Electrochemical biosensors for pathogenic microorganisms detection based on recognition elements
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, přehledy
Grantová podpora
ZR2021MH146
Natural Science Foundation of Shandong Province
202012060616
Medicine and Health Science and Technology Development Plan Project of Shandong Province
PubMed
38367165
DOI
10.1007/s12223-024-01144-5
PII: 10.1007/s12223-024-01144-5
Knihovny.cz E-zdroje
- Klíčová slova
- Biosensor, Detection, Electrochemical, Pathogenic microorganism, Recognition element,
- MeSH
- Bacteria * izolace a purifikace klasifikace genetika MeSH
- biosenzitivní techniky * metody MeSH
- elektrochemické techniky * metody přístrojové vybavení MeSH
- lidé MeSH
- vyšetření u lůžka MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
The worldwide spread of pathogenic microorganisms poses a significant risk to human health. Electrochemical biosensors have emerged as dependable analytical tools for the point-of-care detection of pathogens and can effectively compensate for the limitations of conventional techniques. Real-time analysis, high throughput, portability, and rapidity make them pioneering tools for on-site detection of pathogens. Herein, this work comprehensively reviews the recent advances in electrochemical biosensors for pathogen detection, focusing on those based on the classification of recognition elements, and summarizes their principles, current challenges, and prospects. This review was conducted by a systematic search of PubMed and Web of Science databases to obtain relevant literature and construct a basic framework. A total of 171 publications were included after online screening and data extraction to obtain information of the research advances in electrochemical biosensors for pathogen detection. According to the findings, the research of electrochemical biosensors in pathogen detection has been increasing yearly in the past 3 years, which has a broad development prospect, but most of the biosensors have performance or economic limitations and are still in the primary stage. Therefore, significant research and funding are required to fuel the rapid development of electrochemical biosensors. The overview comprehensively evaluates the recent advances in different types of electrochemical biosensors utilized in pathogen detection, with a view to providing insights into future research directions in biosensors.
Zobrazit více v PubMed
Abbaspour A, Norouz-Sarvestani F, Noori A, Soltani N (2015) Aptamer-conjugated silver nanoparticles for electrochemical dual-aptamer-based sandwich detection of staphylococcus aureus. Biosens Bioelectron 68:149–155. https://doi.org/10.1016/j.bios.2014.12.040 DOI
Abdelhamied N, Abdelrahman F, El-Shibiny A, Hassan RYA (2023) Bacteriophage-based nano-biosensors for the fast impedimetric determination of pathogens in food samples. Sci Rep 13:3498. https://doi.org/10.1038/s41598-023-30520-3 DOI
Abdelrasoul GN, Anwar A, MacKay S, Tamura M, Shah MA, Khasa DP, Montgomery RR, Ko AI, Chen J (2020) DNA aptamer-based non-faradaic impedance biosensor for detecting E. coli. Anal Chim Acta 1107:135–144. https://doi.org/10.1016/j.aca.2020.02.004 DOI
Adrover-Jaume C, Clemente A, Rodríguez-Urretavizcaya B, Vilaplana L, Marco MP, Rojo-Molinero E, Oliver A, de la Rica R (2023) A paper biosensor for overcoming matrix effects interfering with the detection of sputum pyocyanin with competitive immunoassays. Mikrochim Acta 190:441. https://doi.org/10.1007/s00604-023-06017-1 DOI
Ahangari H, Kurbanoglu S, Ehsani A, Uslu B (2021) Latest trends for biogenic amines detection in foods: enzymatic biosensors and nanozymes applications. Trends Food Sci Technol 112:75–87. https://doi.org/10.1016/j.tifs.2021.03.037 DOI
Ait Lahcen A, Arduini F, Lista F, Amine A (2018) Label-free electrochemical sensor based on spore-imprinted polymer for Bacillus cereus spore detection. Sens Actuators B Chem 276:114–120. https://doi.org/10.1016/j.snb.2018.08.031 DOI
Akgonullu S, Kilic S, Esen C, Denizli A (2023) Molecularly imprinted polymer-based sensors for protein detection. Polymers-Basel 15:629. https://doi.org/10.3390/polym15030629 DOI
Alafeef M, Dighe K, Moitra P, Pan D (2020) Rapid, ultrasensitive, and quantitative detection of SARS-CoV-2 using antisense oligonucleotides directed electrochemical biosensor chip. ACS Nano 14:17028–17045. https://doi.org/10.1021/acsnano.0c06392 DOI
Al-Hindi RR, Teklemariam AD, Alharbi MG, Alotibi I, Azhari SA, Qadri I, Alamri T, Harakeh S, Applegate BM, Bhunia AK (2022) Bacteriophage-based biosensors: a platform for detection of foodborne bacterial pathogens from food and environment. Biosensors-Basel 12:905. https://doi.org/10.3390/bios12100905 DOI
Ali MR, Bacchu MS, Setu MAA, Akter S, Hasan MN, Chowdhury FT, Rahman MM, Ahommed MS, Khan MZH (2021) Development of an advanced DNA biosensor for pathogenic Vibrio cholerae detection in real sample. Biosens Bioelectron 188:113338. https://doi.org/10.1016/j.bios.2021.113338 DOI
Ali MR, Bacchu MS, Das S, Akter S, Rahman MM, Saad Aly MA, Khan MZH (2023) Label free flexible electrochemical DNA biosensor for selective detection of Shigella flexneri in real food samples. Talanta 253:123909. https://doi.org/10.1016/j.talanta.2022.123909 DOI
Aliakbar Ahovan Z, Hashemi A, De Plano LM, Gholipourmalekabadi M, Seifalian A (2020) Bacteriophage based biosensors: trends, outcomes and challenges. Nanomaterials-Basel 10:501. https://doi.org/10.3390/nano10030501 DOI
Amiri M, Bezaatpour A, Jafari H, Boukherroub R, Szunerits S (2018) Electrochemical methodologies for the detection of pathogens. ACS Sens 3:1069–1086. https://doi.org/10.1021/acssensors.8b00239 DOI
Appaturi JN, Pulingam T, Thong KL, Muniandy S, Ahmad N, Leo BF (2020) Rapid and sensitive detection of Salmonella with reduced graphene oxide-carbon nanotube based electrochemical aptasensor. Anal Biochem 589:113489. https://doi.org/10.1016/j.ab.2019.113489 DOI
Arugula MA, Simonian A (2014) Novel trends in affinity biosensors: current challenges and perspectives. Meas Sci Technol 25:032001. https://doi.org/10.1088/0957-0233/25/3/032001 DOI
Aslam B, Wang W, Arshad MI, Khurshid M, Muzammil S, Rasool MH, Nisar MA, Alvi RF, Aslam MA, Qamar MU, Salamat MKF, Baloch Z (2018) Antibiotic resistance: a rundown of a global crisis. Infect Drug Resist 11:1645–1658. https://doi.org/10.2147/IDR.S173867 DOI
Avcioglu NH (2022) Bacterial cellulose: recent progress in production and industrial applications. World J Microbiol Biotechnol 38:86. https://doi.org/10.1007/s11274-022-03271-y DOI
Aydin EB, Aydin M, Sezgintürk MK (2019) Advances in electrochemical immunosensors. Adv Clin Chem 92:1–57. https://doi.org/10.1016/bs.acc.2019.04.006 DOI
Ayodele OO, Adesina AO, Pourianejad S, Averitt J, Ignatova T (2021) Recent advances in nanomaterial-based aptasensors in medical diagnosis and therapy. Nanomaterials-Basel 11:932. https://doi.org/10.3390/nano11040932 DOI
Bachour Junior B, Batistuti MR, Pereira AS, de Sousa Russo EM, Mulato M (2021) Electrochemical aptasensor for NS1 detection: towards a fast dengue biosensor. Talanta 233:122527. https://doi.org/10.1016/j.talanta.2021.122527 DOI
Bai C, Lu Z, Jiang H, Yang Z, Liu X, Ding H, Li H, Dong J, Huang A, Fang T, Jiang Y, Zhu L, Lou X, Li S, Shao N (2018) Aptamer selection and application in multivalent binding-based electrical impedance detection of inactivated H1N1 virus. Biosens Bioelectron 110:162–167. https://doi.org/10.1016/j.bios.2018.03.047 DOI
Banakar M, Hamidi M, Khurshid Z, Zafar MS, Sapkota J, Azizian R, Rokaya D (2022) Electrochemical biosensors for pathogen detection: an updated review. Biosensors-Basel 12:927. https://doi.org/10.3390/bios12110927 DOI
Ben-Yoav H, Biran A, Sternheim M, Belkin S, Freeman A, Shacham-Diamand Y (2013) Functional modeling of electrochemical whole-cell biosensors. Sens Actuators B Chem 181:479–485. https://doi.org/10.1016/j.snb.2013.02.032 DOI
Bhardwaj J, Ngo ND, Lee J, Jang J (2023) High enrichment and near real-time quantification of airborne viruses using a wet-paper-based electrochemical immunosensor under an electrostatic field. J Hazard Mater 442:130006. https://doi.org/10.1016/j.jhazmat.2022.130006 DOI
Blair EO, Corrigan DK (2019) A review of microfabricated electrochemical biosensors for DNA detection. Biosens Bioelectron 134:57–67. https://doi.org/10.1016/j.bios.2019.03.055 DOI
Castillo-Henríquez L, Brenes-Acuña M, Castro-Rojas A, Cordero-Salmerón R, Lopretti-Correa M, Vega-Baudrit JR (2020) Biosensors for the detection of bacterial and viral clinical pathogens. Sensors 20:6926. https://doi.org/10.3390/s20236926 DOI
Cesewski E, Johnson BN (2020) Electrochemical biosensors for pathogen detection. Biosens Bioelectron 159:112214. https://doi.org/10.1016/j.bios.2020.112214 DOI
Chen Y, Wang Z, Liu Y, Wang X, Li Y, Ma P, Gu B, Li H (2018) Recent advances in rapid pathogen detection method based on biosensors. Eur J Clin Microbiol Infect Dis 37:1021–1037. https://doi.org/10.1007/s10096-018-3230-x DOI
Chen W, Chen ZR, Lai QT, Zhang YK, Long MQ, Liang B, Liu ZC (2022a) Specific and ultrasensitive detection of Staphylococcus aureus with a catechol-chitosan redox capacitor based electrochemical aptasensor. J Electroanal Chem 916:116357. https://doi.org/10.1016/j.jelechem.2022.116357 DOI
Chen Z-B, Jin H-H, Yang Z-G, He D-P (2022b) Recent advances on bioreceptors and metal nanomaterials-based electrochemical impedance spectroscopy biosensors. Rare Met 42:1098–1117. https://doi.org/10.1007/s12598-022-02129-4 DOI
da Fonseca Alves R, Franco DL, Cordeiro MT, de Oliveira EM, Fireman Dutra RA, Sotomayor MDPT (2019) Novel electrochemical genosensor for Zika virus based on a poly-(3-amino-4-hydroxybenzoic acid)-modified pencil carbon graphite electrode. Sens Actuators B Chem 296:126681. https://doi.org/10.1016/j.snb.2019.126681 DOI
da Silva-Junio AG, Frias IAM, Lima-Neto RG, Migliolo L, PS ES, Oliveira MDL, Andrade CAS, (2022) Electrochemical biosensor based on Temporin-PTA peptide for detection of microorganisms. J Pharm Biomed Anal 216:114788. https://doi.org/10.1016/j.jpba.2022.114788 DOI
Das R, Dhiman A, Kapil A, Bansal V, Sharma TK (2019) Aptamer-mediated colorimetric and electrochemical detection of Pseudomonas aeruginosa utilizing peroxidase-mimic activity of gold NanoZyme. Anal Bioanal Chem 411:1229–1238. https://doi.org/10.1007/s00216-018-1555-z DOI
Diaz-Munoz SL, Koskella B (2014) Bacteria-phage interactions in natural environments. Adv Appl Microbiol 89:135–183. https://doi.org/10.1016/B978-0-12-800259-9.00004-4 DOI
Diculescu VC, Chiorcea-Paquim A-M, Oliveira-Brett AM (2016) Applications of a DNA-electrochemical biosensor. Trends Analyt Chem 79:23–36. https://doi.org/10.1016/j.trac.2016.01.019 DOI
Ding S, Lyu Z, Niu X, Zhou Y, Liu D, Falahati M, Du D, Lin Y (2020) Integrating ionic liquids with molecular imprinting technology for biorecognition and biosensing: a review. Biosens Bioelectron 149:111830. https://doi.org/10.1016/j.bios.2019.111830 DOI
Eissa S, Zourob M (2021) Development of a low-cost cotton-tipped electrochemical immunosensor for the detection of SARS-CoV-2. Anal Chem 93:1826–1833. https://doi.org/10.1021/acs.analchem.0c04719 DOI
Ellington AD, Szostak JW (1990) In vitro selection of RNA molecules that bind specific ligands. Nature 346:818–822. https://doi.org/10.1038/346818a0 DOI
Farka Z, Jurik T, Kovar D, Trnkova L, Skladal P (2017) Nanoparticle-based immunochemical biosensors and assays: recent advances and challenges. Chem Rev 117:9973–10042. https://doi.org/10.1021/acs.chemrev.7b00037 DOI
Farooq U, Yang Q, Ullah MW, Wang S (2018) Bacterial biosensing: recent advances in phage-based bioassays and biosensors. Biosens Bioelectron 118:204–216. https://doi.org/10.1016/j.bios.2018.07.058 DOI
Farooq U, Ullah MW, Yang Q, Aziz A, Xu J, Zhou L, Wang S (2020) High-density phage particles immobilization in surface-modified bacterial cellulose for ultra-sensitive and selective electrochemical detection of Staphylococcus aureus. Biosens Bioelectron 157:112163. https://doi.org/10.1016/j.bios.2020.112163 DOI
Feng K, Li T, Ye C, Gao X, Yang T, Liang X, Yue X, Ding S, Dong Q, Yang M, Xiong C, Huang G, Zhang J (2021) A label-free electrochemical immunosensor for rapid detection of salmonella in milk by using CoFe-MOFs-graphene modified electrode. Food Control 130:108357. https://doi.org/10.1016/j.foodcont.2021.108357 DOI
Feng K, Li T, Ye C, Gao X, Yue X, Ding S, Dong Q, Yang M, Huang G, Zhang J (2022) A novel electrochemical immunosensor based on Fe(3)O(4)@graphene nanocomposite modified glassy carbon electrode for rapid detection of Salmonella in milk. J Dairy Sci 105:2108–2118. https://doi.org/10.3168/jds.2021-21121 DOI
Filik K, Szermer-Olearnik B, Oleksy S, Brykala J, Brzozowska E (2022) Bacteriophage tail proteins as a tool for bacterial pathogen recognition-a literature review. Antibiotics-Basel 11:555. https://doi.org/10.3390/antibiotics11050555 DOI
Flauzino JMR, Peres RCS, Alves LM, Vieira JG, dos Santos JG, Brito-Madurro AG, Madurro JM (2021) DNA electrochemical biosensor for detection of Alicyclobacillus acidoterrestris utilizing Hoechst 33258 as indicator. Bioelectrochemistry 140:107801. https://doi.org/10.1016/j.bioelechem.2021.107801 DOI
Golichenari B, Nosrati R, Farokhi-Fard A, Maleki MF, Hayat SMG, Ghazvini K, Vaziri F, Behravan J (2019) Electrochemical-based biosensors for detection of Mycobacterium tuberculosis and tuberculosis biomarkers. Crit Rev Biotechnol 39:1056–1077. https://doi.org/10.1080/07388551.2019.1668348 DOI
Goluch ED (2017) Microbial identification using electrochemical detection of metabolites. Trends Biotechnol 35:1125–1128. https://doi.org/10.1016/j.tibtech.2017.08.001 DOI
Grabowska I, Malecka K, Jarocka U, Radecki J, Radecka H (2014) Electrochemical biosensors for detection of avian influenza virus - current status and future trends. Acta Biochim Pol 61:471–478 DOI
Gui Q, Lawson T, Shan S, Yan L, Liu Y (2017) The application of whole cell-based biosensors for use in environmental analysis and in medical diagnostics. Sensors-Basel 17:1623. https://doi.org/10.3390/s17071623 DOI
Gupta N, Renugopalakrishnan V, Liepmann D, Paulmurugan R, Malhotra BD (2019) Cell-based biosensors: recent trends, challenges and future perspectives. Biosens Bioelectron 141:111435. https://doi.org/10.1016/j.bios.2019.111435 DOI
Hadas E, Soussan L, Rosen-Margalit I, Farkash A, Rishpon J (1992) A rapid and sensitive heterogeneous immunoelectrochemical assay using disposable electrodes. J Immunoassay 13:231–252. https://doi.org/10.1080/15321819208021229 DOI
Hai X, Li Y, Zhu C, Song W, Cao J, Bi S (2020) DNA-based label-free electrochemical biosensors: from principles to applications. Trends Analyt Chem 133:116098. https://doi.org/10.1016/j.trac.2020.116098 DOI
Han D, Yan Y, Bian X, Wang J, Zhao M, Duan X, Kong L, Cheng W, Ding S (2020a) A novel electrochemical biosensor based on peptidoglycan and platinum-nickel-copper nano-cube for rapid detection of Gram-positive bacteria. Mikrochim Acta 187:607. https://doi.org/10.1007/s00604-020-04581-4 DOI
Han E, Li X, Zhang Y, Zhang M, Cai J, Zhang X (2020b) Electrochemical immunosensor based on self-assembled gold nanorods for label-free and sensitive determination of Staphylococcus aureus. Anal Biochem 611:113982. https://doi.org/10.1016/j.ab.2020.113982 DOI
Han E, Zhang Y, Cai J, Zhang X (2021) Development of highly sensitive immunosensor for detection of Staphylococcus aureus based on AuPdPt trimetallic nanoparticles functionalized nanocomposite. Micromachines-Basel 12:446. https://doi.org/10.3390/mi12040446 DOI
Hatami Z, Ragheb E, Jalali F, Tabrizi MA, Shamsipur M (2020) Zinc oxide-gold nanocomposite as a proper platform for label-free DNA biosensor. Bioelectrochemistry 133:107458. https://doi.org/10.1016/j.bioelechem.2020.107458 DOI
Ho YP, Reddy PM (2010) Identification of pathogens by mass spectrometry. Clin Chem 56:525–536. https://doi.org/10.1373/clinchem.2009.138867 DOI
Hou TY, Chiang-Ni C, Teng SH (2019) Current status of MALDI-TOF mass spectrometry in clinical microbiology. J Food Drug Anal 27:404–414. https://doi.org/10.1016/j.jfda.2019.01.001 DOI
Hu J, Shen Z, Tan L, Yuan J, Gan N (2021a) Electrochemical aptasensor for simultaneous detection of foodborne pathogens based on a double stirring bars-assisted signal amplification strategy. Sens Actuators B Chem 345:130337. https://doi.org/10.1016/j.snb.2021.130337 DOI
Hu WC, Pang J, Biswas S, Wang K, Wang C, Xia XH (2021b) Ultrasensitive detection of bacteria using a 2D MOF nanozyme-amplified electrochemical detector. Anal Chem 93:8544–8552. https://doi.org/10.1021/acs.analchem.1c01261 DOI
Hui Y, Huang Z, Alahi MEE, Nag A, Feng S, Mukhopadhyay SC (2022) Recent Advancements in Electrochemical Biosensors for Monitoring the Water Quality 12:551. https://doi.org/10.3390/bios12070551 DOI
Hvastkovs EG, Buttry DA (2010) Recent advances in electrochemical DNA hybridization sensors. Analyst 135:1817–1829. https://doi.org/10.1039/c0an00113a DOI
Hwang HJ, Ryu MY, Park CY, Ahn J, Park HG, Choi C, Ha S-D, Park TJ, Park JP (2017) High sensitive and selective electrochemical biosensor: label-free detection of human norovirus using affinity peptide as molecular binder. Biosens Bioelectron 87:164–170. https://doi.org/10.1016/j.bios.2016.08.031 DOI
Izadi Z, Sheikh-Zeinoddin M, Ensafi AA, Soleimanian-Zad S (2016) Fabrication of an electrochemical DNA-based biosensor for Bacillus cereus detection in milk and infant formula. Biosens Bioelectron 80:582–589. https://doi.org/10.1016/j.bios.2016.02.032 DOI
Jafari H, Amiri M, Abdi E, Navid SL, Bouckaert J, Jijie R, Boukherroub R, Szunerits S (2019) Entrapment of uropathogenic E. coli cells into ultra-thin sol-gel matrices on gold thin films: a low cost alternative for impedimetric bacteria sensing. Biosens Bioelectron 124–125:161–166. https://doi.org/10.1016/j.bios.2018.10.029 DOI
Janik-Karpinska E, Ceremuga M, Niemcewicz M, Podogrocki M, Stela M, Cichon N, Bijak M (2022) Immunosensors-the future of pathogen real-time detection. Sensors-Basel 22:20. https://doi.org/10.3390/s22249757 DOI
Jiang H, Jiang D, Shao J, Sun X, Wang J (2016) High-throughput living cell-based optical biosensor for detection of bacterial lipopolysaccharide (LPS) using a red fluorescent protein reporter system. Sci Rep 6:36987. https://doi.org/10.1038/srep36987 DOI
Jiang D, Liu Y, Jiang H, Rao S, Fang W, Wu M, Yuan L, Fang W (2018) A novel screen-printed mast cell-based electrochemical sensor for detecting spoilage bacterial quorum signaling molecules (N-acyl-homoserine-lactones) in freshwater fish. Biosens Bioelectron 102:396–402. https://doi.org/10.1016/j.bios.2017.11.040 DOI
Jiang H, Yang J, Wan K, Jiang D, Jin C (2020) Miniaturized paper-supported 3D cell-based electrochemical sensor for bacterial lipopolysaccharide detection. ACS Sens 5:1325–1335. https://doi.org/10.1021/acssensors.9b02508 DOI
Kim J, Park M (2021) Recent Progress in Electrochemical Immunosensors Biosensors-Basel 11:360. https://doi.org/10.3390/bios11100360 DOI
Lagarde F, Jaffrezic-Renault N (2011) Cell-based electrochemical biosensors for water quality assessment. Anal Bioanal Chem 400:947–964. https://doi.org/10.1007/s00216-011-4816-7 DOI
LaGier MJ, Scholin CA, Fell JW, Wang J, Goodwin KD (2005) An electrochemical RNA hybridization assay for detection of the fecal indicator bacterium Escherichia coli. Mar Pollut Bull 50:1251–1261. https://doi.org/10.1016/j.marpolbul.2005.04.034 DOI
Lamaoui A, Mani V, Durmus C, Salama KN, Amine A (2024) Molecularly imprinted polymers: a closer look at the template removal and analyte binding. Biosens Bioelectron 243:115774. https://doi.org/10.1016/j.bios.2023.115774 DOI
Law JW, Ab Mutalib NS, Chan KG, Lee LH (2014) Rapid methods for the detection of foodborne bacterial pathogens: principles, applications, advantages and limitations. Front Microbiol 5:770. https://doi.org/10.3389/fmicb.2014.00770 DOI
Lazarević-Pašti T, Tasić T, Milanković V, Potkonjak N (2023) Molecularly imprinted plasmonic-based sensors for environmental contaminants—current state and future perspectives. Chemosensors 11:35. https://doi.org/10.3390/chemosensors11010035 DOI
Lee I, Kim SE, Lee J, Woo DH, Lee S, Pyo H, Song CS, Lee J (2020) A self-calibrating electrochemical aptasensing platform: correcting external interference errors for the reliable and stable detection of avian influenza viruses. Biosens Bioelectron 152:112010. https://doi.org/10.1016/j.bios.2020.112010 DOI
Leva-Bueno J, Peyman SA, Millner PA (2020) A review on impedimetric immunosensors for pathogen and biomarker detection. Med Microbiol Immunol 209:343–362. https://doi.org/10.1007/s00430-020-00668-0 DOI
Li C, Wang Y, Wang J, Wang X (2022a) Properties of a novel Salmonella phage L66 and its application based on electrochemical sensor-combined AuNPs to detect Salmonella. Foods 11:2836. https://doi.org/10.3390/foods11182836 DOI
Li S, Li Y, Li J, Liu J, Pi F, Ping J (2022b) Recent advances of three-dimensional micro-environmental constructions on cell-based biosensors and perspectives in food safety. Biosens Bioelectron 216:114601. https://doi.org/10.1016/j.bios.2022.114601 DOI
Lopez-Tellez J, Ramirez-Montes S, Ferreira TA, Santos EM, Rodriguez JA (2022) Application of voltammetric sensors for pathogen bacteria detection: a review. Chemosensors 10:424. https://doi.org/10.3390/chemosensors10100424 DOI
Lu X, Ye Y, Zhang Y, Sun X (2021) Current research progress of mammalian cell-based biosensors on the detection of foodborne pathogens and toxins. Crit Rev Food Sci Nutr 61:3819–3835. https://doi.org/10.1080/10408398.2020.1809341 DOI
Luo C, Tang H, Cheng W, Yan L, Zhang D, Ju H, Ding S (2013) A sensitive electrochemical DNA biosensor for specific detection of Enterobacteriaceae bacteria by Exonuclease III-assisted signal amplification. Biosens Bioelectron 48:132–137. https://doi.org/10.1016/j.bios.2013.03.084 DOI
Mahari S, Gandhi S (2022) Recent advances in electrochemical biosensors for the detection of salmonellosis: current prospective and challenges. Biosensors-Basel 12:365. https://doi.org/10.3390/bios12060365 DOI
Malvano F, Pilloton R, Albanese D (2020) A novel impedimetric biosensor based on the antimicrobial activity of the peptide nisin for the detection of Salmonella spp. Food Chem 325:126868. https://doi.org/10.1016/j.foodchem.2020.126868 DOI
Manohar Raju V, Bhavana V, Gayathri GK, Suryan S, Reddy R, Reddy N, Ravikumar CR, Sridhar Santosh M (2020) A novel disposable electrochemical DNA biosensor for the rapid detection of Bacillus thuringiensis. Microchem J 159:105434. https://doi.org/10.1016/j.microc.2020.105434 DOI
Mei Y, He C, Zeng W, Luo Y, Liu C, Yang M, Kuang Y, Lin X, Huang Q (2022a) Electrochemical biosensors for foodborne pathogens detection based on carbon nanomaterials: recent advances and challenges. Food Bioproc Tech 15:498–513. https://doi.org/10.1007/s11947-022-02759-7 DOI
Mei Y, Lin X, He C, Zeng W, Luo Y, Liu C, Liu Z, Yang M, Kuang Y, Huang Q (2022b) Recent progresses in electrochemical DNA biosensors for SARS-CoV-2 detection. Front Bioeng Biotechnol 10:952510. https://doi.org/10.3389/fbioe.2022.952510 DOI
Melo AMA, Furtado RF, de Fatima BM, Biswas A, Cheng HN, Alves CR (2021) Performance of an amperometric immunosensor assembled on carboxymethylated cashew gum for Salmonella detection. Microchem J 167:106268. https://doi.org/10.1016/j.microc.2021.106268 DOI
Mikuła E (2021) Recent advancements in electrochemical biosensors for Alzheimer’s disease biomarkers detection. Curr Med Chem 28:4049–4073. https://doi.org/10.2174/0929867327666201111141341 DOI
Millan KM, Mikkelsen SR (1993) Sequence-selective biosensor for DNA based on electroactive hybridization indicators. Anal Chem 65:2317–2323. https://doi.org/10.1021/ac00065a025 DOI
Mishra P, Lee J, Kumar D, Louro RO, Costa N, Pathania D, Kumar S, Lee J, Singh L (2021) Engineered nanoenzymes with multifunctional properties for next-generation biological and environmental applications. Adv Funct Mater 32:2108650. https://doi.org/10.1002/adfm.202108650 DOI
Mobed A, Hasanzadeh M, Babaie P, Agazadeh M, Mokhtarzadeh A, Rezaee MA (2019a) DNA-based bioassay of legionella pneumonia pathogen using gold nanostructure: a new platform for diagnosis of legionellosis. Int J Biol Macromol 128:692–699. https://doi.org/10.1016/j.ijbiomac.2019.01.125 DOI
Mobed A, Hasanzadeh M, Hassanpour S, Saadati A, Agazadeh M, Mokhtarzadeh A (2019b) An innovative nucleic acid based biosensor toward detection of Legionella pneumophila using DNA immobilization and hybridization: a novel genosensor. Microchem J 148:708–716. https://doi.org/10.1016/j.microc.2019.05.027 DOI
Mogha NK, Sahu V, Sharma RK, Masram DT (2018) Reduced graphene oxide nanoribbon immobilized gold nanoparticle based electrochemical DNA biosensor for the detection of Mycobacterium tuberculosis. J Mater Chem B 6:5181–5187. https://doi.org/10.1039/c8tb01604f DOI
Mollarasouli F, Kurbanoglu S, Ozkan S (2019) The role of electrochemical immunosensors in clinical analysis. Biosensors 9:86. https://doi.org/10.3390/bios9030086 DOI
Mousavi Nodoushan S, Nasirizadeh N, Amani J, Halabian R, Imani Fooladi AA (2019) An electrochemical aptasensor for staphylococcal enterotoxin B detection based on reduced graphene oxide and gold nano-urchins. Biosens Bioelectron 127:221–228. https://doi.org/10.1016/j.bios.2018.12.021 DOI
Nazari-Vanani R, Sattarahmady N, Yadegari H, Heli H (2018) A novel and ultrasensitive electrochemical DNA biosensor based on an ice crystals-like gold nanostructure for the detection of Enterococcus faecalis gene sequence. Colloids Surf B 166:245–253. https://doi.org/10.1016/j.colsurfb.2018.03.025 DOI
Nazari-Vanani R, Sattarahmady N, Yadegari H, Khatami M, Heli H (2019) Electrochemical biosensing of 16s rRNA gene sequence of Enterococcus faecalis. Biosens Bioelectron 142:111541. https://doi.org/10.1016/j.bios.2019.111541 DOI
Negahdary M, Angnes L (2022) Electrochemical nanobiosensors equipped with peptides: a review. Mikrochim Acta 189:94. https://doi.org/10.1007/s00604-022-05184-x DOI
Nguyen TT, Kim ER, Gu MB (2022) A new cognate aptamer pair-based sandwich-type electrochemical biosensor for sensitive detection of Staphylococcus aureus. Biosens Bioelectron 198:113835. https://doi.org/10.1016/j.bios.2021.113835 DOI
Nidzworski D, Siuzdak K, Niedzialkowski P, Bogdanowicz R, Sobaszek M, Ryl J, Weiher P, Sawczak M, Wnuk E, Goddard WA 3rd, Jaramillo-Botero A, Ossowski T (2017) A rapid-response ultrasensitive biosensor for influenza virus detection using antibody modified boron-doped diamond. Sci Rep 7:15707. https://doi.org/10.1038/s41598-017-15806-7 DOI
Nimjee SM, Rusconi CP, Sullenger BA (2005) Aptamers: an emerging class of therapeutics. Annu Rev Med 56:555–583. https://doi.org/10.1146/annurev.med.56.062904.144915 DOI
Niyomdecha S, Limbut W, Numnuam A, Kanatharana P, Charlermroj R, Karoonuthaisiri N, Thavarungkul P (2018) Phage-based capacitive biosensor for Salmonella detection. Talanta 188:658–664. https://doi.org/10.1016/j.talanta.2018.06.033 DOI
O’Connell L, Marcoux PR, Roupioz Y (2021) Strategies for surface immobilization of whole bacteriophages: a review. ACS Biomater Sci Eng 7:1987–2014. https://doi.org/10.1021/acsbiomaterials.1c00013 DOI
Oliveira M, Mason-Buck G, Ballard D, Branicki W, Amorim A (2020) Biowarfare, bioterrorism and biocrime: a historical overview on microbial harmful applications. Forensic Sci Int 314:110366. https://doi.org/10.1016/j.forsciint.2020.110366 DOI
Panhwar S, Keerio HA, Ilhan H, Boyacı IH, Tamer U (2023) Principles, methods, and real-time applications of bacteriophage-based pathogen detection. Mol Biotechnol. https://doi.org/10.1007/s12033-023-00926-5 DOI
Patel D, Zhou Y, Ramasamy RP (2021) A bacteriophage-based electrochemical biosensor for detection of methicillin-resistant Staphylococcus aureus. J Electrochem Soc 168:057523. https://doi.org/10.1149/1945-7111/abef85 DOI
Qazi RA, Aman N, Ullah N, Jamila N, Bibi N (2024) Recent advancement for enhanced e. Coli detection in electrochemical biosensors. Microchem J 196:109673. https://doi.org/10.1016/j.microc.2023.109673 DOI
Radwan O, Brothers MC, Coyle V, Chapleau ME, Chapleau RR, Kim SS, Ruiz ON (2022) Electrochemical biosensor for rapid detection of fungal contamination in fuel systems. Biosens Bioelectron 211:9. https://doi.org/10.1016/j.bios.2022.114374 DOI
Ranjbar S, Shahrokhian S (2018) Design and fabrication of an electrochemical aptasensor using Au nanoparticles/carbon nanoparticles/cellulose nanofibers nanocomposite for rapid and sensitive detection of Staphylococcus aureus. Bioelectrochemistry 123:70–76. https://doi.org/10.1016/j.bioelechem.2018.04.018 DOI
Razmi N, Hasanzadeh M, Willander M, Nur O (2022) Electrochemical genosensor based on gold nanostars for the detection of Escherichia coli O157:H7 DNA. Anal Methods 14:1562–1570. https://doi.org/10.1039/d2ay00056c DOI
Reverdatto S, Burz DS, Shekhtman A (2015) Peptide aptamers: development and applications. Curr Top Med Chem 15:1082–1101. https://doi.org/10.2174/1568026615666150413153143 DOI
Roushani M, Rahmati Z, Golchin M, Lotfi Z, Nemati M (2020) Electrochemical immunosensor for determination of Staphylococcus aureus bacteria by IgY immobilized on glassy carbon electrode with electrodeposited gold nanoparticles. Mikrochim Acta 187:567. https://doi.org/10.1007/s00604-020-04547-6 DOI
Sadique MA, Yadav S, Ranjan P, Khan R, Khan F, Kumar A, Biswas D (2022) Highly sensitive electrochemical immunosensor platforms for dual detection of SARS-CoV-2 antigen and antibody based on gold nanoparticle functionalized graphene oxide nanocomposites. ACS Appl Bio Mater 5:2421–2430. https://doi.org/10.1021/acsabm.2c00301 DOI
Saidur MR, Aziz AR, Basirun WJ (2017) Recent advances in DNA-based electrochemical biosensors for heavy metal ion detection: a review. Biosens Bioelectron 90:125–139. https://doi.org/10.1016/j.bios.2016.11.039 DOI
Saini K, Kaushal A, Gupta S, Kumar D (2020) PlcA-based nanofabricated electrochemical DNA biosensor for the detection of Listeria monocytogenes in raw milk samples. 3 Biotech 10:327. https://doi.org/10.1007/s13205-020-02315-0 DOI
Salhi I, Rabti A, Dhehibi A, Raouafi N (2022) Sandwich-based immunosensor for dual-mode detection of pathogenic F17-positive Escherichia coli strains. Int J Mol Sci 23:6028. https://doi.org/10.3390/ijms23116028 DOI
Santos A, Bueno PR, Davis JJ (2018) A dual marker label free electrochemical assay for Flavivirus dengue diagnosis. Biosens Bioelectron 100:519–525. https://doi.org/10.1016/j.bios.2017.09.014 DOI
Savas S, Altintas Z (2019) Graphene quantum dots as nanozymes for electrochemical sensing of Yersinia enterocolitica in milk and human serum. Materials-Basel 12:2189. https://doi.org/10.3390/ma12132189 DOI
Saxena K, Chauhan N, Malhotra BD, Jain U (2023) A molecularly imprinted polymer-based electrochemical biosensor for detection of VacA virulence factor of H. pylori causing gastric cancer. Process Biochem 130:87–95. https://doi.org/10.1016/j.procbio.2023.03.024 DOI
Sedki M, Chen X, Chen C, Ge X, Mulchandani A (2020) Non-lytic M13 phage-based highly sensitive impedimetric cytosensor for detection of coliforms. Biosens Bioelectron 148:111794. https://doi.org/10.1016/j.bios.2019.111794 DOI
Sfragano PS, Moro G, Polo F, Palchetti I (2021) The role of peptides in the design of electrochemical biosensors for clinical diagnostics. Biosensors-Basel 11:246. https://doi.org/10.3390/bios11080246 DOI
Shariati M, Ghorbani M, Sasanpour P, Karimizefreh A (2019) An ultrasensitive label free human papilloma virus DNA biosensor using gold nanotubes based on nanoporous polycarbonate in electrical alignment. Anal Chim Acta 1048:31–41. https://doi.org/10.1016/j.aca.2018.09.062 DOI
Sharif MN, Taufiq S, Sohail M, Abbas SR (2022) Tuberculosis detection from raw sputum samples using Au-electroplated screen-printed electrodes as E-DNA sensor. Front Chem 10:1046930. https://doi.org/10.3389/fchem.2022.1046930 DOI
Sharifi S, Vahed SZ, Ahmadian E, Dizaj SM, Eftekhari A, Khalilov R, Ahmadi M, Hamidi-Asl E, Labib M (2020) Detection of pathogenic bacteria via nanomaterials-modified aptasensors. Biosens Bioelectron 150:111933. https://doi.org/10.1016/j.bios.2019.111933 DOI
Shoaie N, Forouzandeh M, Omidfar K (2018) Voltammetric determination of the Escherichia coli DNA using a screen-printed carbon electrode modified with polyaniline and gold nanoparticles. Mikrochim Acta 185:217. https://doi.org/10.1007/s00604-018-2749-y DOI
Silva NFD, Magalhaes J, Barroso MF, Oliva-Teles T, Freire C, Delerue-Matos C (2019) In situ formation of gold nanoparticles in polymer inclusion membrane: application as platform in a label-free potentiometric immunosensor for Salmonella typhimurium detection. Talanta 194:134–142. https://doi.org/10.1016/j.talanta.2018.10.024 DOI
Simoska O, Stevenson KJ (2019) Electrochemical sensors for rapid diagnosis of pathogens in real time. Analyst 144:6461–6478. https://doi.org/10.1039/c9an01747j DOI
Singh A, Sharma A, Ahmed A, Sundramoorthy AK, Furukawa H, Arya S, Khosla A (2021) Recent advances in electrochemical biosensors: applications, challenges, and future scope. Biosensors 11:336. https://doi.org/10.3390/bios11090336 DOI
Siuzdak K, Niedziałkowski P, Sobaszek M, Łęga T, Sawczak M, Czaczyk E, Dziąbowska K, Ossowski T, Nidzworski D, Bogdanowicz R (2019) Biomolecular influenza virus detection based on the electrochemical impedance spectroscopy using the nanocrystalline boron-doped diamond electrodes with covalently bound antibodies. Sens Actuators B Chem 280:263–271. https://doi.org/10.1016/j.snb.2018.10.005 DOI
Soares RRA, Hjort RG, Pola CC, Parate K, Reis EL, Soares NFF, McLamore ES, Claussen JC, Gomes CL (2020) Laser-induced graphene electrochemical immunosensors for rapid and label-free monitoring of Salmonella enterica in chicken broth. ACS Sens 5:1900–1911. https://doi.org/10.1021/acssensors.9b02345 DOI
Steinmetz M, Lima D, Viana AG, Fujiwara ST, Pessoa CA, Etto RM, Wohnrath K (2019) A sensitive label-free impedimetric DNA biosensor based on silsesquioxane-functionalized gold nanoparticles for Zika Virus detection. Biosens Bioelectron 141:111351. https://doi.org/10.1016/j.bios.2019.111351 DOI
Subjakova V, Oravczova V, Tatarko M, Hianik T (2021) Advances in electrochemical aptasensors and immunosensors for detection of bacterial pathogens in food. Electrochim Acta 389:138724. https://doi.org/10.1016/j.electacta.2021.138724 DOI
Sun C, Liao X, Huang P, Shan G, Ma X, Fu L, Zhou L, Kong W (2020) A self-assembled electrochemical immunosensor for ultra-sensitive detection of ochratoxin A in medicinal and edible malt. Food Chem 315:126289. https://doi.org/10.1016/j.foodchem.2020.126289 DOI
Sun Z, Peng Y, Wang M, Lin Y, Jalalah M, Alsareii SA, Harraz FA, Yang J, Li G (2021) Electrochemical deposition of Cu metal-organic framework films for the dual analysis of pathogens. Anal Chem 93:8994–9001. https://doi.org/10.1021/acs.analchem.1c01763 DOI
Sypabekova M, Jolly P, Estrela P, Kanayeva D (2019) Electrochemical aptasensor using optimized surface chemistry for the detection of Mycobacterium tuberculosis secreted protein MPT64 in human serum. Biosens Bioelectron 123:141–151. https://doi.org/10.1016/j.bios.2018.07.053 DOI
Tertis M, Hosu O, Feier B, Cernat A, Florea A, Cristea C (2021) Electrochemical peptide-based sensors for foodborne pathogens detection. Molecules 26:3200. https://doi.org/10.3390/molecules26113200 DOI
Thulasinathan B, D S, Murugan S, Panda SK, Veerapandian M, Manickam P, (2023) DNA-functionalized carbon quantum dots for electrochemical detection of pyocyanin: a quorum sensing molecule in Pseudomonas aeruginosa. Biosens Bioelectron 227:115156. https://doi.org/10.1016/j.bios.2023.115156 DOI
Villalonga A, Perez-Calabuig AM, Villalonga R (2020) Electrochemical biosensors based on nucleic acid aptamers. Anal Bioanal Chem 412:55–72. https://doi.org/10.1007/s00216-019-02226-x DOI
Wang R-F, Wang R (2022) Modification of polyacrylonitrile-derived carbon nanofibers and bacteriophages on screen-printed electrodes: a portable electrochemical biosensor for rapid detection of Escherichia coli. Bioelectrochemistry 148:108229. https://doi.org/10.1016/j.bioelechem.2022.108229 DOI
Wang L, Huo X, Qi W, Xia Z, Li Y, Lin J (2020a) Rapid and sensitive detection of Salmonella Typhimurium using nickel nanowire bridge for electrochemical impedance amplification. Talanta 211:120715. https://doi.org/10.1016/j.talanta.2020.120715 DOI
Wang S, Sun C, Hu Q, Li S, Wang C, Wang P, Zhou L (2020b) A homogeneous magnetic bead-based impedance immunosensor for highly sensitive detection of Escherichia coli O157:H7. Biochem Eng J 156:107513. https://doi.org/10.1016/j.bej.2020.107513 DOI
Wang W, Tan L, Wu J, Li T, Xie H, Wu D, Gan N (2020c) A universal signal-on electrochemical assay for rapid on-site quantitation of vibrio parahaemolyticus using aptamer modified magnetic metal-organic framework and phenylboronic acid-ferrocene co-immobilized nanolabel. Anal Chim Acta 1133:128–136. https://doi.org/10.1016/j.aca.2020.08.006 DOI
Wang J, Li H, Li C, Ding Y, Wang Y, Zhu W, Wang J, Shao Y, Pan H, Wang X (2022) EIS biosensor based on a novel Myoviridae bacteriophage SEP37 for rapid and specific detection of Salmonella in food matrixes. Food Res Int 158:111479. https://doi.org/10.1016/j.foodres.2022.111479 DOI
Wang B, Wang H, Lu X, Zheng X, Yang Z (2023) Recent advances in electrochemical biosensors for the detection of foodborne pathogens: current perspective and challenges. Foods 12:2795. https://doi.org/10.3390/foods12142795 DOI
Wu Q, Zhang Y, Yang Q, Yuan N, Zhang W (2019) Review of electrochemical DNA biosensors for detecting food borne pathogens. Sensors-Basel 19:4916. https://doi.org/10.3390/s19224916 DOI
Wu T, Wang C, Han X, Feng Q, Wang P (2022a) Combination of DNA walker and Pb2+-specific DNAzyme-based signal amplification with a signal-off electrochemical DNA sensor for Staphylococcus aureus detection. Anal Chim Acta 1222:340179. https://doi.org/10.1016/j.aca.2022.340179 DOI
Wu T, Wang C, Wu M, Wang P, Feng Q (2022b) Novel integrating polymethylene blue nanoparticles with dumbbell hybridization chain reaction for electrochemical detection of pathogenic bacteria. Food Chem 382:132501. https://doi.org/10.1016/j.foodchem.2022.132501 DOI
Xu J, Chau Y, Lee YK (2019) Phage-Based Electrochemical Sensors: a Review Micromachines-Basel 10:855. https://doi.org/10.3390/mi10120855 DOI
Xu J, Zhao C, Chau Y, Lee YK (2020) The synergy of chemical immobilization and electrical orientation of T4 bacteriophage on a micro electrochemical sensor for low-level viable bacteria detection via Differential Pulse Voltammetry. Biosens Bioelectron 151:111914. https://doi.org/10.1016/j.bios.2019.111914 DOI
Xue L, Guo R, Huang F, Qi W, Liu Y, Cai G, Lin J (2020) An impedance biosensor based on magnetic nanobead net and MnO(2) nanoflowers for rapid and sensitive detection of foodborne bacteria. Biosens Bioelectron 173:112800. https://doi.org/10.1016/j.bios.2020.112800 DOI
Yang Q, Deng S, Xu J, Farooq U, Yang T, Chen W, Zhou L, Gao M, Wang S (2021) Poly(indole-5-carboxylic acid)/reduced graphene oxide/gold nanoparticles/phage-based electrochemical biosensor for highly specific detection of Yersinia pseudotuberculosis. Mikrochim Acta 188:107. https://doi.org/10.1007/s00604-020-04676-y DOI
Yang Y, Qing Y, Hao X, Fang C, Ouyang P, Li H, Wang Z, Liao Y, Fang H, Du J (2022) APTES-modified remote self-assembled DNA-based electrochemical biosensor for human papillomavirus DNA detection. Biosensors-Basel 12:449. https://doi.org/10.3390/bios12070449 DOI
Yashini M, Auddy I, Shanmugasundaram S, Vidyalakshmi R, Sunil CK (2022) Characterization of antibody immobilization on chitosan/gelatin-modified electrode and its application to bacillus cereus detection in cereal-based food. Food Anal Methods 15:2382–2393. https://doi.org/10.1007/s12161-022-02299-y DOI
Yasmeen N, Etienne M, Sharma PS, Kutner W (2023) Artificial receptors for electrochemical sensing of bacteria. Curr Opin Electrochem 39:101291. https://doi.org/10.1016/j.coelec.2023.101291 DOI
Yuan Q, Bian J, Ma MG (2021) Advances in biomedical application of nanocellulose-based materials: a review. Curr Med Chem 28:8275–8295. https://doi.org/10.2174/0929867328666201130124501 DOI
Yuan R, Cai J, Ma H, Luo Y, Wang L, Su S (2023) Recent progress in electrochemical aptasensors: construction and application. Chemosensors 11:488. https://doi.org/10.3390/chemosensors11090488 DOI
Zelada-Guillen GA, Riu J, Duzgun A, Rius FX (2009) Immediate detection of living bacteria at ultralow concentrations using a carbon nanotube based potentiometric aptasensor. Angew Chem Int Ed Engl 48:7334–7337. https://doi.org/10.1002/anie.200902090 DOI
Zhang X, Feng Y, Duan S, Su L, Zhang J, He F (2019a) Mycobacterium tuberculosis strain H37Rv electrochemical sensor mediated by aptamer and AuNPs-DNA. ACS Sens 4:849–855. https://doi.org/10.1021/acssensors.8b01230 DOI
Zhang Z, Cong Y, Huang Y, Du X (2019b) Nanomaterials-Based Electrochemical Immunosensors Micromachines 10:397. https://doi.org/10.3390/mi10060397 DOI
Zhang Z, Zhou J, Du X (2019c) Electrochemical biosensors for detection of foodborne pathogens. Micromachines-Basel 10:222. https://doi.org/10.3390/mi10040222 DOI
Zhang L, Su W, Liu S, Huang C, Ghalandari B, Divsalar A, Ding X (2022) Recent progresses in electrochemical DNA biosensors for microRNA detection. Phenomics 2:18–32. https://doi.org/10.1007/s43657-021-00032-z DOI
Zhao L (2021) Horseradish peroxidase labelled-sandwich electrochemical sensor based on ionic liquid-gold nanoparticles for Lactobacillus brevis. Micromachines-Basel 12:75. https://doi.org/10.3390/mi12010075 DOI
Zhao H, Liu F, Xie W, Zhou TC, OuYang J, Jin L, Li H, Zhao CY, Zhang L, Wei J, Zhang YP, Li CP (2021a) Ultrasensitive supersandwich-type electrochemical sensor for SARS-CoV-2 from the infected COVID-19 patients using a smartphone. Sens Actuators B Chem 327:128899. https://doi.org/10.1016/j.snb.2020.128899 DOI
Zhao Z, Huang C, Huang Z, Lin F, He Q, Tao D, Jaffrezic-Renault N, Guo Z (2021b) Advancements in electrochemical biosensing for respiratory virus detection: a review. Trends Analyt Chem 139:116253. https://doi.org/10.1016/j.trac.2021.116253 DOI
Zhao L, Wu L, Xu W, Wei J, Niu X, Liu G, Yu L, Wu Y, Zhou Q, Liu L (2023) Diagnostic techniques for critical respiratory infections: update on current methods. Heliyon 9:e18957. https://doi.org/10.1016/j.heliyon.2023.e18957 DOI
Zheng X, Khaoulani S, Ktari N, Lo M, Khalil AM, Zerrouki C, Fourati N, Chehimi MM (2021) Towards clean and safe water: a review on the emerging role of imprinted polymer-based electrochemical sensors. Sensors-Basel 21:4300. https://doi.org/10.3390/s21134300 DOI
Zhou Y, Marar A, Kner P, Ramasamy RP (2017) Charge-directed immobilization of bacteriophage on nanostructured electrode for whole-cell electrochemical biosensors. Anal Chem 89:5734–5741. https://doi.org/10.1021/acs.analchem.6b03751 DOI
Zhou Y, Li Z, Huang J, Wu Y, Mao X, Tan Y, Liu H, Ma D, Li X, Wang X (2023) Development of a phage-based electrochemical biosensor for detection of Escherichia coli O157: H7 GXEC-N07. Bioelectrochemistry 150:108345. https://doi.org/10.1016/j.bioelechem.2022.108345 DOI
Ziółkowski R, Jarczewska M, Górski Ł, Malinowska E (2021) From small molecules toward whole cells detection: application of electrochemical aptasensors in modern medical diagnostics. Sensors 21:724. https://doi.org/10.3390/s21030724 DOI
Zolti O, Suganthan B, Maynard R, Asadi H, Locklin J, Ramasamy RP (2022) Electrochemical biosensor for rapid detection of Listeria monocytogenes. J Electrochem Soc 169:067510. https://doi.org/10.1149/1945-7111/ac7a63 DOI