Optimizing grid-connected PV systems with novel super-twisting sliding mode controllers for real-time power management

. 2024 Feb 26 ; 14 (1) : 4646. [epub] 20240226

Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid38409466

Grantová podpora
TN02000025 National Centre for Energy II Ministry of Education, Youth and Sports
CZ.10.03.01/00/22_003/0000048 Ministry of the Environment of the Czech Republic

Odkazy

PubMed 38409466
PubMed Central PMC10897222
DOI 10.1038/s41598-024-55380-3
PII: 10.1038/s41598-024-55380-3
Knihovny.cz E-zdroje

Over the past years, the use of renewable energy sources (RESs) has grown significantly as a means of providing clean energy to counteract the devastating effects of climate change. Reducing energy costs and pollution have been the primary causes of the rise in solar photovoltaic (PV) system integrations with the grid in recent years. A load that is locally connected to a GCPV requires both active and reactive power control. In order to control both active and reactive power, MAs and advanced controllers are essential. Researchers have used one of the recently developed MAs, known as the CAOA, which is based on mathematical arithmetic operators to tackle a few real-world optimization problems. Some disadvantages of CAOA include its natural tendency to converge to a local optimum and its limited capacity for exploration. By merging the PSO and CAOA methodologies, this article suggests the IAOA. To show how applicable IAOA is, its performance has been evaluated using four benchmark functions. The implementation of an IAOA-based ST-SMC for active and reactive power control is addressed in this article, which offers an innovative approach of research. In comparison to PSO-based ST-SMC and CAOA-based ST-SMC, the proposed IAOA-based ST-SMC appears to be superior, with settling time for active and reactive power control at a minimum of 0.01012 s and 0.5075 s. A real-time OPAL-RT 4510 simulator is used to validate the performance results of a 40 kW GCPV system after it has been investigated in the MATLAB environment.

Zobrazit více v PubMed

Hu F, Wei S, Qiu L, Hu H, Zhou H. Innovative association network of new energy vehicle charging stations in China: Structural evolution and policy implications. Heliyon. 2024;10:e24764. doi: 10.1016/j.heliyon.2024.e24764. PubMed DOI PMC

Lin X, Liu Y, Yu J, Yu R, Zhang J, Wen H. Stability analysis of Three-phase Grid-Connected inverter under the weak grids with asymmetrical grid impedance by LTP theory in time domain. Int. J. Electr. Power Energy Syst. 2022;142:108244. doi: 10.1016/j.ijepes.2022.108244. DOI

Zhang X, Wang Y, Yuan X, Shen Y, Lu Z. Adaptive dynamic surface control with disturbance observers for battery/supercapacitor-based hybrid energy sources in electric vehicles. IEEE Trans. Transp. Electrif. 2023;9:5165–5181. doi: 10.1109/TTE.2022.3194034. DOI

Zhang X, Wang Z, Lu Z. Multi-objective load dispatch for microgrid with electric vehicles using modified gravitational search and particle swarm optimization algorithm. Appl. Energy. 2022;306:118018. doi: 10.1016/j.apenergy.2021.118018. DOI

Zhang X, Lu Z, Yuan X, Wang Y, Shen X. L2-gain adaptive robust control for hybrid energy storage system in electric vehicles. IEEE Trans. Power Electron. 2021;36:7319–7332. doi: 10.1109/TPEL.2020.3041653. DOI

Shao B, Xiao Q, Xiong L, Wang L, Yang Y, Chen Z, et al. Power coupling analysis and improved decoupling control for the VSC connected to a weak AC grid. Int. J. Electr. Power Energy Syst. 2023;145:108645. doi: 10.1016/j.ijepes.2022.108645. DOI

Ackermann T, Söder L. An overview of wind energy-status 2002. Renew. Sustain. Energy Rev. 2002;6:67–127. doi: 10.1016/S1364-0321(02)00008-4. DOI

Yang C, Wu Z, Li X, Fars A. Risk-constrained stochastic scheduling for energy hub: Integrating renewables, demand response, and electric vehicles. Energy. 2024;288:129680. doi: 10.1016/j.energy.2023.129680. DOI

Jiang Z, Xu C. Policy incentives, government subsidies, and technological innovation in new energy vehicle enterprises: Evidence from China. Energy Policy. 2023;177:113527. doi: 10.1016/j.enpol.2023.113527. DOI

Shirkhani M, Tavoosi J, Danyali S, Sarvenoee AK, Abdali A, Mohammadzadeh A, et al. A review on microgrid decentralized energy/voltage control structures and methods. Energy Reports. 2023;10:368–380. doi: 10.1016/j.egyr.2023.06.022. DOI

Wang Y, Xia F, Wang Y, Xiao X. Harmonic transfer function based single-input single-output impedance modeling of LCCHVDC systems. J. Mod. Power Syst. Clean. Energy. 2023 doi: 10.35833/MPCE.2023.000093. DOI

Duan Y, Zhao Y, Hu J. An initialization-free distributed algorithm for dynamic economic dispatch problems in microgrid: Modeling, optimization and analysis. Sustain. Energy Grids Netw. 2023;34:101004. doi: 10.1016/j.segan.2023.101004. DOI

Zhang L, Yin Q, Zhu W, Lyu L, Jiang L, Koh LH, et al. Research on the orderly charging and discharging mechanism of electric vehicles considering travel characteristics and carbon quota. IEEE Trans. Transp. Electrif. 2023 doi: 10.1109/TTE.2023.3296964. DOI

Zhang L, Sun C, Cai G, Koh LH. Charging and discharging optimization strategy for electric vehicles considering elasticity demand response. ETransportation. 2023;18:100262. doi: 10.1016/j.etran.2023.100262. DOI

Zhang X, Gong L, Zhao X, Li R, Yang L, Wang B. Voltage and frequency stabilization control strategy of virtual synchronous generator based on small signal model. Energy Reports. 2023;9:583–590. doi: 10.1016/j.egyr.2023.03.071. DOI

Subudhi B, Pradhan R. A comparative study on maximum power point tracking techniques for photovoltaic power systems. IEEE Trans. Sustain. Energy. 2013;4:89–98. doi: 10.1109/TSTE.2012.2202294. DOI

Li S, Zhao X, Liang W, Hossain MT, Zhang Z. A fast and accurate calculation method of line breaking power flow based on taylor expansion. Front. Energy Res. 2022;10:2191–2233. doi: 10.3389/fenrg.2022.943946. DOI

Yang M, Wang Y, Xiao X, Li Y. A robust damping control for virtual synchronous generators based on energy reshaping. IEEE Trans. Energy Convers. 2023;38:2146–2159. doi: 10.1109/TEC.2023.3260244. DOI

Mirjalili S, Mirjalili SM, Lewis A. Grey Wolf optimizer. Adv. Eng. Softw. 2014;69:46–61. doi: 10.1016/j.advengsoft.2013.12.007. DOI

Karaboga D, Akay B. A comparative study of Artificial Bee Colony algorithm. Appl. Math. Comput. 2009;214:108–132. doi: 10.1016/j.amc.2009.03.090. DOI

Kennedy, J. & Eberhart, R. Particle swarm optimization. In Proc. ICNN’95 - Int. Conf. Neural Networks, vol. 4, 1942–8 (IEEE, 2002). 10.1109/ICNN.1995.488968.

Zhao D, Liu L, Yu F, Heidari AA, Wang M, Liang G, et al. Chaotic random spare ant colony optimization for multi-threshold image segmentation of 2D Kapur entropy. Knowl. Based Syst. 2021;216:106510. doi: 10.1016/j.knosys.2020.106510. DOI

Yu C, Heidari AA, Xue X, Zhang L, Chen H, Chen W. Boosting quantum rotation gate embedded slime mould algorithm. Expert Syst. Appl. 2021;181:115082. doi: 10.1016/j.eswa.2021.115082. DOI

Fan Q, Chen Z, Li Z, Xia Z, Yu J, Wang D. A new improved whale optimization algorithm with joint search mechanisms for high-dimensional global optimization problems. Eng. Comput. 2021;37:1851–1878. doi: 10.1007/s00366-019-00917-8. DOI

Li Y, Zhao Y, Liu J. Dynamic sine cosine algorithm for large-scale global optimization problems. Expert Syst. Appl. 2021;177:114950. doi: 10.1016/j.eswa.2021.114950. DOI

Abbasi A, Firouzi B, Sendur P, Heidari AA, Chen H, Tiwari R. Multi-strategy Gaussian Harris hawks optimization for fatigue life of tapered roller bearings. Eng. Comput. 2022;38:4387–4413. doi: 10.1007/s00366-021-01442-3. PubMed DOI PMC

Shaikh MS, Raj S, Babu R, Kumar S, Sagrolikar K. A hybrid moth–flame algorithm with particle swarm optimization with application in power transmission and distribution. Decis. Anal. J. 2023;6:100182. doi: 10.1016/j.dajour.2023.100182. DOI

Shaikh MS, Raj S, Ikram M, Khan W. Parameters estimation of AC transmission line by an improved moth flame optimization method. J. Electr. Syst. Inf. Technol. 2022;9:25. doi: 10.1186/s43067-022-00066-x. DOI

Suhail Shaikh M, Hua C, Raj S, Kumar S, Hassan M, Mohsin Ansari M, et al. Optimal parameter estimation of 1-phase and 3-phase transmission line for various bundle conductor’s using modified whale optimization algorithm. Int. J. Electr. Power Energy Syst. 2022;138:107893. doi: 10.1016/j.ijepes.2021.107893. DOI

Shaikh MS, Hua C, Jatoi MA, Ansari MM, Qader AA. Parameter estimation of AC transmission line considering different bundle conductors using flux linkage technique. IEEE Can. J. Electr. Comput. Eng. 2021;44:313–320. doi: 10.1109/ICJECE.2021.3069143. DOI

Shaikh MS, Hua C, Jatoi MA, Ansari MM, Qader AA. Application of grey wolf optimisation algorithm in parameter calculation of overhead transmission line system. IET Sci. Meas. Technol. 2021;15:218–231. doi: 10.1049/smt2.12023. DOI

Shaikh MS, Hua C, Hassan M, Raj S, Jatoi MA, Ansari MM. Optimal parameter estimation of overhead transmission line considering different bundle conductors with the uncertainty of load modeling. Optim. Control Appl. Methods. 2022;43:652–666. doi: 10.1002/oca.2772. DOI

Abualigah L, Diabat A, Mirjalili S, AbdElaziz M, Gandomi AH. The arithmetic optimization algorithm. Comput. Methods Appl. Mech. Eng. 2021;376:113609. doi: 10.1016/j.cma.2020.113609. DOI

Abualigah L, Diabat A, Sumari P, Gandomi AH. A novel evolutionary arithmetic optimization algorithm for multilevel thresholding segmentation of COVID-19 CT images. Processes. 2021;9:1155. doi: 10.3390/pr9071155. DOI

Premkumar M, Jangir P, Kumar BS, Sowmya R, Alhelou HH, Abualigah L, et al. A new arithmetic optimization algorithm for solving real-world multiobjective CEC-2021 constrained optimization problems: diversity analysis and validations. IEEE Access. 2021;9:84263–84295. doi: 10.1109/ACCESS.2021.3085529. DOI

Khatir S, Tiachacht S, Le Thanh C, Ghandourah E, Mirjalili S, Abdel WM. An improved Artificial Neural Network using Arithmetic Optimization Algorithm for damage assessment in FGM composite plates. Compos. Struct. 2021;273:114287. doi: 10.1016/j.compstruct.2021.114287. DOI

Hu S, Liu C, Ding J, Xu Y, Chen H, Zhou X. Thermo-economic modeling and evaluation of physical energy storage in power system. J. Therm. Sci. 2021;30:1861–1874. doi: 10.1007/s11630-021-1417-4. DOI

Cherifi D, Miloud Y. Hybrid control using adaptive fuzzy sliding mode control of doubly fed induction generator for wind energy conversion system. Period Polytech. Electr. Eng. Comput. Sci. 2020;64:374–381. doi: 10.3311/PPee.15508. DOI

Shtessel Y, Taleb M, Plestan F. A novel adaptive-gain supertwisting sliding mode controller: Methodology and application. Automatica. 2012;48:759–769. doi: 10.1016/j.automatica.2012.02.024. DOI

Nagesh I, Edwards C. A multivariable super-twisting sliding mode approach. Automatica. 2014;50:984–988. doi: 10.1016/j.automatica.2013.12.032. DOI

Yang X, Yao J, Deng W. Output feedback adaptive super-twisting sliding mode control of hydraulic systems with disturbance compensation. ISA Trans. 2021;109:175–185. doi: 10.1016/j.isatra.2020.09.014. PubMed DOI

Gurumurthy G, Das DK. Terminal sliding mode disturbance observer based adaptive super twisting sliding mode controller design for a class of nonlinear systems. Eur. J. Control. 2021;57:232–241. doi: 10.1016/j.ejcon.2020.05.004. DOI

Hollweg GV, Evald PJDO, Milbradt DMC, Tambara RV, Gründling HA. Design of continuous-time model reference adaptive and super-twisting sliding mode controller. Math. Comput. Simul. 2022;201:215–238. doi: 10.1016/j.matcom.2022.05.014. DOI

Ahmad, S., NasimUllah, Ahmed, N., Ilyas, M. & Khan, W. Super twisting sliding mode control algorithm for developing artificial pancreas in type 1 diabetes patients. Biomed. Signal Process Control38, 200–11. 10.1016/j.bspc.2017.06.009.

Jouini M, Dhahri S, Sellami A. Design of robust supertwisting algorithm based second-order sliding mode controller for nonlinear systems with both matched and unmatched uncertainty. Complexity. 2017;2017:1–8. doi: 10.1155/2017/1972921. DOI

Lu Y, Tan C, Ge W, Zhao Y, Wang G. Adaptive disturbance observer-based improved super-twisting sliding mode control for electromagnetic direct-drive pump. Smart Mater. Struct. 2023;32:017001. doi: 10.1088/1361-665X/aca84e. DOI

Pati, S., Mohanty, K. B., Kar, S. K. & Panda, D. Voltage and frequency stabilization of a micro hydro-PV based hybrid micro grid using STATCOM equipped with Battery Energy Storage System. In 2016 IEEE Int. Conf. Power Electron. Drives Energy Syst., IEEE, 1–5 (2016). 10.1109/PEDES.2016.7914481.

Xiao S, Wang Z, Wu G, Guo Y, Gao G, Zhang X, et al. The impact analysis of operational overvoltage on traction transformers for high-speed trains based on the improved capacitor network methodology. IEEE Trans. Transp. Electrif. 2023 doi: 10.1109/TTE.2023.3283668. DOI

Bai X, He Y, Xu M. Low-thrust reconfiguration strategy and optimization for formation flying using Jordan normal form. IEEE Trans. Aerosp. Electron. Syst. 2021;57:3279–3295. doi: 10.1109/TAES.2021.3074204. DOI

Shen Y, Liu D, Liang W, Zhang X. Current reconstruction of three-phase voltage source inverters considering current ripple. IEEE Trans. Transp. Electrif. 2023;9:1416–1427. doi: 10.1109/TTE.2022.3199431. DOI

Chou J-S, Nguyen N-M. FBI inspired meta-optimization. Appl Soft. Comput. 2020;93:106339. doi: 10.1016/j.asoc.2020.106339. DOI

Lin X, Wen Y, Yu R, Yu J, Wen H. Improved weak grids synchronization unit for passivity enhancement of grid-connected inverter. IEEE J. Emerg. Sel. Top. Power Electron. 2022;10:7084–7097. doi: 10.1109/JESTPE.2022.3168655. DOI

Gao Y, Doppelbauer M, Ou J, Qu R. Design of a double-side flux modulation permanent magnet machine for servo application. IEEE J. Emerg. Sel. Top Power Electron. 2022;10:1671–1682. doi: 10.1109/JESTPE.2021.3105557. DOI

Wang Y, Chen P, Yong J, Xu W, Xu S, Liu K. A comprehensive investigation on the selection of high-pass harmonic filters. IEEE Trans. Power Deliv. 2022;37:4212–4226. doi: 10.1109/TPWRD.2022.3147835. DOI

Li P, Hu J, Qiu L, Zhao Y, Ghosh BK. A distributed economic dispatch strategy for power-water networks. IEEE Trans. Control Netw. Syst. 2022;9:356–366. doi: 10.1109/TCNS.2021.3104103. DOI

Yang X-S. Nature-Inspired Optimization Algorithms. Amsterdam: Elsevier; 2014.

Liu G. Data collection in MI-assisted wireless powered underground sensor networks: Directions, recent advances, and challenges. IEEE Commun. Mag. 2021;59:132–138. doi: 10.1109/MCOM.001.2000921. DOI

Wang Y-G, Shao H-H. Optimal tuning for PI controller. Automatica. 2000;36:147–152. doi: 10.1016/S0005-1098(99)00130-2. DOI

Benbouzid M, Beltran B, Amirat Y, Yao G, Han J, Mangel H. Second-order sliding mode control for DFIG-based wind turbines fault ride-through capability enhancement. ISA Trans. 2014;53:827–833. doi: 10.1016/j.isatra.2014.01.006. PubMed DOI

Wang H, Wu X, Zheng X, Yuan X. Model predictive current control of nine-phase open-end winding PMSMs with an online virtual vector synthesis strategy. IEEE Trans. Ind. Electron. 2023;70:2199–2208. doi: 10.1109/TIE.2022.3174241. DOI

Slotine JJE, Li W. Applied Nonlinear Control. Englewood Cliffs: Prentice hall; 1991.

Errami, Y., Obbadi, A., Sahnoun, S., Benhmida, M., Ouassaid, M. & Maaroufi, M. Design and sliding mode control for PMSG based wind power system connected to a non-ideal grid voltages. In 2015 3rd Int. Renew. Sustain. Energy Conf., 1–7 (IEEE, 2015). 10.1109/IRSEC.2015.7454981.

Jing Y, Sun H, Zhang L, Zhang T. Variable speed control of wind turbines based on the quasi-continuous high-order sliding mode method. Energies. 2017;10:1626. doi: 10.3390/en10101626. DOI

Liu S, Liu C. Direct harmonic current control scheme for dual three-phase PMSM drive system. IEEE Trans. Power Electron. 2021;36:11647–11657. doi: 10.1109/TPEL.2021.3069862. DOI

Song X, Wang H, Ma X, Yuan X, Wu X. Robust model predictive current control for a nine-phase open-end winding PMSM with high computational efficiency. IEEE Trans. Power Electron. 2023;38:13933–13943. doi: 10.1109/TPEL.2023.3309308. DOI

Han Y, Liu X. Continuous higher-order sliding mode control with time-varying gain for a class of uncertain nonlinear systems. ISA Trans. 2016;62:193–201. doi: 10.1016/j.isatra.2016.02.005. PubMed DOI

Tayebi-Haghighi S, Piltan F, Kim J-M. Robust composite high-order super-twisting sliding mode control of robot manipulators. Robotics. 2018;7:13. doi: 10.3390/robotics7010013. DOI

Shaikh MS, Ansari MM, Jatoi MA, Arain ZA, Qader AA. Analysis of underground cable fault techniques using MATLAB simulation. Sukkur IBA J. Comput. Math. Sci. 2020 doi: 10.30537/sjcms.v4i1.566. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...