Bacterial Community- and Hospital-Acquired Pneumonia in Patients with Critical COVID-19-A Prospective Monocentric Cohort Study
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
NU22-B-112
Czech Health Research Council
LX22NPO5103
The project National Institute of virology and bacteriology (Programme EXCELES, ID Project No. LX22NPO5103) - Funded by the European Union - Next Generation EU
00098892
MH CZ-DRO FNOL 00098892
PubMed
38391578
PubMed Central
PMC10886267
DOI
10.3390/antibiotics13020192
PII: antibiotics13020192
Knihovny.cz E-zdroje
- Klíčová slova
- adult respiratory distress syndrome (ARDS), bacterial co- or superinfection, bacterial pneumonia, community-acquired pneumonia (CAP), critical coronavirus disease 19 (COVID-19), etiological agents, hospital-acquired pneumonia (HAP), intensive care unit (ICU), mortality, severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2),
- Publikační typ
- časopisecké články MeSH
The impact of bacterial pneumonia on patients with COVID-19 infection remains unclear. This prospective observational monocentric cohort study aims to determine the incidence of bacterial community- and hospital-acquired pneumonia (CAP and HAP) and its effect on mortality in critically ill COVID-19 patients admitted to the intensive care unit (ICU) at University Hospital Olomouc between 1 November 2020 and 31 December 2022. The secondary objectives of this study include identifying the bacterial etiology of CAP and HAP and exploring the capabilities of diagnostic tools, with a focus on inflammatory biomarkers. Data were collected from the electronic information hospital system, encompassing biomarkers, microbiological findings, and daily visit records, and subsequently evaluated by ICU physicians and clinical microbiologists. Out of 171 patients suffering from critical COVID-19, 46 (27%) had CAP, while 78 (46%) developed HAP. Critically ill COVID-19 patients who experienced bacterial CAP and HAP exhibited higher mortality compared to COVID-19 patients without any bacterial infection, with rates of 38% and 56% versus 11%, respectively. In CAP, the most frequent causative agents were chlamydophila and mycoplasma; Enterobacterales, which were multidrug-resistant in 71% of cases; Gram-negative non-fermenting rods; and Staphylococcus aureus. Notably, no strains of Streptococcus pneumoniae were detected, and only a single strain each of Haemophilus influenzae and Moraxella catarrhalis was isolated. The most frequent etiologic agents causing HAP were Enterobacterales and Gram-negative non-fermenting rods. Based on the presented results, commonly used biochemical markers demonstrated poor predictive and diagnostic accuracy. To confirm the diagnosis of bacterial CAP in our patient cohort, it was necessary to assess the initial values of inflammatory markers (particularly procalcitonin), consider clinical signs indicative of bacterial infection, and/or rely on positive microbiological findings. For HAP diagnostics, it was appropriate to conduct regular detailed clinical examinations (with a focus on evaluating respiratory functions) and closely monitor the dynamics of inflammatory markers (preferably Interleukin-6).
Zobrazit více v PubMed
Coronavirus Disease 2019 (COVID-19) Treatment Guidelines. [(accessed on 28 August 2023)]; Available online: https://covid19treatmentguidelines.nih.gov.
Chen N., Zhou M., Dong X., Qu J., Gong F., Han Y., Qiu Y., Wang J., Liu Y., Wei Y., et al. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: A descriptive study. Lancet. 2020;395:507–513. doi: 10.1016/S0140-6736(20)30211-7. PubMed DOI PMC
ARDS Definition Task Force. Ranieri V.M., Rubenfeld G.D., Thompson B.T., Ferguson N.D., Caldwell E., Fan E., Camporota L., Slutsky A.S. Acute respiratory distress syndrome: The Berlin Definition. JAMA. 2012;307:2526–2533. doi: 10.1001/jama.2012.5669. PubMed DOI
World Health Organization (WHO) Clinical Management of COVID-19: Living Guideline. [(accessed on 21 May 2023)]. Available online: https://www.who.int/publications/i/item/WHO-2019-nCoV-clinical-2023.2.
Wu Z., McGoogan J.M. Characteristics of and Important Lessons from the Coronavirus Disease 2019 (COVID-19) Outbreak in China: Summary of a Report of 72,314 Cases from the Chinese Center for Disease Control and Prevention. JAMA. 2020;323:1239–1242. doi: 10.1001/jama.2020.2648. PubMed DOI
Hajjar L.A., Costa I.B.S.D.S., Rizk S.I., Biselli B., Gomes B.R., Bittar C.S., de Oliveira G.Q., de Almeida J.P., de Oliveira Bello M.V., Garzillo C., et al. Intensive care management of patients with COVID-19: A practical approach. Ann. Intensive Care. 2021;11:36. doi: 10.1186/s13613-021-00820-w. PubMed DOI PMC
Phua J., Weng L., Ling L., Egi M., Lim C.M., Divatia J.V., Shrestha B.R., Arabi Y.M., Ng J., Gomersall C.D., et al. Intensive care management of coronavirus disease 2019 (COVID-19): Challenges and recommendations. Lancet Respir. Med. 2020;8:506–517. doi: 10.1016/S2213-2600(20)30161-2. PubMed DOI PMC
Grasselli G., Pesenti A., Cecconi M. Critical Care Utilization for the COVID-19 Outbreak in Lombardy, Italy: Early Experience and Forecast During an Emergency Response. JAMA. 2020;323:1545–1546. doi: 10.1001/jama.2020.4031. PubMed DOI
Abate S.M., Ahmed A.S., Mantfardo B., Basu B. Rate of Intensive Care Unit admission and outcomes among patients with coronavirus: A systematic review and Meta-analysis. PLoS ONE. 2020;15:e0235653. doi: 10.1371/journal.pone.0235653. PubMed DOI PMC
Guan W.J., Ni Z.Y., Hu Y., Liang W.H., Ou C.Q., He J.X., Liu L., Shan H., Lei C.L., Hui D.S.C., et al. Clinical Characteristics of Coronavirus Disease 2019 in China. N. Engl. J. Med. 2020;382:1708–1720. doi: 10.1056/NEJMoa2002032. PubMed DOI PMC
Wunsch H. Mechanical Ventilation in COVID-19: Interpreting the Current Epidemiology. Am. J. Respir. Crit. Care Med. 2020;202:1–4. doi: 10.1164/rccm.202004-1385ED. PubMed DOI PMC
Johnson J.A., Mallari K.F., Pepe V.M., Treacy T., McDonough G., Khaing P., McGrath C., George B.J., Yoo E.J. Mechanically ventilated COVID-19 patients admitted to the intensive care unit in the United States with or without respiratory failure secondary to COVID-19 pneumonia: A retrospective comparison of characteristics and outcomes. Acute Crit. Care. 2023;38:298–307. doi: 10.4266/acc.2022.01123. PubMed DOI PMC
Ouyang L., Yu M., Zhu Y., Gong J. Respiratory Supports Of COVID-19 Patients in Intensive Care Unit: A Systematic Review. Heliyon. 2021;7:e06813. doi: 10.1016/j.heliyon.2021.e06813. PubMed DOI PMC
Galli F., Bindo F., Motos A., Fernández-Barat L., Barbeta E., Gabarrús A., Ceccato A., Bermejo-Martin J.F., Ferrer R., Riera J., et al. Procalcitonin And C-Reactive Protein to Rule Out Early Bacterial Coinfection In COVID-19 Critically Ill Patients. Intensive Care Med. 2023;49:934–945. doi: 10.1007/s00134-023-07161-1. PubMed DOI PMC
Feldman C., Anderson R. The role of co-infections and secondary infections in patients with COVID-19. Pneumonia. 2021;13:5. doi: 10.1186/s41479-021-00083-w. PubMed DOI PMC
Kolář M., Rejman D., Bardoň J. Zásady Antibiotické Léčby [Principles of Antibiotic Treatment] Palacký University Olomouc; Olomouc, Czech Republic: 2020. pp. 102–107.
De Santis V., Corona A., Vitale D., Nencini C., Potalivo A., Prete A., Zani G., Malfatto A., Tritapepe L., Taddei S., et al. Bacterial infections in critically ill patients with SARS-2-COVID-19 infection: Results of a prospective observational multicenter study. Infection. 2022;50:139–148. doi: 10.1007/s15010-021-01661-2. PubMed DOI PMC
Langford B.J., So M., Raybardhan S., Leung V., Westwood D., MacFadden D.R., Soucy J.R., Daneman N. Bacterial co-infection and secondary infection in patients with COVID-19: A living rapid review and meta-analysis. Clin. Microbiol. Infect. 2020;26:1622–1629. doi: 10.1016/j.cmi.2020.07.016. PubMed DOI PMC
Garcia-Vidal C., Sanjuan G., Moreno-García E., Puerta-Alcalde P., Garcia-Pouton N., Chumbita M., Fernandez-Pittol M., Pitart C., Inciarte A., Bodro M., et al. Incidence of co-infections and superinfections in hospitalized patients with COVID-19: A retrospective cohort study. Clin. Microbiol. Infect. 2021;27:83–88. doi: 10.1016/j.cmi.2020.07.041. PubMed DOI PMC
Hughes S., Troise O., Donaldson H., Mughal N., Moore L.S.P. Bacterial and fungal coinfection among hospitalized patients with COVID-19: A retrospective cohort study in a UK secondary-care setting. Clin. Microbiol. Infect. 2020;26:1395–1399. doi: 10.1016/j.cmi.2020.06.025. PubMed DOI PMC
Yang X., Yu Y., Xu J., Shu H., Xia J., Liu H., Wu Y., Zhang L., Yu Z., Fang M., et al. Clinical course and outcomes of critically ill patients with SARS-CoV-2 pneumonia in Wuhan, China: A single-centered, retrospective, observational study. Lancet Respir. Med. 2020;8:475–481. doi: 10.1016/S2213-2600(20)30079-5. PubMed DOI PMC
Zhou F., Yu T., Du R., Fan G., Liu Y., Liu Z., Xiang J., Wang Y., Song B., Gu X., et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: A retrospective cohort study. Lancet. 2020;395:1054–1062. doi: 10.1016/S0140-6736(20)30566-3. PubMed DOI PMC
Zhang G., Hu C., Luo L., Fang F., Chen Y., Li J., Peng Z., Pan H. Clinical features and short-term outcomes of 221 patients with COVID-19 in Wuhan, China. J. Clin. Virol. 2020;127:104364. doi: 10.1016/j.jcv.2020.104364. PubMed DOI PMC
Fattorini L., Creti R., Palma C., Pantosti A., Unit of Antibiotic Resistance and Special Pathogens. The Unit of Antibiotic Resistance and Special Pathogens Bacterial coinfections in COVID-19: An underestimated adversary. Ann. Dell’Istituto Super. Sanita. 2020;56:359–364. doi: 10.4415/ANN_20_03_14. PubMed DOI
Metlay J.P., Waterer G.W. Treatment of Community-Acquired Pneumonia During the Coronavirus Disease 2019 (COVID-19) Pandemic. Ann. Intern. Med. 2020;173:304–305. doi: 10.7326/M20-2189. PubMed DOI PMC
Elabbadi A., Turpin M., Gerotziafas G.T., Teulier M., Voiriot G., Fartoukh M. Bacterial coinfection in critically ill COVID-19 patients with severe pneumonia. Infection. 2021;49:559–562. doi: 10.1007/s15010-020-01553-x. PubMed DOI PMC
Lansbury L., Lim B., Baskaran V., Lim W.S. Co-infections in people with COVID-19: A systematic review and meta-analysis. J. Infect. 2020;81:266–275. doi: 10.1016/j.jinf.2020.05.046. PubMed DOI PMC
Verroken A., Scohy A., Gérard L., Wittebole X., Collienne C., Laterre P.F. Co-infections in COVID-19 critically ill and antibiotic management: A prospective cohort analysis. Crit. Care. 2020;24:410. doi: 10.1186/s13054-020-03135-7. PubMed DOI PMC
Youngs J., Wyncoll D., Hopkins P., Arnold A., Ball J., Bicanic T. Improving antibiotic stewardship in COVID-19: Bacterial co-infection is less common than with influenza. J. Infect. 2020;81:e55–e57. doi: 10.1016/j.jinf.2020.06.056. PubMed DOI PMC
Clancy C.J., Nguyen M.H. Coronavirus Disease 2019, Superinfections, and Antimicrobial Development: What Can We Expect? Clin. Infect. Dis. 2020;71:2736–2743. doi: 10.1093/cid/ciaa524. PubMed DOI PMC
Yoon S.M., Lee J., Lee S.M., Lee H.Y. Incidence and clinical outcomes of bacterial superinfections in critically ill patients with COVID-19. Front. Med. 2023;10:1079721. doi: 10.3389/fmed.2023.1079721. PubMed DOI PMC
De Francesco M.A., Signorini L., Piva S., Pellizzeri S., Fumarola B., Corbellini S., Piccinelli G., Simonetti F., Carta V., Mangeri L., et al. Bacterial and fungal superinfections are detected at higher frequency in critically ill patients affected by SARS CoV-2 infection than negative patients and are associated to a worse outcome. J. Med. Virol. 2023;95:e28892. doi: 10.1002/jmv.28892. PubMed DOI
Schouten J., De Waele J., Lanckohr C., Koulenti D., Haddad N., Rizk N., Sjövall F., Kanj S.S., Alliance for the Prudent Use of Antibiotics (APUA) Antimicrobial stewardship in the ICU in COVID-19 times: The known unknowns. Int. J. Antimicrob. Agents. 2021;58:106409. doi: 10.1016/j.ijantimicag.2021.106409. PubMed DOI PMC
Gao C.A., Markov N.S., Stoeger T., Pawlowski A., Kang M., Nannapaneni P., Grant R.A., Pickens C., Walter J.M., Kruser J.M., et al. Machine Learning Links Unresolving Secondary Pneumonia to Mortality in Patients with Severe Pneumonia, Including COVID-19. J. Clin. Investig. 2023;133:e170682. doi: 10.1172/JCI170682. PubMed DOI PMC
Rawson T.M., Moore L.S.P., Zhu N., Ranganathan N., Skolimowska K., Gilchrist M., Satta G., Cooke G., Holmes A. Bacterial and Fungal Coinfection in Individuals with Coronavirus: A Rapid Review to Support COVID-19 Antimicrobial Prescribing. Clin. Infect. Dis. 2020;71:2459–2468. doi: 10.1093/cid/ciaa530. PubMed DOI PMC
Wu H.Y., Chang P.H., Chen K.Y., Lin I.F., Hsih W.H., Tsai W.L., Chen J.A., Lee S.S., GREAT working group Coronavirus disease 2019 (COVID-19) associated bacterial coinfection: Incidence, diagnosis and treatment. J. Microbiol. Immunol. Infect. 2022;55:985–992. doi: 10.1016/j.jmii.2022.09.006. PubMed DOI PMC
Mandell L.A., Zhanel G.G., Rotstein C., Muscedere J., Loeb M., Johnstone J. Community-Acquired Pneumonia in Canada During Coronavirus Disease 2019. Open Forum Infect. Dis. 2022;9:ofac043. doi: 10.1093/ofid/ofac043. PubMed DOI PMC
Torres A., Niederman M.S., Chastre J., Ewig S., Fernandez-Vandellos P., Hanberger H., Kollef M., Li Bassi G., Luna C.M., Martin-Loeches I., et al. International ERS/ESICM/ESCMID/ALAT guidelines for the management of hospital-acquired pneumonia and ventilator-associated pneumonia: Guidelines for the management of hospital-acquired pneumonia (HAP)/ventilator-associated pneumonia (VAP) of the European Respiratory Society (ERS), European Society of Intensive Care Medicine (ESICM), European Society of Clinical Microbiology and Infectious Diseases (ESCMID) and Asociación Latinoamericana del Tórax (ALAT) Eur. Respir. J. 2017;50:1700582. doi: 10.1183/13993003.00582-2017. PubMed DOI
Heneghan C., Pludermann A., Mahtani K. Differentiating Viral from Bacterial Pneumonia. [(accessed on 14 October 2023)]. Available online: https://www.cebm.net/covid-19/differentiating-viral-from-bacterial-pneumonia.
COVID-19 Rapid Guideline: Managing: Managing COVID-19. [(accessed on 22 June 2023)]. Available online: https://www.nice.org.uk/guidance/ng191.
Naranje P., Bhalla A.S., Jana M., Garg M., Nair A.D., Singh S.K., Banday I. Imaging of Pulmonary Superinfections and Co-Infections in COVID-19. Curr. Probl. Diagn. Radiol. 2022;51:768–778. doi: 10.1067/j.cpradiol.2021.09.009. PubMed DOI PMC
Altmayer S., Zanon M., Pacini G.S., Watte G., Barros M.C., Mohammed T.L., Verma N., Marchiori E., Hochhegger B. Comparison of the computed tomography findings in COVID-19 and other viral pneumonia in immunocompetent adults: A systematic review and meta-analysis. Eur. Radiol. 2020;30:6485–6496. doi: 10.1007/s00330-020-07018-x. PubMed DOI PMC
Parekh M., Donuru A., Balasubramanya R., Kapur S. Review of the Chest CT Differential Diagnosis of Ground-Glass Opacities in the COVID Era. Radiology. 2020;297:E289–E302. doi: 10.1148/radiol.2020202504. PubMed DOI PMC
Duzgun S.A., Durhan G., Demirkazik F.B., Akpinar M.G., Ariyurek O.M. COVID-19 pneumonia: The great radiological mimicker. Insights Imaging. 2020;11:118. doi: 10.1186/s13244-020-00933-z. PubMed DOI PMC
Zeng F., Huang Y., Guo Y., Yin M., Chen X., Xiao L., Deng G. Association of inflammatory markers with the severity of COVID-19: A meta-analysis. Int. J. Infect. Dis. 2020;96:467–474. doi: 10.1016/j.ijid.2020.05.055. PubMed DOI PMC
Luan Y.Y., Yin C.H., Yao Y.M. Update Advances on C-Reactive Protein in COVID-19 and Other Viral Infections. Front. Immunol. 2021;12:720363. doi: 10.3389/fimmu.2021.720363. PubMed DOI PMC
Sidhwani S.K., Mirza T., Khatoon A., Shaikh F., Khan R., Shaikh O.A., Nashwan A.J. Inflammatory markers and COVID-19 disease progression. J. Infect. Public Health. 2023;16:1386–1391. doi: 10.1016/j.jiph.2023.06.018. PubMed DOI PMC
Wunderink R.G., Waterer G. Advances in the causes and management of community acquired pneumonia in adults. BMJ. 2017;358:j2471. doi: 10.1136/bmj.j2471. PubMed DOI
Kamat I.S., Ramachandran V., Eswaran H., Guffey D., Musher D.M. Procalcitonin to Distinguish Viral from Bacterial Pneumonia: A Systematic Review and Meta-Analysis. Clin. Infect. Dis. 2020;70:538–542. doi: 10.1093/cid/ciz545. PubMed DOI
Sabahat U., Thomas L.M., Shaikh N.A., Ali N.M. An Unexpected Cause of Raised Procalcitonin. Dubai Med. J. 2023;6:310–314. doi: 10.1159/000533725. DOI
Cuquemelle E., Soulis F., Villers D., Roche-Campo F., Ara Somohano C., Fartoukh M., Kouatchet A., Mourvillier B., Dellamonica J., Picard W., et al. Can procalcitonin help identify associated bacterial infection in patients with severe influenza pneumonia? A multicentre study. Intensive Care Med. 2011;37:796–800. doi: 10.1007/s00134-011-2189-1. PubMed DOI PMC
Pfister R., Kochanek M., Leygeber T., Brun-Buisson C., Cuquemelle E., Machado M.B., Piacentini E., Hammond N.E., Ingram P.R., Michels G. Procalcitonin for diagnosis of bacterial pneumonia in critically ill patients during 2009 H1N1 influenza pandemic: A prospective cohort study, systematic review and individual patient data meta-analysis. Crit. Care. 2014;18:R44. doi: 10.1186/cc13760. PubMed DOI PMC
Pink I., Raupach D., Fuge J., Vonberg R.P., Hoeper M.M., Welte T., Rademacher J. C-reactive protein and procalcitonin for antimicrobial stewardship in COVID-19. Infection. 2021;49:935–943. doi: 10.1007/s15010-021-01615-8. PubMed DOI PMC
May M., Chang M., Dietz D., Shoucri S., Laracy J., Sobieszczyk M.E., Uhlemann A.C., Zucker J., Kubin C.J. Limited Utility of Procalcitonin in Identifying Community-Associated Bacterial Infections in Patients Presenting with Coronavirus Disease 2019. Antimicrob. Agents Chemother. 2021;65:e02167-20. doi: 10.1128/AAC.02167-20. PubMed DOI PMC
Harte E., Kumarasamysarma S., Phillips B., Mackay O., Rashid Z., Malikova N., Mukit A., Ramachandran S., Biju A., Brown K., et al. Procalcitonin Values Fail to Track the Presence of Secondary Bacterial Infections in COVID-19 Icu Patients. Antibiotics. 2023;12:709. doi: 10.3390/antibiotics12040709. PubMed DOI PMC
van Berkel M., Kox M., Frenzel T., Pickkers P., Schouten J., RCI-COVID-19 study group Biomarkers for antimicrobial stewardship: A reappraisal in COVID-19 times? Crit. Care. 2020;24:600. doi: 10.1186/s13054-020-03291-w. PubMed DOI PMC
Lidman C., Burman L.G., Lagergren A., Ortqvist A. Limited value of routine microbiological diagnostics in patients hospitalized for community-acquired pneumonia. Scand. J. Infect. Dis. 2002;34:873–879. doi: 10.1080/0036554021000026967. PubMed DOI
Zhang W., Du R.H., Li B., Zheng X.S., Yang X.L., Hu B., Wang Y.Y., Xiao G.F., Yan B., Shi Z.L., et al. Molecular and serological investigation of 2019-nCoV infected patients: Implication of multiple shedding routes. Emerg. Microbes Infect. 2020;9:386–389. doi: 10.1080/22221751.2020.1729071. PubMed DOI PMC
European Committee on Antimicrobial Susceptibility Testing Breakpoint Tables for Interpretation of MICs and Zone Diameters. [(accessed on 12 July 2023)]. Available online: http://www.eucast.org/clinical_breakpoints.
Htoutou Sedlakova M., Hanulik V., Chroma M., Hricova K., Kolar M., Latal T., Schaumann R., Rodloff A.C. Phenotypic detection of broad-spectrum beta-lactamases in microbiological practice. Med. Sci. Monit. 2011;17:BR147–BR152. doi: 10.12659/MSM.881761. PubMed DOI PMC
Tamma P.D., Simner P.J. Phenotypic Detection of Carbapenemase-Producing Organisms from Clinical Isolates. J. Clin. Microbiol. 2018;56:e01140-18. doi: 10.1128/JCM.01140-18. PubMed DOI PMC
Dallenne C., Da Costa A., Decré D., Favier C., Arlet G. Development of a set of multiplex PCR assays for the detection of genes encoding important beta-lactamases in Enterobacteriaceae. J. Antimicrob. Chemother. 2010;65:490–495. doi: 10.1093/jac/dkp498. PubMed DOI
Mlynarcik P., Dolejska M., Vagnerova I., Kutilová I., Kolar M. Detection of clinically important β-lactamases by using PCR. FEMS Microbiol. Lett. 2021;368:fnab068. doi: 10.1093/femsle/fnab068. PubMed DOI
Pérez-Pérez F.J., Hanson N.D. Detection of plasmid-mediated AmpC beta-lactamase genes in clinical isolates by using multiplex PCR. J. Clin. Microbiol. 2002;40:2153–2162. doi: 10.1128/JCM.40.6.2153-2162.2002. PubMed DOI PMC
Oliveira D.C., de Lencastre H. Multiplex PCR strategy for rapid identification of structural types and variants of the mec element in methicillin-resistant Staphylococcus aureus. Antimicrob. Agents Chemother. 2002;46:2155–2161. doi: 10.1128/AAC.46.7.2155-2161.2002. PubMed DOI PMC
Dutka-Malen S., Evers S., Courvalin P. Detection of glycopeptide resistance genotypes and identification to the species level of clinically relevant enterococci by PCR. J. Clin. Microbiol. 1995;33:24–27. doi: 10.1128/jcm.33.1.24-27.1995. PubMed DOI PMC
Schoettler J.J., Sandrio S., Boesing C., Bauer L., Miethke T., Thiel M., Krebs J. Bacterial Co- or Superinfection in Patients Treated in Intensive Care Unit with COVID-19- and Influenza-Associated Pneumonia. Pathogens. 2023;12:927. doi: 10.3390/pathogens12070927. PubMed DOI PMC
Vaughn V.M., Gandhi T.N., Petty L.A., Patel P.K., Prescott H.C., Malani A.N., Ratz D., McLaughlin E., Chopra V., Flanders S.A. Empiric Antibacterial Therapy and Community-onset Bacterial Coinfection in Patients Hospitalized with Coronavirus Disease 2019 (COVID-19): A Multi-hospital Cohort Study. Clin. Infect. Dis. 2021;72:e533–e541. doi: 10.1093/cid/ciaa1239. PubMed DOI PMC
Ramanan M., Burrell A., Paul E., Trapani T., Broadley T., McGloughlin S., French C., Udy A. Nosocomial infections amongst critically ill COVID-19 patients in Australia. J. Clin. Virol. Plus. 2021;4:100054. doi: 10.1016/j.jcvp.2021.100054. PubMed DOI PMC
Bussolati E., Cultrera R., Quaranta A., Cricca V., Marangoni E., La Rosa R., Bertacchini S., Bellonzi A., Ragazzi R., Volta C.A., et al. Effect of the Pandemic Outbreak on ICU-Associated Infections and Antibiotic Prescription Trends in Non-COVID19 Acute Respiratory Failure Patients. J. Clin. Med. 2022;11:7080. doi: 10.3390/jcm11237080. PubMed DOI PMC
Oliva J., Terrier O. Viral and Bacterial Co-Infections in The Lungs: Dangerous Liaisons. Viruses. 2021;13:1725. doi: 10.3390/v13091725. PubMed DOI PMC
Bogdanová K., Doubravská L., Vágnerová I., Hricová K., Pudová V., Röderová M., Papajk J., Uvízl R., Langová K., Kolář M. Clostridioides difficile and Vancomycin-Resistant Enterococci in COVID-19 Patients with Severe Pneumonia. Life. 2021;11:1127. doi: 10.3390/life11111127. PubMed DOI PMC
Doubravská L., Htoutou Sedláková M., Fišerová K., Pudová V., Urbánek K., Petrželová J., Röderová M., Langová K., Mezerová K., Kučová P., et al. Bacterial Resistance to Antibiotics and Clonal Spread in COVID-19-Positive Patients on a Tertiary Hospital Intensive Care Unit, Czech Republic. Antibiotics. 2022;11:783. doi: 10.3390/antibiotics11060783. PubMed DOI PMC
Ip M., Tang J.W., Hui D.S., Wong A.L.N., Chan M.T.V., Joynt G.M., So A.T.P., Hall S.D., Chan P.K.S., Sung J.J.Y. Airflow and droplet spreading around oxygen masks: A simulation model for infection control research. Am. J. Infect. Control. 2007;35:684–689. doi: 10.1016/j.ajic.2007.05.007. PubMed DOI PMC
Leung C.C.H., Joynt G.M., Gomersall C.D., Wong W.T., Lee A., Ling L., Chan P.K.S., Lui P.C.W., Tsoi P.C.Y., Ling C.M., et al. Comparison of high-flow nasal cannula versus oxygen face mask for environmental bacterial contamination in critically ill pneumonia patients: A randomized controlled crossover trial. J. Hosp. Infect. 2019;101:84–87. doi: 10.1016/j.jhin.2018.10.007. PubMed DOI
Kotoda M., Hishiyama S., Mitsui K., Tanikawa T., Morikawa S., Takamino A., Matsukawa T. Assessment of the potential for pathogen dispersal during high-flow nasal therapy. J. Hosp. Infect. 2020;104:534–537. doi: 10.1016/j.jhin.2019.11.010. PubMed DOI PMC
Li J., Fink J.B., Ehrmann S. High-flow nasal cannula for COVID-19 patients: Low risk of bio-aerosol dispersion. Eur. Respir. J. 2020;55:2000892. doi: 10.1183/13993003.00892-2020. PubMed DOI PMC
Elshof J., Hebbink R., Duiverman M.L., Hagmeijer R. High-flow nasal cannula for COVID-19 patients: Risk of bio-aerosol dispersion. Eur. Respir. J. 2020;56:2003004. doi: 10.1183/13993003.03004-2020. PubMed DOI PMC
Johns M., George S., Taburyanskaya M., Poon Y.K. A Review of the Evidence for Corticosteroids in COVID-19. J. Pharm. Pract. 2022;35:626–637. doi: 10.1177/0897190021998502. PubMed DOI
Moreno-Torres V., de Mendoza C., de la Fuente S., Sánchez E., Martínez-Urbistondo M., Herráiz J., Gutiérrez A., Gutiérrez Á., Hernández C., Callejas A., et al. Bacterial Infections in Patients Hospitalized with COVID-19. Intern. Emerg. Med. 2022;17:431–438. doi: 10.1007/s11739-021-02824-7. PubMed DOI PMC
Sinha P., Furfaro D., Cummings M.J., Abrams D., Delucchi K., Maddali M.V., He J., Thompson A., Murn M., Fountain J., et al. Latent Class Analysis Reveals COVID-19–Related Acute Respiratory Distress Syndrome Subgroups with Differential Responses to Corticosteroids. Am. J. Respir. Crit. Care Med. 2021;204:1274–1285. doi: 10.1164/rccm.202105-1302OC. PubMed DOI PMC
Armstrong R.A., Kane A.D., Kursumovic E., Oglesby F.C., Cook T.M. Mortality in patients admitted to intensive care with COVID-19: An updated systematic review and meta-analysis of observational studies. Anaesthesia. 2021;76:537–548. doi: 10.1111/anae.15425. PubMed DOI PMC
Musuuza J.S., Watson L., Parmasad V., Putman-Buehler N., Christensen L., Safdar N. Prevalence and outcomes of co-infection and superinfection with SARS-CoV-2 and other pathogens: A systematic review and meta-analysis. PLoS ONE. 2021;16:e0251170. doi: 10.1371/journal.pone.0251170. PubMed DOI PMC
Iacovelli A., Oliva A., Siccardi G., Tramontano A., Pellegrino D., Mastroianni C.M., Venditti M., Palange P. Risk Factors and Effect on Mortality of Superinfections in A Newly Established COVID-19 Respiratory Sub-Intensive Care Unit at University Hospital in Rome. BMC Pulm. Med. 2023;23:30. doi: 10.1186/s12890-023-02315-9. PubMed DOI PMC
Nassar Y., Mokhtar A., Elhadidy A., Elsayed M., Mostafa F., Rady A., Eladawy A., Elshazly M., Saeed M., Mokhtar S., et al. Outcomes and Risk Factors for Death in Patients with Coronavirus Disease-2019 (COVID-19) Pneumonia Admitted to The Intensive Care Units of An Egyptian University Hospital. A Retrospective Cohort Study. J. Infect. Public Health. 2021;14:1381–1388. doi: 10.1016/j.jiph.2021.06.012. PubMed DOI PMC
Pickens C.O., Gao C.A., Cuttica M.J., Smith S.B., Pesce L.L., Grant R.A., Kang M., Morales-Nebreda L., Bavishi A.A., Arnold J.M., et al. Bacterial Superinfection Pneumonia in Patients Mechanically Ventilated For COVID-19 Pneumonia. Am. J. Respir. Crit. Care Med. 2021;204:921–932. doi: 10.1164/rccm.202106-1354OC. PubMed DOI PMC
Wang L., He W., Yu X., Hu D., Bao M., Liu H., Zhou J., Jiang H. Coronavirus Disease 2019 in Elderly Patients: Characteristics and Prognostic Factors Based On 4-Week Follow-Up. J. Infect. 2020;80:639–645. doi: 10.1016/j.jinf.2020.03.019. PubMed DOI PMC
Ferrando C., Mellado-Artigas R., Gea A., Arruti E., Aldecoa C., Bordell A., Adalia R., Zattera L., Ramasco F., Monedero P., et al. Características, Evolución Clínica Y Patient characteristics, clinical course and factors associat-ed to ICU mortality in critically ill patients infected with SARS-CoV-2 in Spain: A prospective, cohort, multicentre study. Rev Esp Anestesiol Reanim (Engl Ed) Rev. Española Anestesiol. Reanim. 2020;67:425–437. doi: 10.1016/j.redar.2020.07.003. PubMed DOI PMC
Michailides C., Paraskevas T., Karalis I., Koniari I., Pierrakos C., Karamouzos V., Marangos M., Velissaris D. Impact of Bacterial Infections On COVID-19 Patients: Is Timing Important? Antibiotics. 2023;12:379. doi: 10.3390/antibiotics12020379. PubMed DOI PMC
Heer R.S., Mandal A.K.J., Kho J., Szawarski P., Csabi P., Grenshaw D., Walker I.A.L., Missouris C.G. Elevated Procalcitonin Concentrations in Severe COVID-19 May Not Reflect Bacterial Co-Infection. Ann. Clin. Bio-Chem. Int. J. Lab. Med. 2021;58:520–527. doi: 10.1177/00045632211022380. PubMed DOI
Vazzana N., Dipaola F., Ognibene S. Procalcitonin and Secondary Bacterial Infections in Covid-19: Association with Disease Severity and Outcomes. Acta Clin. Belg. 2022;77:268–272. doi: 10.1080/17843286.2020.1824749. PubMed DOI
Osuchowski M.F., Winkler M.S., Skirecki T., Cajander S., Shankar-Hari M., Lachmann G., Monneret G., Venet F., Bauer M., Brunkhorst F.M., et al. The COVID-19 Puzzle: Deciphering Pathophysiology and Phenotypes of a New Disease Entity. Lancet Respir. Med. 2021;9:622–642. doi: 10.1016/S2213-2600(21)00218-6. PubMed DOI PMC
Adre L.A.B., Catangui J.S., Bondoc M.K.V., Abdurahman K.M. Prevalence of Hospital-Acquired Pneumonia Among Patients with Severe to Critical COVID-19 Pneumonia Given Tocilizumab. Cureus. 2023;15:e39604. doi: 10.7759/cureus.39604. PubMed DOI PMC
Liu F., Li L., Xu M.D., Wu J., Luo D., Zhu Y.S., Li B.X., Song X.Y., Zhou X. Prognostic Value of Interleukin-6, C-Reactive Protein, And Procalcitonin in Patients with COVID-19. J. Clin. Virol. 2020;127:104370. doi: 10.1016/j.jcv.2020.104370. PubMed DOI PMC
Barrasa H., Martín A., Maynar J., Rello J., Fernández-Torres M., Aguirre-Quiñonero A., Canut-Blasco A., Alava COVID-19 Study Investigators High rate of infections during ICU admission of patients with severe SARS-CoV-2 pneumonia: A matter of time? J. Infect. 2021;82:186–230. doi: 10.1016/j.jinf.2020.12.001. PubMed DOI PMC
Zhu X., Ge Y., Wu T., Zhao K., Chen Y., Wu B., Zhu F., Zhu B., Cui L. Co-infection with respiratory pathogens among COVID-19 cases. Virus Res. 2020;285:198005. doi: 10.1016/j.virusres.2020.198005. PubMed DOI PMC
Contou D., Claudinon A., Pajot O., Micaëlo M., Longuet Flandre P., Dubert M., Cally R., Logre E., Fraissé M., Mentec H., et al. Bacterial and viral co-infections in patients with severe SARS-CoV-2 pneumonia admitted to a French ICU. Ann. Intensive Care. 2020;10:119. doi: 10.1186/s13613-020-00736-x. PubMed DOI PMC
Herkel T., Uvizl R., Doubravska L., Adamus M., Gabrhelik T., Htoutou Sedlakova M., Kolar M., Hanulik V., Pudova V., Langova K., et al. Epidemiology of hospital-acquired pneumonia: Results of a Central European multicenter, prospective, observational study compared with data from the European region. Biomed. Pap. 2016;160:448–455. doi: 10.5507/bp.2016.014. PubMed DOI