Impact of citrulline substitution on clinical outcome after liver transplantation in carbamoyl phosphate synthetase 1 and ornithine transcarbamylase deficiency
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu pozorovací studie, multicentrická studie, časopisecké články, práce podpořená grantem
Grantová podpora
RVO VFN 64165
Ministerstvo Zdravotnictví Ceské Republiky
PubMed
38375550
DOI
10.1002/jimd.12717
Knihovny.cz E-zdroje
- Klíčová slova
- carbamoyl phosphate synthetase 1, citrulline, liver transplantation, ornithine transcarbamylase, substitution, urea cycle disorders,
- MeSH
- amoniak metabolismus MeSH
- arginin terapeutické užití MeSH
- citrulin MeSH
- hyperamonemie * farmakoterapie MeSH
- karbamoylfosfát metabolismus terapeutické užití MeSH
- karbamoylfosfátsynthasa (amoniak) metabolismus MeSH
- lidé MeSH
- nemoc z nedostatku ornithinkarbamoyltransferázy * chirurgie MeSH
- ornithinkarbamoyltransferasa MeSH
- retrospektivní studie MeSH
- transplantace jater * MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- multicentrická studie MeSH
- pozorovací studie MeSH
- práce podpořená grantem MeSH
- Názvy látek
- amoniak MeSH
- arginin MeSH
- citrulin MeSH
- karbamoylfosfát MeSH
- karbamoylfosfátsynthasa (amoniak) MeSH
- ornithinkarbamoyltransferasa MeSH
Carbamoyl phosphate synthetase 1 (CPS1) and ornithine transcarbamylase (OTC) deficiencies are rare urea cycle disorders, which can lead to life-threatening hyperammonemia. Liver transplantation (LT) provides a cure and offers an alternative to medical treatment and life-long dietary restrictions with permanent impending risk of hyperammonemia. Nevertheless, in most patients, metabolic aberrations persist after LT, especially low plasma citrulline levels, with questionable clinical impact. So far, little is known about these alterations and there is no consensus, whether l-citrulline substitution after LT improves patients' symptoms and outcomes. In this multicentre, retrospective, observational study of 24 patients who underwent LT for CPS1 (n = 11) or OTC (n = 13) deficiency, 25% did not receive l-citrulline or arginine substitution. Correlation analysis revealed no correlation between substitution dosage and citrulline levels (CPS1, p = 0.8 and OTC, p = 1). Arginine levels after liver transplantation were normal after LT independent of citrulline substitution. Native liver survival had no impact on mental impairment (p = 0.67). Regression analysis showed no correlation between l-citrulline substitution and failure to thrive (p = 0.611) or neurological outcome (p = 0.701). Peak ammonia had a significant effect on mental impairment (p = 0.017). Peak plasma ammonia levels correlate with mental impairment after LT in CPS1 and OTC deficiency. Growth and intellectual impairment after LT are not significantly associated with l-citrulline substitution.
Department of Paediatrics 1 Medical University of Innsbruck Innsbruck Austria
Department of Pediatrics and Adolescent Medicine Hong Kong Children's Hospital Kowloon Hong Kong
Department of Pediatrics The Ohio State University College of Medicine Columbus Ohio USA
Division of Genetic and Genomic Medicine Nationwide Children's Hospital Columbus Ohio USA
Institute of Cell Biology Biocenter Medical University of Innsbruck Innsbruck Austria
Zobrazit více v PubMed
Levin B. Hereditary metabolic disorders of the urea cycle. Adv Clin Chem. 1971;14:65-143.
McReynolds JW, Crowley B, Mahoney MJ, Rosenberg LE. Autosomal recessive inheritance of human mitochondrial carbamyl phosphate synthetase deficiency. Am J Hum Genet. 1981;33(3):345-353.
Nettesheim S, Kolker S, Karall D, et al. Incidence, disease onset and short-term outcome in urea cycle disorders-cross-border surveillance in Germany, Austria and Switzerland. Orphanet J Rare Dis. 2017;12(1):111.
Uchino T, Endo F, Matsuda I. Neurodevelopmental outcome of long-term therapy of urea cycle disorders in Japan. J Inherit Metab Dis. 1998;21(Suppl 1):151-159.
Lichter-Konecki U, Caldovic L, Morizono H, Simpson K, Ah Mew N, MacLeod E. Ornithine transcarbamylase deficiency. In: Adam MP, Everman DB, Mirzaa GM, et al., eds. GeneReviews® [Internet]. University of Washington; 1993.
Menon J, Vij M, Sachan D, et al. Pediatric metabolic liver diseases: evolving role of liver transplantation. World J Transplant. 2021;11(6):161-179.
Kido J, Matsumoto S, Haberle J, et al. Role of liver transplantation in urea cycle disorders: report from a nationwide study in Japan. J Inherit Metab Dis. 2021;44(6):1311-1322.
Ginguay A, De Bandt JP. Citrulline production and protein homeostasis. Curr Opin Clin Nutr Metab Care. 2019;22(5):371-376.
Windmueller HG, Spaeth AE. Source and fate of circulating citrulline. Am J Physiol. 1981;241(6):E473-E480.
Ratner S. Enzymes of arginine and urea synthesis. Adv Enzymol Relat Areas Mol Biol. 1973;39:1-90.
Tuchman M. Persistent acitrullinemia after liver transplantation for carbamylphosphate synthetase deficiency. N Engl J Med. 1989;320(22):1498-1499.
Slooter AJC, Otte WM, Devlin JW, et al. Updated nomenclature of delirium and acute encephalopathy: statement of ten societies. Intensive Care Med. 2020;46(5):1020-1022.
R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for statistical Computing; 2022. https://www.R-project.org/
Kido J, Matsumoto S, Haberle J, et al. Long-term outcome of urea cycle disorders: report from a nationwide study in Japan. J Inherit Metab Dis. 2021;44(4):826-837.
Haberle J, Burlina A, Chakrapani A, et al. Suggested guidelines for the diagnosis and management of urea cycle disorders: first revision. J Inherit Metab Dis. 2019;42(6):1192-1230.
Matsumoto S, Häberle J, Kido J, Mitsubuchi H, Endo F, Nakamura K. Urea cycle disorders-update. J Hum Genet. 2019;64(9):833-847.
Wu G, Morris SM Jr. Arginine metabolism: nitric oxide and beyond. Biochem J. 1998;336(Pt 1):1-17.
Jourdan M, Nair KS, Carter RE, et al. Citrulline stimulates muscle protein synthesis in the post-absorptive state in healthy people fed a low-protein diet-a pilot study. Clin Nutr. 2015;34(3):449-456.
Papadia C, Osowska S, Cynober L, Forbes A. Citrulline in health and disease. Review on human studies. Clin Nutr. 2018;37(6 Pt A):1823-1828.
Bouillanne O, Melchior JC, Faure C, et al. Impact of 3-week citrulline supplementation on postprandial protein metabolism in malnourished older patients: the Ciproage randomized controlled trial. Clin Nutr. 2019;38(2):564-574.
Suzuki T, Morita M, Kobayashi Y, Kamimura A. Oral l-citrulline supplementation enhances cycling time trial performance in healthy trained men: double-blind randomized placebo-controlled 2-way crossover study. J Int Soc Sports Nutr. 2016;13:6.
Yabuki Y, Shioda N, Yamamoto Y, et al. Oral l-citrulline administration improves memory deficits following transient brain ischemia through cerebrovascular protection. Brain Res. 2013;1520:157-167.
Shen LJ, Beloussow K, Shen WC. Accessibility of endothelial and inducible nitric oxide synthase to the intracellular citrulline-arginine regeneration pathway. Biochem Pharmacol. 2005;69(1):97-104.