Fate of fluoroquinolones in field soil environment after incorporation of poultry litter from a farm with enrofloxacin administration via drinking water
Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
Action Plan of the National Antibiotic Programme of the Czech Republic
Ministerstvo Zemědělství
FCH-S-23-8297
Ministerstvo Školství, Mládeže a Tělovýchovy
PubMed
38367114
PubMed Central
PMC10927849
DOI
10.1007/s11356-024-32492-x
PII: 10.1007/s11356-024-32492-x
Knihovny.cz E-zdroje
- Klíčová slova
- Antimicrobial resistance, Fluoroquinolones, Liquid chromatography, Manure fertilization, Mass spectrometry, PCR, Solid phase extraction, Veterinary antimicrobials,
- MeSH
- antibakteriální látky analýza MeSH
- drůbež MeSH
- enrofloxacin MeSH
- farmy MeSH
- fluorochinolony * analýza MeSH
- hnůj analýza MeSH
- kur domácí metabolismus MeSH
- pitná voda * analýza MeSH
- půda MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- antibakteriální látky MeSH
- enrofloxacin MeSH
- fluorochinolony * MeSH
- hnůj MeSH
- pitná voda * MeSH
- půda MeSH
The practice of incorporating animal manure into soil is supported within the European Circular economy as a possible substitute for mineral fertilizers and will become crucial for the sustainability of agriculture. However, this practice may indirectly contribute to the dissemination of antibiotics, resistance bacteria, and resistance genes. In this study, medicated drinking water and poultry litter samples were obtained from a broiler-chick farm. The obtained poultry litter was incorporated into the soil at the experimental field site. The objectives of this research project were first to develop analytical methods able to quantify fluoroquinolones (FQs) in medicated drinking water, poultry litter, and soil samples by LC-MS; second to study the fate of these FQs in the soil environment after incorporation of poultry litter from flock medicated by enrofloxacin (ENR); and third to screen the occurrence of selected fluoroquinolone resistance encoding genes in poultry litter and soil samples (PCR analysis). FQs were quantified in the broiler farm's medicated drinking water (41.0 ± 0.3 mg∙L-1 of ENR) and poultry litter (up to 70 mg∙kg-1 of FQs). The persistence of FQs in the soil environment over 112 days was monitored and evaluated (ENR concentrations ranged from 36 μg∙kg-1 to 9 μg∙kg-1 after 100 days). The presence of resistance genes was confirmed in both poultry litter and soil samples, in agreement with the risk assessment for the selection of AMR in soil based on ENR concentrations. This work provides a new, comprehensive perspective on the entry and long-term fate of antimicrobials in the terrestrial environment and their consequences after the incorporation of poultry litter into agricultural fields.
Institute for State Control of Veterinary Biologicals and Medicines Hudcova 56 A Brno Czech Republic
Zobrazit více v PubMed
Aga DS, Lenczewski M, Snow D, Muurinen J, Sallach JB, Wallace JS. Challenges in the measurement of antibiotics and in evaluating their impacts in agroecosystems: a critical review. J Environ Qual. 2016;45:407–419. doi: 10.2134/jeq2015.07.0393. PubMed DOI
Albero B, Tadeo JL, Escario M, Miguel E, Pérez RA. Persistence and availability of veterinary antibiotics in soil and soil-manure systems. Sci Total Environ. 2018;643:1562–1570. doi: 10.1016/j.scitotenv.2018.06.314. PubMed DOI
Amr Alliance science-based PNEC targets for risk assessments (2023) Available at: https://www.amrindustryalliance.org/wp-content/uploads/2023/02/AMR-Table-1-Update-20230222_corrected.pdf
An J, Chen H, Wei S, Gu J. Antibiotic contamination in animal manure, soil, and sewage sludge in Shenyang, northeast China. Environ Earth Sci. 2015;74:5077–5086. doi: 10.1007/s12665-015-4528-y. DOI
Arun S, Kumar RM, Ruppa J, Mukhopadhyay M, Ilango K, Chakraborty P. Occurrence, sources and risk assessment of fluoroquinolones in dumpsite soil and sewage sludge from Chennai. India Environmental Toxicology and Pharmacology. 2020;79:103410. doi: 10.1016/j.etap.2020.103410. PubMed DOI
Bartrons M, Peñuelas J. Pharmaceuticals and personal-care products in plants. Trends Plant Sci. 2017;22:194–203. doi: 10.1016/j.tplants.2016.12.010. PubMed DOI
Boxall ABA, Johnson P, Smith EJ, Sinclair CJ, Stutt E, Levy LS. Uptake of veterinary medicines from soils into plants. J Agric Food Chem. 2006;54:2288–2297. doi: 10.1021/jf053041t. PubMed DOI
Butler E, Whelan MJ, Ritz K, Sakrabani R, van Egmond R. The effect of triclosan on microbial community structure in three soils. Chemosphere. 2012;89:1–9. doi: 10.1016/j.chemosphere.2012.04.002. PubMed DOI
Caracciolo AB, Visca A, Rauseo J, Spataro F, Garbini GL, Grenni P, Mariani L, Mazzurco Miritana V, Massini G, Patrolecco L. Bioaccumulation of antibiotics and resistance genes in lettuce following cattle manure and digestate fertilization and their effects on soil and phyllosphere microbial communities. Environ Pollut. 2022;315:120413. doi: 10.1016/j.envpol.2022.120413. PubMed DOI
Carballo EM, González-Barreiro C, Scharf S, Gans O. Environmental monitoring study of selected veterinary antibiotics in animal manure and soils in Austria. Environ Pollut. 2007;148:570–579. doi: 10.1016/j.envpol.2006.11.035. PubMed DOI
Carlsson C, Johansson A-K, Alvan G, Bergman K, Kühler T. Are pharmaceuticals potent environmental pollutants? Sci Total Environ. 2006;364:67–87. doi: 10.1016/j.scitotenv.2005.06.035. PubMed DOI
Cattoir V, Poirel L, Rotimi V, Soussy C-J, Nordmann P. Multiplex PCR for detection of plasmid-mediated quinolone resistance qnr genes in ESBL-producing enterobacterial isolates. J Antimicrob Chemother. 2007;60:394–397. doi: 10.1093/jac/dkm204. PubMed DOI
Cycoń M, Mrozik A, Piotrowska-Seget Z (2019) Antibiotics in the soil environment—degradation and their impact on microbial activity and diversity. Front Microbiol 10:338. 10.3389/fmicb.2019.00338 PubMed PMC
Deschamps BM, Leang S, Bernet N, Daudin J-J, Nélieu S. Multi-residue analysis of pharmaceuticals in aqueous environmental samples by online solid-phase extraction–ultra-high-performance liquid chromatography-tandem mass spectrometry: optimisation and matrix effects reduction by quick, easy, cheap, effective, rugged and safe extraction. J Chromatogr A. 2014;1349:11–23. doi: 10.1016/j.chroma.2014.05.006. PubMed DOI
Deschamps BM, Ferhi S, Bernet N, et al. Fate and impacts of pharmaceuticals and personal care products after repeated applications of organic waste products in long-term field experiments. Sci Total Environ. 2017;607–608:271–280. doi: 10.1016/j.scitotenv.2017.06.240. PubMed DOI
Du L, Liu W. Occurrence, fate, and ecotoxicity of antibiotics in agro-ecosystems A Review. Agron Sustain Dev. 2011;32:309–327. doi: 10.1007/s13593-011-0062-9. DOI
Fatta-Kassinos D, Meric S, Nikolaou A. Pharmaceutical residues in environmental waters and wastewater: current state of knowledge and future research. Anal Bioanal Chem. 2010;399:251–275. doi: 10.1007/s00216-010-4300-9. PubMed DOI
Ferrero GP, Borova V, Dasenaki ME, Τhomaidis ΝS. Simultaneous determination of 148 pharmaceuticals and illicit drugs in sewage sludge based on ultrasound-assisted extraction and liquid chromatography–tandem mass spectrometry. Anal Bioanal Chem. 2015;407:4287–4297. doi: 10.1007/s00216-015-8540-6. PubMed DOI
Gibs J, Heckathorn HA, Meyer MT, Klapinski FR, Alebus M, Lippincott RL. Occurrence and partitioning of antibiotic compounds found in the water column and bottom sediments from a stream receiving two wastewater treatment plant effluents in Northern New Jersey, 2008. Sci Total Environ. 2013;458–460:107–116. doi: 10.1016/j.scitotenv.2013.03.076. PubMed DOI
Gros M, Marti E, Balcázar JL, et al. Fate of pharmaceuticals and antibiotic resistance genes in a full-scale on-farm livestock waste treatment plant. J Hazard Mater. 2019;378:120716. doi: 10.1016/j.jhazmat.2019.05.109. PubMed DOI
Gros M, Mas-Pla J, Boy-Roura M, Geli I, Domingo F, Petrović M. Veterinary pharmaceuticals and antibiotics in manure and slurry and their fate in amended agricultural soils: Findings from an experimental field site (Baix Empordà, NE Catalonia) Sci Total Environ. 2019;654:1337–1349. doi: 10.1016/j.scitotenv.2018.11.061. PubMed DOI
Gutiérrez FJ, Barbosa J, Barrón D. Metabolic study of enrofloxacin and metabolic profile modifications in broiler chicken tissues after drug administration. Food Chem. 2015;172:30–39. doi: 10.1016/j.foodchem.2014.09.025. PubMed DOI
Gworek B, Kijeńska M, Zaborowska M, Wrzosek J, Tokarz L, Chmielewski J. Pharmaceuticals in aquatic environment Fate and behaviour, ecotoxicology and risk assessment – a review. Acta Pol Pharm - Drug Res. 2019;76:397–407. doi: 10.32383/appdr/103368. DOI
Gworek B, Kijeńska M, Wrzosek J, Graniewska M. Pharmaceuticals in the soil and plant environment: a review. Water Air Soil Pollut. 2021 doi: 10.1007/s11270-020-04954-8.10.1007/s11270-020-04954-8. DOI
Han X-M, Hu H-W, Chen Q-L, Yang L-Y, Li H-L, Zhu Y-G, Li X-Z, Ma Y-B. Antibiotic resistance genes and associated bacterial communities in agricultural soils amended with different sources of animal manures. Soil Biol Biochem. 2018;126:91–102. doi: 10.1016/j.soilbio.2018.08.018. DOI
Ho YB, Zakaria MP, Latif PA, Saari N. Occurrence of veterinary antibiotics and progesterone in broiler manure and agricultural soil in Malaysia. Sci Total Environ. 2014;488–489:261–267. doi: 10.1016/j.scitotenv.2014.04.109. PubMed DOI
Hou J, Wan W, Mao D, Wang C, Mu Q, Qin S, Luo Y. Occurrence and distribution of sulfonamides, tetracyclines, quinolones, macrolides, and nitrofurans in livestock manure and amended soils of Northern China. Environ Sci Pollut Res. 2014;22:4545–4554. doi: 10.1007/s11356-014-3632-y. PubMed DOI
Hu X, Zhou Q, Luo Y. Occurrence and source analysis of typical veterinary antibiotics in manure, soil, vegetables and groundwater from organic vegetable bases, northern China. Environ Pollut. 2010;158:2992–2998. doi: 10.1016/j.envpol.2010.05.023. PubMed DOI
Huang Y, Cheng M, Li W, Wu L, Chen Y, Luo Y, Christie P, Zhang H. Simultaneous extraction of four classes of antibiotics in soil, manure and sewage sludge and analysis by liquid chromatography-tandem mass spectrometry with the isotope-labelled internal standard method. Anal Methods. 2013;5:3721. doi: 10.1039/c3ay40220g. DOI
Jechalke S, Heuer H, Siemens J, Amelung W, Smalla K. Fate and effects of veterinary antibiotics in soil. Trends Microbiol. 2014;22:536–545. doi: 10.1016/j.tim.2014.05.005. PubMed DOI
Kim K-R, Owens G, Kwon S-I, So K-H, Lee D-B, Ok YS. Occurrence and environmental fate of veterinary antibiotics in the terrestrial environment. Water Air Soil Pollut. 2010;214:163–174. doi: 10.1007/s11270-010-0412-2. DOI
Kodešová R, Grabic R, Kočárek M, Klement A, Golovko O, Fér M, Nikodem A, Jakšík O. Pharmaceuticals’ sorptions relative to properties of thirteen different soils. Sci Total Environ. 2015;511:435–443. doi: 10.1016/j.scitotenv.2014.12.088. PubMed DOI
Kuppusamy S, Kakarla D, Venkateswarlu K, Megharaj M, Yoon Y-E, Lee YB. Veterinary antibiotics (VAs) contamination as a global agro-ecological issue: a critical view. Agr Ecosyst Environ. 2018;257:47–59. doi: 10.1016/j.agee.2018.01.026. DOI
Li Y, He J, Qi H, Li H, Boyd SA, Zhang W. Impact of biochar amendment on the uptake, fate and bioavailability of pharmaceuticals in soil-radish systems. J Hazard Mater. 2020;398:122852. doi: 10.1016/j.jhazmat.2020.122852. PubMed DOI
Marti E, Balcázar JL. Real-time PCR assays for quantification of qnr genes in environmental water samples and chicken feces. Appl Environ Microbiol. 2013;79:1743–1745. doi: 10.1128/aem.03409-12. PubMed DOI PMC
Martinez M, McDermott P, Walker R. Pharmacology of the fluoroquinolones: a perspective for the use in domestic animals. Vet J. 2006;172:10–28. doi: 10.1016/j.tvjl.2005.07.010. PubMed DOI
Mohring SAI, Strzysch I, Fernandes MR, Kiffmeyer TK, Tuerk J, Hamscher G. Degradation and elimination of various sulfonamides during anaerobic fermentation: a promising step on the way to sustainable pharmacy? Environ Sci Technol. 2009;43:2569–2574. doi: 10.1021/es802042d. PubMed DOI
Mompelat S, Jaffrezic A, Jardé E, Le Bot B. Storage of natural water samples and preservation techniques for pharmaceutical quantification. Talanta. 2013;109:31–45. doi: 10.1016/j.talanta.2013.01.042. PubMed DOI
Motoyama M, Nakagawa S, Tanoue R, Sato Y, Nomiyama K, Shinohara R. Residues of pharmaceutical products in recycled organic manure produced from sewage sludge and solid waste from livestock and relationship to their fermentation level. Chemosphere. 2011;84:432–438. doi: 10.1016/j.chemosphere.2011.03.048. PubMed DOI
Mu Q, Li J, Sun Y, Mao D, Wang Q, Luo Y. Occurrence of sulfonamide-, tetracycline-, plasmid-mediated quinolone- and macrolide-resistance genes in livestock feedlots in Northern China. Environ Sci Pollut Res. 2014;22:6932–6940. doi: 10.1007/s11356-014-3905-5. PubMed DOI
Murray CJL, Ikuta KS, Sharara F, et al. Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis. Lancet. 2022;399:629–655. doi: 10.1016/S0140-6736(21)02724-0. PubMed DOI PMC
Niemi L, Taggart M, Boyd K, Zhang Z, Gaffney PPJ, Pfleger S, Gibb S (2020) Assessing hospital impact on pharmaceutical levels in a rural ‘source-to-sink’ water system. Sci Total Environ 737:139618. 10.1016/j.scitotenv.2020.139618 PubMed
Pan M, Chu LM. Adsorption and degradation of five selected antibiotics in agricultural soil. Sci Total Environ. 2016;545–546:48–56. doi: 10.1016/j.scitotenv.2015.12.040. PubMed DOI
Pan M, Chu LM. Fate of antibiotics in soil and their uptake by edible crops. Sci Total Environ. 2017;599–600:500–512. doi: 10.1016/j.scitotenv.2017.04.214. PubMed DOI
Parente CET, Azeredo A, Vollú RE, Zonta E, Azevedo-Silva CE, Brito EMS, Seldin L, Torres JPM, Meire RO, Malm O. Fluoroquinolones in agricultural soils: multi-temporal variation and risks in Rio de Janeiro upland region. Chemosphere. 2019;219:409–417. doi: 10.1016/j.chemosphere.2018.11.184. PubMed DOI
Parente CET, Brito EMS, Azeredo A, Meire RO, Malm O (2019a) Fluoroquinolone antibiotics and their interactions in agricultural soils – a review. Orbital: Electron J Chem. 10.17807/orbital.v11i1.1352
Park CH, Robicsek A, Jacoby GA, Sahm D, Hooper DC. Prevalence in the United States of aac(6 ′ ) - Ib - cr encoding a ciprofloxacin-modifying enzyme. Antimicrob Agents Chemother. 2006;50:3953–3955. doi: 10.1128/aac.00915-06. PubMed DOI PMC
Petrovic M. Methodological challenges of multi-residue analysis of pharmaceuticals in environmental samples. Trends Environ Anal Chem. 2014;1:e25–e33. doi: 10.1016/j.teac.2013.11.004. DOI
Pikkemaat MG, Yassin H, Fels-Klerx HJ, Berendsen BJA (2016) Antibiotic residues and resistance in the environment. RIKILT-report, no. 2016.009, RIKILT, Wageningen. 10.18174/388253
Pino MR, Val J, Mainar AM, Zuriaga E, Español C, Langa E. Acute toxicological effects on the earthworm Eisenia fetida of 18 common pharmaceuticals in artificial soil. Sci Total Environ. 2015;518–519:225–237. doi: 10.1016/j.scitotenv.2015.02.080. PubMed DOI
Pourcher A-M, Jadas-Hécart A, Cotinet P, Dabert P, Ziebal C, Le Roux S, Moraru R, Heddadj D, Kempf I. Effect of land application of manure from enrofloxacin-treated chickens on ciprofloxacin resistance of Enterobacteriaceae in soil. Sci Total Environ. 2014;482–483:269–275. doi: 10.1016/j.scitotenv.2014.02.136. PubMed DOI
Qassim B, Razzak AA, Kamil GM, Heino MM, Morabito D (2020) Quantitative determination of fluoroquinolones in contaminated soils by HPLC with solid-phase extraction. Baghdad Sci J 17:0048. 10.21123/bsj.2020.17.1.0048
Qian X, Wang Z, Zhang H, Gu H, Shen G (2022) Occurrence of veterinary antibiotics in animal manure, compost, and agricultural soil, originating from different feedlots in suburbs of Shanghai, East China. Environ Monit Assess 194:379. 10.1007/s10661-022-10010-1 PubMed
Quaik S, Embrandiri A, Ravindran B, Hossain K, Al-Dhabi NA, Arasu MV, Ignacimuthu S, Ismail N. Veterinary antibiotics in animal manure and manure laden soil: scenario and challenges in Asian countries. J King Saud Univ - Sci. 2020;32:1300–1305. doi: 10.1016/j.jksus.2019.11.015. DOI
Rakonjac N, van der Zee SEATM, Wipfler L, Roex E, Kros H. Emission estimation and prioritization of veterinary pharmaceuticals in manure slurries applied to soil. Sci Total Environ. 2022;815:152938. doi: 10.1016/j.scitotenv.2022.152938. PubMed DOI
Rehman MSU, Rashid N, Ashfaq M, Saif A, Ahmad N, Han J-I. Global risk of pharmaceutical contamination from highly populated developing countries. Chemosphere. 2015;138:1045–1055. doi: 10.1016/j.chemosphere.2013.02.036. PubMed DOI
Reyes-Herrera I, Schneider MJ, Blore PJ, Donoghue DJ. The relationship between blood and muscle samples to monitor for residues of the antibiotic enrofloxacin in chickens. Poult Sci. 2011;90:481–485. doi: 10.3382/ps.2010-01057. PubMed DOI
Rusu A, Hancu G, Uivaroşi V. Fluoroquinolone pollution of food, water and soil, and bacterial resistance. Environ Chem Lett. 2014;13:21–36. doi: 10.1007/s10311-014-0481-3. DOI
Sanford JC, Mackie RI, Koike S, Krapac IG, Lin Y, Yannarell AC, Maxwell S, Aminov RI. Fate and transport of antibiotic residues and antibiotic resistance genes following land application of manure waste. J Environ Qual. 2009;38:1086–1108. doi: 10.2134/jeq2008.0128. PubMed DOI
Schlüsener MP, Bester K. Persistence of antibiotics such as macrolides, tiamulin and salinomycin in soil. Environ Pollut. 2006;143:565–571. doi: 10.1016/j.envpol.2005.10.049. PubMed DOI
Silva JJ, Silva BF, Stradiotto NR, Petrovic M, Gago-Ferrero P, Gros M. Pressurized Liquid Extraction (PLE) and QuEChERS evaluation for the analysis of antibiotics in agricultural soils. MethodsX. 2020;7:101171. doi: 10.1016/j.mex.2020.101171. PubMed DOI PMC
Slana M, Sollner-Dolenc M. Enrofloxacin degradation in broiler chicken manure under various laboratory conditions. Environ Sci Pollut Res. 2015;23:4422–4429. doi: 10.1007/s11356-015-5624-y. PubMed DOI
Slana M, Žigon D, Sollner-Dolenc M. Enrofloxacin degradation in broiler chicken manure under field conditions and its residuals effects to the environment. Environ Sci Pollut Res. 2017;24:13722–13731. doi: 10.1007/s11356-017-8722-1. PubMed DOI
Solliec M, Roy-Lachapelle A, Gasser M-O, Coté C, Généreux M, Sauvé S. Fractionation and analysis of veterinary antibiotics and their related degradation products in agricultural soils and drainage waters following swine manure amendment. Sci Total Environ. 2016;543:524–535. doi: 10.1016/j.scitotenv.2015.11.061. PubMed DOI
Song W, Guo M (2014) Residual veterinary pharmaceuticals in animal manures and their environmental behaviors in soils. In: He Z, Zhang H (eds) Applied manure and nutrient chemistry for sustainable agriculture and environment. Springer, Dordrecht. 10.1007/978-94-017-8807-6_2
Strahilevitz J, Jacoby GA, Hooper DC, Robicsek A. Plasmid-mediated quinolone resistance: a multifaceted threat. Clin Microbiol Rev. 2009;22:664–689. doi: 10.1128/cmr.00016-09. PubMed DOI PMC
Sun J, Zeng Q, Tsang DCW, Zhu LZ, Li XD. Antibiotics in the agricultural soils from the Yangtze River Delta, China. Chemosphere. 2017;189:301–308. doi: 10.1016/j.chemosphere.2017.09.040. PubMed DOI
Temmerman R, Pelligand L, Schelstraete W, Antonissen G, Garmyn A, Devreese M. Enrofloxacin dose optimization for the treatment of colibacillosis in broiler chickens using a drinking behaviour pharmacokinetic model. Antibiotics. 2021;10:604. doi: 10.3390/antibiotics10050604. PubMed DOI PMC
Turiel E, Martín-Esteban A, Tadeo JL. Multiresidue analysis of quinolones and fluoroquinolones in soil by ultrasonic-assisted extraction in small columns and HPLC-UV. Anal Chim Acta. 2006;562:30–35. doi: 10.1016/j.aca.2006.01.054. DOI
Uslu MÖ, Yediler A, Balcıoğlu IA, Schulte-Hostede S. Analysis and sorption behavior of fluoroquinolones in solid matrices. Water Air Soil Pollut. 2007;190:55–63. doi: 10.1007/s11270-007-9580-0. DOI
Veldman K, Cavaco LM, Mevius D, et al. International collaborative study on the occurrence of plasmid-mediated quinolone resistance in Salmonella enterica and Escherichia coli isolated from animals, humans, food and the environment in 13 European countries. J Antimicrob Chemother. 2011;66:1278–1286. doi: 10.1093/jac/dkr084. PubMed DOI
Wang F, Fu Y-H, Sheng H-J, Topp E, Jiang X, Zhu Y-G, Tiedje JM. Antibiotic resistance in the soil ecosystem: a one health perspective. Curr Opin Environ Sci Health. 2021;20:100230. doi: 10.1016/j.coesh.2021.100230. DOI
Wei R, Ge F, Zhang L, Hou X, Cao Y, Gong L, Chen M, Wang R, Bao E. Occurrence of 13 veterinary drugs in animal manure-amended soils in Eastern China. Chemosphere. 2016;144:2377–2383. doi: 10.1016/j.chemosphere.2015.10.126. PubMed DOI
Xu Y, Yu W, Ma Q, Zhou H. Occurrence of (fluoro)quinolones and (fluoro)quinolone resistance in soil receiving swine manure for 11 years. Sci Total Environ. 2015;530–531:191–197. doi: 10.1016/j.scitotenv.2015.04.046. PubMed DOI
Xu Y, Li H, Shi R, Lv J, Li B, Yang F, Zheng X, Xu J. Antibiotic resistance genes in different animal manures and their derived organic fertilizer. Environ Sci Eur. 2020 doi: 10.1186/s12302-020-00381-y. DOI
Yamane K, Wachino J, Suzuki S, Arakawa Y. Plasmid-mediated qepA gene among Escherichia coli clinical isolates from Japan. Antimicrob Agents Chemother. 2008;52:1564–1566. doi: 10.1128/aac.01137-07. PubMed DOI PMC
Yang L, Wu L, Liu W, Huang Y, Luo Y, Christie P. Dissipation of antibiotics in three different agricultural soils after repeated application of biosolids. Environ Sci Pollut Res. 2016;25:104–114. doi: 10.1007/s11356-016-8062-6. PubMed DOI
Yu Z, Yediler A, Yang M, Schulte-Hostede S. Leaching behavior of enrofloxacin in three different soils and the influence of a surfactant on its mobility. J Environ Sci. 2012;24:435–439. doi: 10.1016/s1001-0742(11)60771-7. PubMed DOI
Zeri M, Alvalá RS, Carneiro R, Cunha-Zeri G, Costa J, Rossato Spatafora L, Urbano D, Vall-Llossera M, Marengo J. Tools for communicating agricultural drought over the Brazilian semiarid using the soil moisture index. Water. 2018;10:1421. doi: 10.3390/w10101421. DOI
Zhang H, Luo Y, Wu L, Huang Y, Christie P. Residues and potential ecological risks of veterinary antibiotics in manures and composts associated with protected vegetable farming. Environ Sci Pollut Res. 2014;22:5908–5918. doi: 10.1007/s11356-014-3731-9. PubMed DOI
Zhao L, Dong YH, Wang H. Residues of veterinary antibiotics in manures from feedlot livestock in eight provinces of China. Sci Total Environ. 2010;408:1069–1075. doi: 10.1016/j.scitotenv.2009.11.014. PubMed DOI