How the adaptation of the human microbiome to harsh space environment can determine the chances of success for a space mission to Mars and beyond

. 2023 ; 14 () : 1237564. [epub] 20240208

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid38390219

The ability of human cells to adapt to space radiation is essential for the well-being of astronauts during long-distance space expeditions, such as voyages to Mars or other deep space destinations. However, the adaptation of the microbiomes should not be overlooked. Microorganisms inside an astronaut's body, or inside the space station or other spacecraft, will also be exposed to radiation, which may induce resistance to antibiotics, UV, heat, desiccation, and other life-threatening factors. Therefore, it is essential to consider the potential effects of radiation not only on humans but also on their microbiomes to develop effective risk reduction strategies for space missions. Studying the human microbiome in space missions can have several potential benefits, including but not limited to a better understanding of the major effects space travel has on human health, developing new technologies for monitoring health and developing new radiation therapies and treatments. While radioadaptive response in astronauts' cells can lead to resistance against high levels of space radiation, radioadaptive response in their microbiome can lead to resistance against UV, heat, desiccation, antibiotics, and radiation. As astronauts and their microbiomes compete to adapt to the space environment. The microorganisms may emerge as the winners, leading to life-threatening situations due to lethal infections. Therefore, understanding the magnitude of the adaptation of microorganisms before launching a space mission is crucial to be able to develop effective strategies to mitigate the risks associated with radiation exposure. Ensuring the safety and well-being of astronauts during long-duration space missions and minimizing the risks linked with radiation exposure can be achieved by adopting this approach.

Zobrazit více v PubMed

Allen C. A., Galindo C. L., Pandya U., Watson D. A., Chopra A. K., Niesel D. W. (2007). Transcription profiles of Streptococcus pneumoniae grown under different conditions of normal gravitation. Acta Astronaut. 60, 433–444. doi: 10.1016/j.actaastro.2006.09.026 DOI

Allen L. A., Kalani A. H., Estante F., Rosengren A. J., Stodieck L., Klaus D., et al. . (2022). Simulated Micro-, lunar, and Martian gravities on earth—effects on Escherichia coli growth, phenotype, and sensitivity to antibiotics. Life 12:1399. doi: 10.3390/life12091399, PMID: PubMed DOI PMC

Arunasri K., Adil M., Venu Charan K., Suvro C., Himabindu Reddy S., Shivaji S. (2013). Effect of simulated microgravity on E. coli K12 MG1655 growth and gene expression. PLoS One 8:e57860. doi: 10.1371/journal.pone.0057860, PMID: PubMed DOI PMC

Aunins T. R., Erickson K. E., Prasad N., Levy S. E., Jones A., Shrestha S., et al. . (2018). Spaceflight modifies Escherichia coli gene expression in response to antibiotic exposure and reveals role of oxidative stress response. Front. Microbiol. 9:9. doi: 10.3389/fmicb.2018.00310 PubMed DOI PMC

Avila-Herrera A., Thissen J., Urbaniak C., Be N. A., Smith D. J., Karouia F., et al. . (2020). Crewmember microbiome may influence microbial composition of ISS habitable surfaces. PLoS One 15:e0231838. doi: 10.1371/journal.pone.0231838, PMID: PubMed DOI PMC

Baker P. W., Leff L. G. (2005a). Attachment to stainless steel by Mir Space Station bacteria growing under modeled reduced gravity at varying nutrient concentrations. Biofilms 2, 1–7. doi: 10.1017/S1479050504001437 DOI

Baker P. W., Leff L. G. (2005b). Intraspecific differences in bacterial responses to modelled reduced gravity. J. Appl. Microbiol. 98, 1239–1246. doi: 10.1111/j.1365-2672.2005.02593.x PubMed DOI

Barrila J., Radtke A. L., Crabbé A., Sarker S. F., Herbst-Kralovetz M. M., Ott C. M., et al. . (2010). Organotypic 3D cell culture models: using the rotating wall vessel to study host-pathogen interactions. Nat. Rev. Microbiol. 8, 791–801. doi: 10.1038/nrmicro2423 PubMed DOI

Bevelacqua J. J., Mortazavi S. M. J. (2018). Commentary: human pathophysiological adaptations to the space environment. Front. Physiol. 8:1116. doi: 10.3389/fphys.2017.01116 PubMed DOI PMC

Bharindwal S., Goswami N., Jha P., Pandey S., Jobby R. (2023). Prospective use of probiotics to maintain astronaut health during spaceflight. Life 13:727. doi: 10.3390/life13030727, PMID: PubMed DOI PMC

Bhattacharjee D., Ito A. (2001). Deceleration of carcinogenic potential by adaptation with low dose gamma irradiation. In Vivo (Brooklyn), 15, 87–92. PubMed

Buonanno M., De Toledo S. M., Howell R. W., Azzam E. I. (2015). Low-dose energetic protons induce adaptive and bystander effects that protect human cells against DNA damage caused by a subsequent exposure to energetic iron ions. J. Radiat. Res. 56, 502–508. doi: 10.1093/jrr/rrv005, PMID: PubMed DOI PMC

Castro S. L., Nelman-Gonzalez M., Nickerson C. A., Ott C. M. (2011). Induction of attachment-independent biofilm formation and repression of hfq expression by low-fluid-shear culture of Staphylococcus aureus. Appl. Environ. Microbiol. 77, 6368–6378. doi: 10.1128/AEM.00175-11 PubMed DOI PMC

Chancellor J. C., Scott G. B. I., Sutton J. P. (2014). Space radiation: the number one risk to astronaut health beyond low earth orbit. Life 4, 491–510. doi: 10.3390/life4030491, PMID: PubMed DOI PMC

Cho I., Blaser M. J. (2012). The human microbiome: at the interface of health and disease. Nat. Rev. Genet. 13, 260–270. doi: 10.1038/nrg3182 PubMed DOI PMC

Clapp M., Aurora N., Herrera L., Bhatia M., Wilen E., Wakefield S. (2017). Gut Microbiota’s effect on mental health: the gut-brain Axis. Clin. Pract. 7:7. doi: 10.4081/cp.2017.987 PubMed DOI PMC

Coleman C. B., Gonzalez-Villalobos R. A., Allen P. L., Johanson K., Guevorkian K., Valles J. M., et al. . (2007). Diamagnetic levitation changes growth, cell cycle, and gene expression of Saccharomyces cerevisiae. Biotechnol. Bioeng. 98, 854–863. doi: 10.1002/bit.21526 PubMed DOI

Crabbé A., Nielsen-Preiss S. M., Woolley C. M., Barrila J., Buchanan K., McCracken J., et al. . (2013). Spaceflight enhances cell aggregation and random budding in Candida albicans. PLoS One 8:e80677. doi: 10.1371/journal.pone.0080677, PMID: PubMed DOI PMC

Crabbé A., Schurr M. J., Monsieurs P., Morici L., Schurr J., Wilson J. W., et al. . (2011). Transcriptional and proteomic responses of Pseudomonas aeruginosa PAO1 to spaceflight conditions involve Hfq regulation and reveal a role for oxygen. Appl. Environ. Microbiol. 77, 1221–1230. doi: 10.1128/AEM.01582-10 PubMed DOI PMC

Crucian B. E., Choukèr A., Simpson R. J., Mehta S., Marshall G., Smith S. M., et al. . (2018). Immune system dysregulation during spaceflight: potential countermeasures for deep space exploration missions. Front. Immunol. 9:1437. doi: 10.3389/fimmu.2018.01437 PubMed DOI PMC

Cui P., Niu H., Shi W., Zhang S., Zhang W., Zhang Y. (2018). Identification of genes involved in bacteriostatic antibiotic-induced persister formation. Front. Microbiol. 9, 1–10. doi: 10.3389/fmicb.2018.00413 PubMed DOI PMC

Degruttola A. K., Low D., Mizoguchi A., Mizoguchi E. (2016). Current understanding of dysbiosis in disease in human and animal models. Inflamm. Bowel Dis. 22, 1137–1150. doi: 10.1097/MIB.0000000000000750 PubMed DOI PMC

Dijkstra C., Larkin O., Anthony P., Davey M., Eaves L., Rees C., et al. . (2011). Diamagnetic levitation enhances growth of liquid bacterial cultures by increasing oxygen availability. J R Soc Interface. 8, 334–44. doi: 10.1098/rsif.2010.0294 PubMed DOI PMC

Dörr T., Lewis K., Vulić M. (2009). SOS response induces persistence to fluoroquinolones in Escherichia coli. Ed. Susan M. Rosenberg. PLoS Genet. 5, 1–9. doi: 10.1371/journal.pgen.1000760 PubMed DOI PMC

Elmore E., Lao X. Y., Kapadia R., Swete M., Redpath J. (2011). Neoplastic transformation in vitro by mixed beams of high-energy iron ions and protons. Radiat. Res. 176, 291–302. doi: 10.1667/RR2646.1, PMID: PubMed DOI

England L. S., Gorzelak M., Trevors J. T. (2003). Growth and membrane polarization in Pseudomonas aeruginosa UG2 grown in randomized microgravity in a high aspect ratio vessel. Biochim. Biophys. Acta Gen. Subj. 1624, 76–80. doi: 10.1016/j.bbagen.2003.09.012 PubMed DOI

Fang A., Pierson D. L., Mishra S. K., Demain A. L. (2000). Growth of Streptomyces hygroscopicus in rotating-wall bioreactor under simulated microgravity inhibits rapamycin production. Appl. Microbiol. Biotechnol. 54, 33–36. doi: 10.1007/s002539900303, PMID: PubMed DOI

Franklin C. L., Ericsson A. C. (2017). Microbiota and reproducibility of rodent models. Lab. Anim. 46, 114–122. doi: 10.1038/laban.1222, PMID: PubMed DOI PMC

Garrett-Bakelman F. E., Darshi M., Green S. J., Gur R. C., Lin L., Macias B. R., et al. . (2019). The NASA twins study: a multidimensional analysis of a year-long human spaceflight. Science 364:364. doi: 10.1126/science.aau8650 PubMed DOI PMC

Ge T. J., Chan C. T., Lee B. J., Liao J. C., Park S. (2022). Smart toilets for monitoring COVID-19 surges: passive diagnostics and public health. NPJ Digit. Med. 5:582. doi: 10.1038/s41746-022-00582-0 PubMed DOI PMC

Ge T. J., Rahimzadeh V. N., Mintz K., Park W. G., Martinez-Martin N., Liao J. C., et al. . (2023). Passive monitoring by smart toilets for precision health. Sci. Transl. Med. 15:eabk3489. doi: 10.1126/scitranslmed.abk3489, PMID: PubMed DOI PMC

Huff J., Carnell L., Blattnig S., Chappell L., Ke G., Lumpkins S., et al. . (2016). Evidence report: risk of radiation carcinogenesis. Hum. Res. Progr. Sp. Radiat. Elem. 1–70.

Hyun J., Romero L., Riveron R., Flores C., Kanagavelu S., Chung K. D., et al. . (2015). Human intestinal epithelial cells express interleukin-10 through toll-like receptor 4-mediated epithelial-macrophage crosstalk. J. Innate Immun. 7, 87–101. doi: 10.1159/000365417, PMID: PubMed DOI PMC

Javad Mortazavi S. M., Mortazavi S. A., Sihver L. (2021). Risk of severe COVID-19 infection in international Space Station astronauts despite routine pre-mission measures. J Allergy Clin Immunol Pract 9:3527. doi: 10.1016/j.jaip.2021.05.043, PMID: PubMed DOI PMC

Jiang P., Green S. J., Chlipala G. E., Turek F. W., Vitaterna M. H. (2019). Reproducible changes in the gut microbiome suggest a shift in microbial and host metabolism during spaceflight. Microbiome 7:113. doi: 10.1186/s40168-019-0724-4, PMID: PubMed DOI PMC

Juergensmeyer M. A., Juergensmeyer E. A., Guikema J. A. (1999). Long-term exposure to spaceflight conditions affects bacterial response to antibiotics. Microgravity Sci. Technol. 12, 41–47. PubMed

Kacena M. A., Manfredi B., Todd P. (1999a). Effects of space flight and mixing on bacterial growth in low volume cultures. Microgravity Sci. Technol. 12, 74–77. PubMed

Kacena M. A., Merrell G. A., Manfredi B., Smith E. E., Klaus D. M., Todd P. (1999b). Bacterial growth in space flight: logistic growth curve parameters for Escherichia coli and Bacillus subtilis. Appl. Microbiol. Biotechnol. 51, 229–234. doi: 10.1007/s002530051386, PMID: PubMed DOI

Kim W., Tengra F. K., Shong J., Marchand N., Chan H. K., Young Z., et al. . (2013). Effect of spaceflight on Pseudomonas aeruginosa final cell density is modulated by nutrient and oxygen availability. BMC Microbiol. 13:241. doi: 10.1186/1471-2180-13-241, PMID: PubMed DOI PMC

Krajmalnik-Brown R., Ilhan Z. E., Kang D. W., DiBaise J. K. (2012). Effects of gut microbes on nutrient absorption and energy regulation. Nutr. Clin. Pract. 27, 201–214. doi: 10.1177/0884533611436116, PMID: PubMed DOI PMC

Lambring C. B., Siraj S., Patel K., Sankpal U. T., Mathew S., Basha R. (2019). Impact of the microbiome on the immune system. Crit. Rev. Immunol. 39, 313–328. doi: 10.1615/CritRevImmunol.2019033233 PubMed DOI PMC

LeBlanc J. G., Milani C., de Giori G. S., Sesma F., van Sinderen D., Ventura M. (2013). Bacteria as vitamin suppliers to their host: a gut microbiota perspective. Curr. Opin. Biotechnol. 24, 160–168. doi: 10.1016/j.copbio.2012.08.005 PubMed DOI

Lynch S. V., Brodie E. L., Matin A. (2004). Role and regulation of σS in general resistance conferred by low-shear simulated microgravity in Escherichia coli. J. Bacteriol. 186, 8207–8212. doi: 10.1128/JB.186.24.8207-8212.2004 PubMed DOI PMC

Lynch S. V., Mukundakrishnan K., Benoit M. R., Ayyaswamy P. S., Matin A. (2006). Escherichia coli biofilms formed under low-shear modeled microgravity in a ground-based system. Appl. Environ. Microbiol. 72, 7701–7710. doi: 10.1128/AEM.01294-06 PubMed DOI PMC

Marchesi J. R., Ravel J. (2015). The vocabulary of microbiome research: a proposal. Microbiome 3:31. doi: 10.1186/s40168-015-0094-5, PMID: PubMed DOI PMC

Mazmanian S. K., Cui H. L., Tzianabos A. O., Kasper D. L. (2005). An immunomodulatory molecule of symbiotic bacteria directs maturation of the host immune system. Cells 122, 107–118. doi: 10.1016/j.cell.2005.05.007, PMID: PubMed DOI

Mortazavi S. M. J., Cameron J. R., Niroomand-rad A. (2003a). Adaptive response studies may help choose astronauts for long-term space travel. Adv. Sp. Res. 31, 1543–1551. doi: 10.1016/S0273-1177(03)00089-9, PMID: PubMed DOI

Mortazavi S. M. J., Cameron J. R., Niroomand-rad A. (2003b). Is the adaptive response an efficient protection against the detrimental effects of space radiation. In: 28th International Cosmic Ray Conference. Trukuba, Japan p. 4299–4302.

Mortazavi S. M. J., Mortazavi S. A. R., Sihver L. (2020a). Radioadaptation of astronauts’ microbiome and bodies in a deep space Mission to Mars and beyond. 2020 IEEE Aerospace Conference, 7–14 March 2020.

Mortazavi S. M. J., Mortazavi S. A., Sihver L. (2020b). Can adaptive response and evolution make survival of extremophile Bacteria possible on Mars?. IEEE Aerospace Conference, 1 March 2020.

Nickerson C. A., Ott C. M., Wilson J. W., Ramamurthy R., Pierson D. L. (2004). Microbial responses to microgravity and other Low-shear environments. Microbiol. Mol. Biol. Rev. 68, 345–361. doi: 10.1128/MMBR.68.2.345-361.2004 PubMed DOI PMC

Purevdorj-Gage B., Sheehan K. B., Hyman L. E. (2006). Effects of low-shear modeled microgravity on cell function, gene expression, and phenotype in Saccharomyces cerevisiae. Appl. Environ. Microbiol. 72, 4569–4575. doi: 10.1128/AEM.03050-05 PubMed DOI PMC

Rithidech K. N., Lai X., Honikel L., Reungpatthanaphong P., Witzmann F. A. (2012). Identification of proteins secreted into the medium by human lymphocytes irradiated in vitro with or without adaptive environments. Health Phys. 102, 39–53. doi: 10.1097/HP.0b013e31822833af, PMID: PubMed DOI PMC

Rittershaus E. S. C., Baek S. H., Sassetti C. M. (2013). The normalcy of dormancy. Cell Host Microbe 13, 643–651. doi: 10.1016/j.chom.2013.05.012, PMID: PubMed DOI PMC

Rosado H., Doyle M., Hinds J., Taylor P. W. (2010). Low-shear modelled microgravity alters expression of virulence determinants of Staphylococcus aureus. Acta Astronaut. 66, 408–413. doi: 10.1016/j.actaastro.2009.06.007 DOI

Rosenberg E. (2022). Rapid acquisition of microorganisms and microbial genes can help explain punctuated evolution. Front. Ecol. Evol. 10:10. doi: 10.3389/fevo.2022.957708 DOI

Said-Salman I. H., Jebaii F. A., Yusef H. H., Moustafa M. E. (2019). Global gene expression analysis of Escherichia coli K-12 DH5α after exposure to 2.4 GHz wireless fidelity radiation. Sci. Rep. 9:14425. doi: 10.1038/s41598-019-51046-7, PMID: PubMed DOI PMC

Sheet S., Yesupatham S., Ghosh K., Choi M. S., Shim K. S., Lee Y. S. (2020). Modulatory effect of low-shear modeled microgravity on stress resistance, membrane lipid composition, virulence, and relevant gene expression in the food-borne pathogen Listeria monocytogenes. Enzym. Microb. Technol. 133:109440. doi: 10.1016/j.enzmictec.2019.109440 PubMed DOI

Siddiqui R., Akbar N., Khan N. A. (2021a). Gut microbiome and human health under the space environment. J. Appl. Microbiol. 130, 14–24. doi: 10.1111/jam.14789 PubMed DOI

Siddiqui R., Qaisar R., Goswami N., Khan N. A., Elmoselhi A. (2021b). Effect of microgravity environment on gut microbiome and angiogenesis. Life 11:1008. doi: 10.3390/life11101008, PMID: PubMed DOI PMC

Siddiqui R., Qaisar R., Khan N. A., Alharbi A. M., Alfahemi H., Elmoselhi A. (2022). Effect of microgravity on the gut microbiota bacterial composition in a Hindlimb unloading model. Life 12:1865. doi: 10.3390/life12111865 PubMed DOI PMC

Singh N. K., Wood J. M., Karouia F., Venkateswaran K. (2018). Succession and persistence of microbial communities and antimicrobial resistance genes associated with international Space Station environmental surfaces. Microbiome 6:585. doi: 10.1186/s40168-018-0585-2 PubMed DOI PMC

Szydlowski L. M., Bulbul A., Simpson A. C., Kaya D. E., Singh N. K., Sezerman U. O. L., et al. . (2023). Adaptation to space conditions of novel bacterial species isolated from the international Space Station revealed by functional gene annotations and comparative genome analysis. bioRxiv. 1–25. doi: 10.1101/2023.09.28.559980 PubMed DOI PMC

Tasoglu S. (2022). Toilet-based continuous health monitoring using urine. Nat. Rev. Urol. 19, 219–230. doi: 10.1038/s41585-021-00558-x, PMID: PubMed DOI

Tirumalai M. R., Karouia F., Tran Q., Stepanov V. G., Bruce R. J., Ott C. M., et al. . (2017). The adaptation of Escherichia coli cells grown in simulated microgravity for an extended period is both phenotypic and genomic. NPJ Microgravity 3:15. doi: 10.1038/s41526-017-0020-1, PMID: PubMed DOI PMC

Tirumalai M. R., Karouia F., Tran Q., Stepanov V. G., Bruce R. J., Ott C. M., et al. . (2019). Evaluation of acquired antibiotic resistance in Escherichia coli exposed to long-term low-shear modeled microgravity and background antibiotic exposure. MBio 10:2637. doi: 10.1128/mBio.02637-18, PMID: PubMed DOI PMC

Turroni S., Magnani M., KC P., Lesnik P., Vidal H., Heer M. (2020). Gut microbiome and space travelers’ health: state of the art and possible pro/prebiotic strategies for long-term space missions. Front. Physiol. 11:553929. doi: 10.3389/fphys.2020.553929, PMID: PubMed DOI PMC

Urbaniak C., Sielaff A. C., Frey K. G., Allen J. E., Singh N., Jaing C., et al. . (2018). Detection of antimicrobial resistance genes associated with the international Space Station environmental surfaces. Sci. Rep. 8:814. doi: 10.1038/s41598-017-18506-4, PMID: PubMed DOI PMC

Van Mulders S. E., Stassen C., Daenen L., Devreese B., Siewers V., Van Eijsden R. G. E., et al. . (2011). The influence of microgravity on invasive growth in saccharomyces cerevisiae. Astrobiology 11, 45–55. doi: 10.1089/ast.2010.0518 PubMed DOI

Voorhies A. A., Mark Ott C., Mehta S., Pierson D. L., Crucian B. E., Feiveson A., et al. . (2019). Study of the impact of long-duration space missions at the international Space Station on the astronaut microbiome. Sci. Rep. 9:9. doi: 10.1038/s41598-019-46303-8 PubMed DOI PMC

Wang J., Han C., Lu Z., Ge P., Cui Y., Zhao D., et al. . (2020). Simulated microgravity suppresses MAPK pathway-mediated innate immune response to bacterial infection and induces gut microbiota dysbiosis. FASEB J. 34, 14631–14644. doi: 10.1096/fj.202001428R, PMID: PubMed DOI

Wang Y., Zhao W., Shi J., Wang J., Hao J., Pang X., et al. . (2019). Intestinal microbiota contributes to altered glucose metabolism in simulated microgravity mouse model. FASEB J. 33, 10140–10151. doi: 10.1096/fj.201900238RR PubMed DOI

Welsh J., Bevelacqua J. J., Keshavarz M., Mortazavi S. A. R., Mortazavi S. M. J. (2019). Is telomere length a biomarker of adaptive response? Controversial findings of NASA and residents of high background radiation areas. J. Biomed. Phys. Eng. 9:1151. doi: 10.31661/jbpe.v9i3Jun.1151 PubMed DOI PMC

Welsh J. S., Bevelacqua J. J., Mozdarani H., Mortazavi S. A. R., Mortazavi S. M. J. (2020). Why can COVID-19 fatality in space be significantly higher than on earth? Int. J. Radiat. Res. 18, 421–426. doi: 10.18869/acadpub.ijrr.18.3.421 DOI

Willaert R. (2013). The growth behavior of the model eukaryotic yeast Saccharomyces cerevisiae in microgravity. Curr. Biotechnol. 2, 226–234. doi: 10.2174/22115501113029990023 DOI

Wilson J. W., Ott C. M., zu Bentrup K. H., Ramamurthy R., Quick L., Porwollik S., et al. . (2007). Space flight alters bacterial gene expression and virulence and reveals a role for global regulator Hfq. Proc. Natl. Acad. Sci. U. S. A. 104, 16299–16304. doi: 10.1073/pnas.0707155104, PMID: PubMed DOI PMC

Wood T. K., Knabel S. J., Kwan B. W. (2013). Bacterial persister cell formation and dormancy. Appl. Environ. Microbiol. 79, 7116–7121. doi: 10.1128/AEM.02636-13, PMID: PubMed DOI PMC

Yuan L., Zhang R., Li X., Gao C., Hu X., Hussain S., et al. . (2023). Long-term simulated microgravity alters gut microbiota and metabolome in mice. Front. Microbiol. 14:14. doi: 10.3389/fmicb.2023.1100747 PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...