercial applications. Castor seeds also contain ricin, a toxin considered a chemical and biological warfare agent. Despite years of investigation, there is still no effective antidote or vaccine available. However, some progress has been made, and the development of an effective treatment may be on the horizon. To provide an updated overview of this issue, we have conducted a comprehensive review of the literature on the current state of research in the fight against ricin. This review is based on the reported research and aims to address the challenges faced by researchers, as well as highlight the most successful cases achieved thus far. Our goal is to encourage the scientific community to continue their efforts in this critical search.

Zobrazit více v PubMed

Zhou K.; Fu Z.; Chen M.; Lin Y.; Pan K.; Structure of trichosanthin at 1.88 Å resolution. Proteins 1994,19(1),4-13 PubMed DOI

Funatsu G.; Islam M.R.; Minami Y.; Sung-Sil K.; Kimura M.; Conserved amino acid residues in ribosome-inactivating proteins from plants. Biochimie 1991,73(7-8),1157-1161 PubMed DOI

Endo Y.; Tsurugi K.; Yutsudo T.; Takeda Y.; Ogasawara T.; Igarashi K.; Site of action of a Vero toxin (VT2) from Escherichia coli O157:H7 and of Shiga toxin on eukaryotic ribosomes. Eur J Biochem 1988,171(1-2),45-50 PubMed DOI

May M.J.; Hartley M.R.; Roberts L.M.; Krieg P.A.; Osborn R.W.; Lord J.M.; Ribosome inactivation by ricin A chain: A sensitive method to assess the activity of wild-type and mutant polypeptides. EMBO J 1989,8(1),301-308 PubMed DOI

Janik E.; Ceremuga M.; Saluk-Bijak J.; Bijak M.; Biological toxins as the potential tools for bioterrorism. Int J Mol Sci 2019,20(5),1181 PubMed DOI

Patel V.R.; Dumancas G.G.; Viswanath L.C.K.; Maples R.; Subong B.J.J.; Castor oil: Properties, uses, and optimization of processing parameters in commercial production. Lipid Insights 2016,9,1-12 DOI

Doan L.G.; Ricin: Mechanism of toxicity, clinical manifestations, and vaccine development. A review. J Toxicol Clin Toxicol 2004,42(2),201-208 PubMed DOI

Challoner K.R.; McCarron M.M.; Castor bean intoxication. Ann Emerg Med 1990,19(10),1177-1183 PubMed DOI

Balint G.A.; Ricin: The toxic protein of castor oil seeds. Toxicology 1974,2(1),77-102 PubMed DOI

Robb J.G.; Laben R.C.; Walker H.G.; Herring V.; Castor meal in dairy rations. J Dairy Sci 1974,57(4),443-450 DOI

Lima R.L.S.; Severino L.S.; Sampaio L.R.; Sofiatti V.; Gomes J.A.; Beltrão N.E.M.; Blends of castor meal and castor husks for optimized use as organic fertilizer. Ind Crops Prod 2011,33(2),364-368 DOI

Ebbecke M.; Hünefeld D.; Schaper A.; Desl H.; Increasing frequency of serious or fatal poisonings in dogs caused by organic fertilizers during the summer of 2001 in Germany. Clin Toxicol 2002,40,346-347

Lim H.; Kim H.J.; Cho Y.S.; A case of ricin poisoning following ingestion of Korean castor bean. Emerg Med J 2009,26(4),301-302 PubMed DOI

Wedin G.P.; Neal J.S.; Everson G.W.; Krenzelok E.P.; Castor bean poisoning. Am J Emerg Med 1986,4(3),259-261 PubMed DOI

Arnold H.L.; Poisoning from castor beans. Science 1924,59(1539),577-577 PubMed DOI

Targosz D.; Winnik L.; Szkolnicka B.; Suicidal poisoning with castor bean (Ricinus communis) extract injected subcutaneously: Case report. J Toxicol Clin Toxicol 2002,40,398

Coopman V.; De Leeuw M.; Cordonnier J.; Jacobs W.; Suicidal death after injection of a castor bean extract (Ricinus communis L.). Forensic Sci Int 2009,189(1-3),e13-e20 PubMed DOI

Hutchinson L.T.R.; Poisoning by castor-oil seeds. Ind Med Gaz 1900,35(5),196-197 PubMed

Knight B.; Ricin--a potent homicidal poison. BMJ 1979,1(6159),350-351 PubMed

Worbs S.; Köhler K.; Pauly D.; Avondet M.A.; Schaer M.; Dorner M.B.; Dorner B.G.; Ricinus communis intoxications in human and veterinary medicine-a summary of real cases. Toxins 2011,3(10),1332-1372 PubMed DOI

Audi J.; Belson M.; Patel M.; Schier J.; Osterloh J.; Ricin poisoning. JAMA 2005,294(18),2342-2351 PubMed DOI

Pita R.; Romero A.; Toxins as weapons: A historical review. Forensic Sci Rev 2014,26(2),85-96 PubMed

Augerson W.; A review of the scientific literature as it pertains to gulf war illnesses. Chemical and Biological Warfare Agents 2000 DOI

Jansen H.J.; Breeveld F.J.; Stijnis C.; Grobusch M.P.; Biological warfare, bioterrorism, and biocrime. Clin Microbiol Infect 2014,20(6),488-496 PubMed DOI

Eitzen E.M.; Takafuji E.T.; Historical overview of biological warfare. Medical aspects of chemical and biologial warfare 1997,415-423

Musshoff F.; Madea B.; Ricin poisoning and forensic toxicology. Drug Test Anal 2009,1(4),184-191 PubMed DOI

Sphyris N.; Lord J.M.; Wales R.; Roberts L.M.; Mutational analysis of the Ricinus lectin B-chains. Galactose-binding ability of the 2 γ subdomain of Ricinus communis agglutinin B-chain. J Biol Chem 1995,270(35),20292-20297 PubMed DOI

Spooner R.A.; Smith D.C.; Easton A.J.; Roberts L.M.; Lord M.J.; Retrograde transport pathways utilised by viruses and protein toxins. Virol J 2006,3(1),26 PubMed DOI

Bassik M.C.; Kampmann M.; Lebbink R.J.; Wang S.; Hein M.Y.; Poser I.; Weibezahn J.; Horlbeck M.A.; Chen S.; Mann M.; Hyman A.A.; LeProust E.M.; McManus M.T.; Weissman J.S.; A systematic mammalian genetic interaction map reveals pathways underlying ricin susceptibility. Cell 2013,152(4),909-922 PubMed DOI

Tian S.; Muneeruddin K.; Choi M.Y.; Tao L.; Bhuiyan R.H.; Ohmi Y.; Furukawa K.; Furukawa K.; Boland S.; Shaffer S.A.; Adam R.M.; Dong M.; Genome-wide CRISPR screens for Shiga toxins and ricin reveal Golgi proteins critical for glycosylation. PLoS Biol 2018,16(11),e2006951 PubMed DOI

Wu Y.; Taisne C.; Mahtal N.; Forrester A.; Lussignol M.; Cintrat J.C.; Esclatine A.; Gillet D.; Barbier J.; Autophagic degradation is involved in cell protection against ricin toxin. Toxins (Basel) 2023,15(5),304 PubMed DOI

Spooner R.A.; Watson P.D.; Marsden C.J.; Smith D.C.; Moore K.A.H.; Cook J.P.; Lord J.M.; Roberts L.M.; Protein disulphide-isomerase reduces ricin to its A and B chains in the endoplasmic reticulum. Biochem J 2004,383(2),285-293 DOI

Bellisola G.; Fracasso G.; Ippoliti R.; Menestrina G.; Rosén A.; Soldà S.; Udali S.; Tomazzolli R.; Tridente G.; Colombatti M.; Reductive activation of ricin and ricin A-chain immunotoxins by protein disulfide isomerase and thioredoxin reductase. Biochem Pharmacol 2004,67(9),1721-1731 PubMed DOI

Endo Y.; Tsurugi K.; The RNA N-glycosidase activity of ricin A-chain. The characteristics of the enzymatic activity of ricin A-chain with ribosomes and with rRNA. J Biol Chem 1988,263(18),8735-8739 PubMed DOI

Lord J.M.; Roberts L.M.; Robertus J.D.; Ricin: Structure, mode of action, and some current applications. FASEB J 1994,8(2),201-208 PubMed DOI

Olsnes S.; The history of ricin, abrin and related toxins. Toxicon 2004,44(4),361-370 PubMed DOI

Olsnes S.; Fernandez-Puentes C.; Carrasco L.; Vazquez D.; Ribosome inactivation by the toxic lectins abrin and ricin. Kinetics of the enzymic activity of the toxin A-chains. Eur J Biochem 1975,60(1),281-288 PubMed DOI

Olson M.A.; Carra J.H.; Roxas-Duncan V.; Wannemacher R.W.; Smith L.A.; Millard C.B.; Finding a new vaccine in the ricin protein fold. Protein Eng Des Sel 2004,17(4),391-397 PubMed DOI

Deeks E.D.; Cook J.P.; Day P.J.; Smith D.C.; Roberts L.M.; Lord J.M.; The low lysine content of ricin A chain reduces the risk of proteolytic degradation after translocation from the endoplasmic reticulum to the cytosol. Biochemistry 2002,41(10),3405-3413 PubMed DOI

Perkel J.M.; The software that powers scientific illustration. Nature 2020,582(7810),137-138 PubMed DOI

Franke H.; Scholl R.; Aigner A.; Ricin and Ricinus communis in pharmacology and toxicology-from ancient use and “Papyrus Ebers” to modern perspectives and “poisonous plant of the year 2018”. Naunyn Schmiedebergs Arch Pharmacol 2019,392(10),1181-1208 PubMed DOI

Ho M.C.; Sturm M.B.; Almo S.C.; Schramm V.L.; Transition state analogues in structures of ricin and saporin ribosome-inactivating proteins. Proc Natl Acad Sci 2009,106(48),20276-20281 PubMed DOI

Pincus S.H.; Smallshaw J.E.; Song K.; Berry J.; Vitetta E.S.; Passive and active vaccination strategies to prevent ricin poisoning. Toxins 2011,3(9),1163-1184 PubMed DOI

Brey R.N.; Mantis N.J.; Pincus S.H.; Vitetta E.S.; Smith L.A.; Roy C.J.; Recent advances in the development of vaccines against ricin. Hum Vaccin Immunother 2016,12(5),1196-1201 PubMed DOI

Maddaloni M.; Cooke C.; Wilkinson R.; Stout A.V.; Eng L.; Pincus S.H.; Immunological characteristics associated with the protective efficacy of antibodies to ricin. J Immunol 2004,172(10),6221-6228 PubMed DOI

Smallshaw J.; Firan A.; Fulmer J.R.; Ruback S.L.; Ghetie V.; Vitetta E.S.; A novel recombinant vaccine which protects mice against ricin intoxication. Vaccine 2002,20(27-28),3422-3427 PubMed DOI

Smallshaw J.E.; Vitetta E.S.; Ricin vaccine development 2011,259-272

Carra J.H.; Wannemacher R.W.; Tammariello R.F.; Lindsey C.Y.; Dinterman R.E.; Schokman R.D.; Smith L.A.; Improved formulation of a recombinant ricin A-chain vaccine increases its stability and effective antigenicity. Vaccine 2007,25(21),4149-4158 PubMed DOI

McLain D.E.; Lewis B.S.; Chapman J.L.; Wannemacher R.W.; Lindsey C.Y.; Smith L.A.; Protective effect of two recombinant ricin subunit vaccines in the New Zealand white rabbit subjected to a lethal aerosolized ricin challenge: Survival, immunological response, and histopathological findings. Toxicol Sci 2012,126(1),72-83 PubMed DOI

Smallshaw J.E.; Richardson J.A.; Pincus S.; Schindler J.; Vitetta E.S.; Preclinical toxicity and efficacy testing of RiVax, a recombinant protein vaccine against ricin. Vaccine 2005,23(39),4775-4784 PubMed DOI

Smallshaw J.E.; Ghetie V.; Rizo J.; Fulmer J.R.; Trahan L.L.; Ghetie M.A.; Vitetta E.S.; Genetic engineering of an immunotoxin to eliminate pulmonary vascular leak in mice. Nat Biotechnol 2003,21(4),387-391 PubMed DOI

Smallshaw J.E.; Richardson J.A.; Vitetta E.S.; RiVax, a recombinant ricin subunit vaccine, protects mice against ricin delivered by gavage or aerosol. Vaccine 2007,25(42),7459-7469 PubMed DOI

Vitetta E.S.; Smallshaw J.E.; Coleman E.; Jafri H.; Foster C.; Munford R.; Schindler J.; A pilot clinical trial of a recombinant ricin vaccine in normal humans. Proc Natl Acad Sci 2006,103(7),2268-2273 PubMed DOI

Roy C.J.; Ehrbar D.; Van Slyke G.; Doering J.; Didier P.J.; Doyle-Meyers L.; Donini O.; Vitetta E.S.; Mantis N.J.; Serum antibody profiling identifies vaccine-induced correlates of protection against aerosolized ricin toxin in rhesus macaques. NPJ Vaccines 2022,7(1),164 PubMed DOI

McLain D.E.; Horn T.L.; Detrisac C.J.; Lindsey C.Y.; Smith L.A.; Progress in biological threat agent vaccine development: A repeat-dose toxicity study of a recombinant ricin toxin A-chain (rRTA) 1-33/44-198 vaccine (RVEc) in male and female New Zealand white rabbits. Int J Toxicol 2011,30(2),143-152 PubMed DOI

Porter A.; Phillips G.; Smith L.; Erwin-Cohen R.; Tammariello R.; Hale M.; DaSilva L.; Evaluation of a ricin vaccine candidate (RVEc) for human toxicity using an in vitro vascular leak assay. Toxicon 2011,58(1),68-75 PubMed DOI

O’Hara J.M.; Brey R.N.; Mantis N.J.; Comparative efficacy of two leading candidate ricin toxin a subunit vaccines in mice. Clin Vaccine Immunol 2013,20(6),789-794 PubMed DOI

Pittman P.R.; Reisler R.B.; Lindsey C.Y.; Güereña F.; Rivard R.; Clizbe D.P.; Chambers M.; Norris S.; Smith L.A.; Safety and immunogenicity of ricin vaccine, RVEc™, in a Phase 1 clinical trial. Vaccine 2015,33(51),7299-7306 PubMed DOI

Rasetti-Escargueil C.; Avril A.; Medical countermeasures against ricin intoxication. Toxins 2023,15(2),100 PubMed DOI

Rocha-Santos A.; Chaves E.J.F.; Grillo I.B.; de Freitas A.S.; Araújo D.A.M.; Rocha G.B.; Thermochemical and quantum descriptor calculations for gaining insight into ricin toxin A (RTA) Inhibitors. ACS Omega 2021,6(13),8764-8777 PubMed DOI

Chaves E.J.F.; Gomes da Cruz L.E.; Padilha I.Q.M.; Silveira C.H.; Araujo D.A.M.; Rocha G.B.; Discovery of RTA ricin subunit inhibitors: A computational study using PM7 quantum chemical method and steered molecular dynamics. J Biomol Struct Dyn 2022,40(12),5427-5445 PubMed DOI

Botelho F.D.; dos Santos M.C.; Gonçalves A.S.; Kuca K.; Valis M.; LaPlante S.R.; França T.C.C.; de Almeida J.S.F.D.; Ligand-based virtual screening, molecular docking, molecular dynamics, and mm-pbsa calculations towards the identification of potential novel ricin inhibitors. Toxins 2020,12(12),746 PubMed DOI

Botelho F.D.; Santos M.C.; Gonçalves A.S.; França T.C.; LaPlante S.R.; de Almeida J.S.; Identification of novel potential ricin inhibitors by virtual screening, molecular docking, molecular dynamics and MM-PBSA calculations: A drug repurposing approach. J Biomol Struct Dyn 2020,1-11 PubMed

Jasheway K.; Pruet J.; Anslyn E.V.; Robertus J.D.; Structure-based design of ricin inhibitors. Toxins 2011,3(10),1233-1248 PubMed DOI

Pruet J.M.; Saito R.; Manzano L.A.; Jasheway K.R.; Wiget P.A.; Kamat I.; Anslyn E.V.; Robertus J.D.; Optimized 5-membered heterocycle-linked pterins for the inhibition of Ricin Toxin A. ACS Med Chem Lett 2012,3(7),588-591 PubMed DOI

França T.C.C.; Botelho F.D.; Drummond M.L.; LaPlante S.R.; Theoretical investigation of repurposed drugs potentially capable of binding to the catalytic site and the secondary binding pocket of subunit a of ricin. ACS Omega 2022,7(36),32805-32815 PubMed DOI

Pruet J.M.; Jasheway K.R.; Manzano L.A.; Bai Y.; Anslyn E.V.; Robertus J.D.; 7-Substituted pterins provide a new direction for ricin A chain inhibitors. Eur J Med Chem 2011,46(9),3608-3615 PubMed DOI

Saito R.; Pruet J.M.; Manzano L.A.; Jasheway K.; Monzingo A.F.; Wiget P.A.; Kamat I.; Anslyn E.V.; Robertus J.D.; Peptide-conjugated pterins as inhibitors of ricin toxin A. J Med Chem 2013,56(1),320-329 PubMed DOI

Wiget P.A.; Manzano L.A.; Pruet J.M.; Gao G.; Saito R.; Monzingo A.F.; Jasheway K.R.; Robertus J.D.; Anslyn E.V.; Sulfur incorporation generally improves Ricin inhibition in pterin-appended glycine-phenylalanine dipeptide mimics. Bioorg Med Chem Lett 2013,23(24),6799-6804 PubMed DOI

Monzingo A.F.; Robertus J.D.; X-ray analysis of substrate analogs in the ricin A-chain active site. J Mol Biol 1992,227(4),1136-1145 PubMed DOI

Yan X.; Hollis T.; Svinth M.; Day P.; Monzingo A.F.; Milne G.W.A.; Robertus J.D.; Structure-based identification of a ricin inhibitor. J Mol Biol 1997,266(5),1043-1049 PubMed DOI

Bai Y.; Monzingo A.F.; Robertus J.D.; The X-ray structure of ricin A chain with a novel inhibitor. Arch Biochem Biophys 2009,483(1),23-28 PubMed DOI

Zhao X.; Li H.; Li J.; Liu K.; Wang B.; Wang Y.; Li X.; Zhong W.; Novel small molecule retrograde transport blocker confers post-exposure protection against ricin intoxication. Acta Pharm Sin B 2020,10(3),498-511 PubMed DOI

Seaman M.N.J.; Peden A.A.; Ricin toxin hits a retrograde roadblock. Cell 2010,141(2),222-224 PubMed DOI

Park J.G.; Kahn J.N.; Tumer N.E.; Pang Y.P.; Chemical structure of Retro-2, a compound that protects cells against ribosome-inactivating proteins. Sci Rep 2012,2(1),631 PubMed DOI

Li X.P.; Harijan R.K.; Cao B.; Kahn J.N.; Pierce M.; Tsymbal A.M.; Roberge J.Y.; Augeri D.; Tumer N.E.; Synthesis and structural characterization of ricin inhibitors targeting ribosome binding using fragment-based methods and structure-based design. J Med Chem 2021,64(20),15334-15348 PubMed DOI

Li X.P.; Harijan R.K.; Kahn J.N.; Schramm V.L.; Tumer N.E.; Small molecule inhibitors targeting the interaction of ricin toxin A subunit with ribosomes. ACS Infect Dis 2020,6(7),1894-1905 PubMed DOI

Bai Y.; Watt B.; Wahome P.G.; Mantis N.J.; Robertus J.D.; Identification of new classes of ricin toxin inhibitors by virtual screening. Toxicon 2010,56(4),526-534 PubMed DOI

Abagyan R.; Totrov M.; Kuznetsov D.; ICM—A new method for protein modeling and design: Applications to docking and structure prediction from the distorted native conformation. J Comput Chem 1994,15(5),488-506 DOI

Jones G.; Willett P.; Glen R.C.; Leach A.R.; Taylor R.; Development and validation of a genetic algorithm for flexible docking 1 1Edited by F. E. Cohen. J Mol Biol 1997,267(3),727-748 PubMed DOI

Mishra V.; Siva Prasad C.V.S.; Ligand based virtual screening to find novel inhibitors against plant toxin Ricin by using the ZINC database. Bioinformation 2011,7(1),46-51 PubMed DOI

Korb O.; Stützle T.; Exner T.E.; Empirical scoring functions for advanced protein-ligand docking with PLANTS. J Chem Inf Model 2009,49(1),84-96 PubMed DOI

Boittier E.D.; Tang Y.Y.; Buckley M.E.; Schuurs Z.P.; Richard D.J.; Gandhi N.S.; Assessing molecular docking tools to guide targeted drug discovery of CD38 inhibitors. Int J Mol Sci 2020,21(15),5183 PubMed DOI

Pagadala N.S.; Syed K.; Tuszynski J.; Software for molecular docking: A review. 2017,9(2),91-102 DOI

Abraham M.J.; Murtola T.; Schulz R.; Páll S.; Smith J.C.; Hess B.; Lindahl E.; GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX 2015,1-2,19-25 DOI

Nelson M.T.; Humphrey W.; Gursoy A.; Dalke A.; Kalé L.V.; Skeel R.D.; Schulten K.; NAMD: A parallel, object-oriented molecular dynamics program. Int J High Perform Comput Appl 1996,10(4),251-268 DOI

Phillips J.C.; Hardy D.J.; Maia J.D.C.; Stone J.E.; Ribeiro J.V.; Bernardi R.C.; Buch R.; Fiorin G.; Hénin J.; Jiang W.; McGreevy R.; Melo M.C.R.; Radak B.K.; Skeel R.D.; Singharoy A.; Wang Y.; Roux B.; Aksimentiev A.; Luthey-Schulten Z.; Kalé L.V.; Schulten K.; Chipot C.; Tajkhorshid E.; Scalable molecular dynamics on CPU and GPU architectures with NAMD. J Chem Phys 2020,153(4),044130 PubMed DOI

Godal A.; Fodstad Ø.; Pihl A.; Antibody formation against the cytotoxic proteins abrin and ricin in humans and mice. Int J Cancer 1983,32(4),515-521 PubMed DOI

Houston L.L.; Protection of mice from ricin poisoning by treatment with antibodies directed against ricin. J Toxicol Clin Toxicol 1982,19(4),385-389 PubMed DOI

Pelat T.; Hust M.; Hale M.; Lefranc M.P.; Dübel S.; Thullier P.; Isolation of a human-like antibody fragment (scFv) that neutralizes ricin biological activity. BMC Biotechnol 2009,9(1),60 PubMed DOI

Wang Y.; Guo L.; Zhao K.; Chen J.; Feng J.; Sun Y.; Li Y.; Shen B.; Novel chimeric anti-ricin antibody C4C13 with neutralizing activity against ricin toxicity. Biotechnol Lett 2007,29(12),1811-1816 PubMed DOI

Pratt T.S.; Pincus S.H.; Hale M.L.; Moreira A.L.; Roy C.J.; Tchou-Wong K.M.; Oropharyngeal aspiration of ricin as a lung challenge model for evaluation of the therapeutic index of antibodies against ricin A-chain for post-exposure treatment. Exp Lung Res 2007,33(8-9),459-481 PubMed DOI

Vance D.J.; Tremblay J.M.; Mantis N.J.; Shoemaker C.B.; Stepwise engineering of heterodimeric single domain camelid VHH antibodies that passively protect mice from ricin toxin. J Biol Chem 2013,288(51),36538-36547 PubMed DOI

Poli M.A.; Rivera V.R.; Pitt M.L.; Vogel P.; Aerosolized specific antibody protects mice from lung injury associated with aerosolized ricin exposure. Toxicon 1996,34(9),1037-1044 PubMed DOI

Foxwell B.; Detre S.; Donovan T.; Thorpe P.; The use of anti-ricin antibodies to protect mice intoxicated with ricin. Toxicology 1985,34(1),79-88 PubMed DOI

McGuinness C.R.; Mantis N.J.; Characterization of a novel high-affinity monoclonal immunoglobulin G antibody against the ricin B subunit. Infect Immun 2006,74(6),3463-3470 PubMed DOI

Vance D.J.; Poon A.Y.; Mantis N.J.; Sites of vulnerability on ricin B chain revealed through epitope mapping of toxin-neutralizing monoclonal antibodies. PLoS One 2020,15(11),e0236538 PubMed DOI

Yermakova A.; Mantis N.J.; Protective immunity to ricin toxin conferred by antibodies against the toxin’s binding subunit (RTB). Vaccine 2011,29(45),7925-7935 PubMed DOI

Hu W.G.; Yin J.; Chau D.; Hu C.C.; Lillico D.; Yu J.; Negrych L.M.; Cherwonogrodzky J.W.; Conformation-dependent high-affinity potent ricin-neutralizing monoclonal antibodies. Biomed Res Int 2013,2013,471346 DOI

Prigent J.; Panigai L.; Lamourette P.; Sauvaire D.; Devilliers K.; Plaisance M.; Volland H.; Créminon C.; Simon S.; Neutralising antibodies against ricin toxin. PLoS One 2011,6(5),e20166 PubMed DOI

Orsini Delgado M.L.; Avril A.; Prigent J.; Dano J.; Rouaix A.; Worbs S.; Dorner B.G.; Rougeaux C.; Becher F.; Fenaille F.; Livet S.; Volland H.; Tournier J.N.; Simon S.; Ricin antibodies’ neutralizing capacity against different ricin isoforms and cultivars. Toxins 2021,13(2),100 PubMed DOI

Rong Y.; Torres-Velez F.J.; Ehrbar D.; Doering J.; Song R.; Mantis N.J.; An intranasally administered monoclonal antibody cocktail abrogates ricin toxin-induced pulmonary tissue damage and inflammation. Hum Vaccin Immunother 2020,16(4),793-807 PubMed DOI

Rong Y.; Pauly M.; Guthals A.; Pham H.; Ehrbar D.; Zeitlin L.; Mantis N.J.; A humanized monoclonal antibody cocktail to prevent pulmonary ricin intoxication. Toxins 2020,12(4),215 PubMed DOI

Yu H.; Li S.; Xu N.; Liu W.; Ricin toxin and its neutralizing antibodies: A review. Toxicon 2022,214,47-53 PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...