Chaotic self-adaptive sine cosine multi-objective optimization algorithm to solve microgrid optimal energy scheduling problems
Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
TN02000025 National Centre for Energy II
Ministry of Education, Youth and Sports
CZ.10.03.01/00/22_003/0000048
Ministry of the Environment of the Czech Republic
PubMed
39152206
PubMed Central
PMC11329649
DOI
10.1038/s41598-024-69734-4
PII: 10.1038/s41598-024-69734-4
Knihovny.cz E-zdroje
- Klíčová slova
- Energy management, Micro-grid (MG), Multi-objective optimization, Photovoltaic (PV), Renewable energy sources (RESs), Sine cosine algorithm, Wind turbine (WT),
- Publikační typ
- časopisecké články MeSH
Researchers are increasingly focusing on renewable energy due to its high reliability, energy independence, efficiency, and environmental benefits. This paper introduces a novel multi-objective framework for the short-term scheduling of microgrids (MGs), which addresses the conflicting objectives of minimizing operating expenses and reducing pollution emissions. The core contribution is the development of the Chaotic Self-Adaptive Sine Cosine Algorithm (CSASCA). This algorithm generates Pareto optimal solutions simultaneously, effectively balancing cost reduction and emission mitigation. The problem is formulated as a complex multi-objective optimization task with goals of cost reduction and environmental protection. To enhance decision-making within the algorithm, fuzzy logic is incorporated. The performance of CSASCA is evaluated across three scenarios: (1) PV and wind units operating at full power, (2) all units operating within specified limits with unrestricted utility power exchange, and (3) microgrid operation using only non-zero-emission energy sources. This third scenario highlights the algorithm's efficacy in a challenging context not covered in prior research. Simulation results from these scenarios are compared with traditional Sine Cosine Algorithm (SCA) and other recent optimization methods using three test examples. The innovation of CSASCA lies in its chaotic self-adaptive mechanisms, which significantly enhance optimization performance. The integration of these mechanisms results in superior solutions for operation cost, emissions, and execution time. Specifically, CSASCA achieves optimal values of 590.45 €ct for cost and 337.28 kg for emissions in the first scenario, 98.203 €ct for cost and 406.204 kg for emissions in the second scenario, and 95.38 €ct for cost and 982.173 kg for emissions in the third scenario. Overall, CSASCA outperforms traditional SCA by offering enhanced exploration, improved convergence, effective constraint handling, and reduced parameter sensitivity, making it a powerful tool for solving multi-objective optimization problems like microgrid scheduling.
Department of Energy Tezpur University Tezpur Assam India
Electrical Engineering Department Graphic Era Dehradun 248002 India
ENET Centre VSB Technical University of Ostrava 708 00 Ostrava Czech Republic
Graphic Era Hill University Dehradun 248002 India
Hourani Center for Applied Scientific Research Al Ahliyya Amman University Amman Jordan
Zobrazit více v PubMed
Misra, S., Panigrahi, P. K., Ghosh, S. & Dey, B. Economic operation of a microgrid system with renewables considering load shifting policy. Int. J. Environ. Sci. Technol.21(3), 2695–2708 (2023).10.1007/s13762-023-05125-y DOI
Karthik, N., Parvathy, A. K. & Arul, R. A review of optimal operation of microgrids. Int. J. Electr. Comput. Eng.10(3), 2842–2849 (2020).
Karthik, N., Parvathy, A. K. & Arul, R. A review of optimization techniques applied to solve unit commitment problem in microgrid. Indones. J. Electr. Eng. Comput. Sci.15(3), 1161–1169 (2019).
Nagarajan, K., Rajagopalan, A., Angalaeswari, S., Natrayan, L. & Mammo, W. D. Combined economic emission dispatch of microgrid with the incorporation of renewable energy sources using improved mayfly optimization algorithm. Computat. Intell. Neurosci.2022(1), 6461690 (2022). PubMed PMC
Karthik, N., Parvathy, A. K., Arul, R., Jayapragash, R. & Narayanan, S. Economic load dispatch in a microgrid using Interior Search Algorithm. In 2019 Innovations in Power and Advanced Computing Technologies (i-PACT) Vol. 1, pp. 1–6 (IEEE, 2019).
Rajagopalan, A. et al. Multi-objective optimal scheduling of a microgrid using oppositional gradient-based grey wolf optimizer. Energies15(23), 9024 (2022).10.3390/en15239024 DOI
Yan, Z., Li, Y. & Eslami, M. Maximizing micro-grid energy output with modified chaos grasshopper algorithms. Heliyon10(1), e23980 (2024). 10.1016/j.heliyon.2024.e23980 PubMed DOI PMC
Alzahrani, A. et al. Multi-objective energy optimization with load and distributed energy source scheduling in the smart power grid. Sustainability15(13), 9970 (2023).10.3390/su15139970 DOI
Mohammadi, Y., Shakouri, H. & Kazemi, A. A multi-objective fuzzy optimization model for electricity generation and consumption management in a micro smart grid. Sustain. Cities Soc.86, 104119 (2022).10.1016/j.scs.2022.104119 DOI
Mei, Y., Li, B., Wang, H., Wang, X. & Negnevitsky, M. Multi-objective optimal scheduling of microgrid with electric vehicles. Energy Rep.8, 4512–4524 (2022).10.1016/j.egyr.2022.03.131 DOI
Vivas, F. J., Segura, F. & Andújar, J. M. Fuzzy logic-based energy management system for grid-connected residential DC microgrids with multi-stack fuel cell systems: A multi-objective approach. Sustain. Energy Grids Netw.32, 100909 (2022).10.1016/j.segan.2022.100909 DOI
Babu, V. V., Roselyn, J. P. & Sundaravadivel, P. Multi-objective genetic algorithm based energy management system considering optimal utilization of grid and degradation of battery storage in microgrid. Energy Rep.9, 5992–6005 (2023).10.1016/j.egyr.2023.05.067 DOI
Dey, B., Misra, S. & Marquez, F. P. G. Microgrid system energy management with demand response program for clean and economical operation. Appl. Energy334, 120717 (2023).10.1016/j.apenergy.2023.120717 DOI
Pan, T., Liu, H., Wu, D. & Hao, Z. Dual-layer optimal dispatching strategy for microgrid energy management systems considering demand response. Math. Probl. Eng.2018, 1–14. 10.1155/2018/2695025 (2018).10.1155/2018/2695025 DOI
Anh, H. P. H. & Kien, C. V. Optimal energy management of microgrid using advanced multi-objective particle swarm optimization. Eng. Comput.37(6), 2085–2110 (2020).10.1108/EC-05-2019-0194 DOI
Bharothu, J. N., Sridhar, M. & Rao, R. S. Modified adaptive differential evolution based optimal operation and security of AC-DC microgrid systems. Int. J. Electr. Power Energy Syst.103, 185–202 (2018).10.1016/j.ijepes.2018.05.003 DOI
Gayatri, M. T. L., Parimi, A. M. & Pavan Kumar, A. V. A review of reactive power compensation techniques in microgrids. Renew. Sustain. Energy Rev.81, 1030–1036 (2018).10.1016/j.rser.2017.08.006 DOI
Yan, Z., Zhou, H., Wang, X. & Lotfi, H. Optimal management of microgrid, considering various renewable and storage units of electrical-thermal generations and demand response program. J. Clean. Prod.408, 137133 (2023).10.1016/j.jclepro.2023.137133 DOI
Liu, W.-J. et al. Distributed optimal active power dispatch with energy storage units and power flow limits in smart grids. Int. J. Electr. Power Energy Syst.105, 420–428. 10.1016/j.ijepes.2018.07.060 (2019).10.1016/j.ijepes.2018.07.060 DOI
Mansouri, S. A. et al. Energy management in microgrids including smart homes: A multi-objective approach. Sustain. Cities Soc.69, 102852 (2021).10.1016/j.scs.2021.102852 DOI
Thirugnanam, K., Moursi, M. S. E., Khadkikar, V., Zeineldin, H. H. & Al Hosani, M. Energy management of grid interconnected multi-microgrids based on P2P energy exchange: A data driven approach. IEEE Trans. Power Syst.36(2), 1546–1562. 10.1109/TPWRS.2020.3025113 (2021).10.1109/TPWRS.2020.3025113 DOI
Zandrazavi, S. F., Guzman, C. P., Pozos, A. T., Quiros-Tortos, J. & Franco, J. F. Stochastic multi-objective optimal energy management of grid-connected unbalanced microgrids with renewable energy generation and plug-in electric vehicles. Energy241, 122884 (2022).10.1016/j.energy.2021.122884 DOI
Chakraborty, A. & Ray, S. Economic and environmental factors based multi-objective approach for optimizing energy management in a microgrid. Renew. Energy222, 119920 (2024).10.1016/j.renene.2023.119920 DOI
Pashaei, H., Nojavan, S., Nourollahi, R. & Zare, K. Optimal economic-emission performance of fuel cell/CHP/storage based microgrid. Int. J. Hydrogen Energy44, 6896–6908. 10.1016/j.ijhydene.2019.01.201 (2019).10.1016/j.ijhydene.2019.01.201 DOI
Pourbehzadi, M. et al. Optimal operation of hybrid AC/DC microgrids under uncertainty of renewable energy resources: A comprehensive review. Int. J. Electr. Power Energy Syst.109, 139–159. 10.1016/j.ijepes.2019.01.025 (2019).10.1016/j.ijepes.2019.01.025 DOI
Karimi, H. & Jadid, S. Two-stage economic, reliability, and environmental scheduling of multi-microgrid systems and fair cost allocation. Sustain. Energy, Grids Netw.28, 100546. 10.1016/j.segan.2021.100546 (2021).10.1016/j.segan.2021.100546 DOI
Chen, T. et al. Multi-energy microgrid robust energy management with a novel decision-making strategy. Energy239, 121840. 10.1016/j.energy.2021.121840 (2022).10.1016/j.energy.2021.121840 DOI
Jani, A., Karimi, H. & Jadid, S. Hybrid energy management for islanded networked microgrids considering battery energy storage and wasted energy. J. Energy Storage40, 102700. 10.1016/j.est.2021.102700 (2021).10.1016/j.est.2021.102700 DOI
Kavitha, V., Malathi, V., Guerrero, J. M. & Bazmohammadi, N. Energy management system using Mimosa Pudica optimization technique for microgrid applications. Energy244, 122605. 10.1016/j.energy.2021.122605 (2021).10.1016/j.energy.2021.122605 DOI
Kharrich, M., Hassan, M. H., Kamel, S. & Kim, J. Designing an optimal hybrid microgrid system using a leader artificial rabbits optimization algorithm for domestic load in Guelmim city Morocco. Renew. Energy223, 120011 (2024).10.1016/j.renene.2024.120011 DOI
Behera, S. & Dev Choudhury, N. B. A systematic review of energy management system based on various adaptive controllers with optimization algorithm on a smart microgrid. Int. Trans. Electr. Energy Syst.31(12), e13132 (2021).10.1002/2050-7038.13132 DOI
Hassan, M. H., Kamel, S., Safaraliev, M. & Kokin, S. Improved techno-economic optimization of hybrid solar/wind/fuel cell/diesel systems with hydrogen energy storage. Int. J. Hydrogen Energy68, 998–1018 (2024).10.1016/j.ijhydene.2024.04.124 DOI
Behera, S. & Choudhury, N. B. D. Adaptive optimal energy management in multi-distributed energy resources by using improved slime mould algorithm with considering demand side management. e-Prime-Adv. Electr. Eng. Electron. Energy3, 100108 (2023).10.1016/j.prime.2023.100108 DOI
Behera, S., Dev Choudhury, N. B. & Biswas, S. Maiden application of the slime mold algorithm for optimal operation of energy management on a microgrid considering demand response program. SN Comput. Sci.4(5), 491 (2023).10.1007/s42979-023-02011-9 DOI
Rodriguez-Gil, J. A. et al. Energy management system in networked microgrids: An overview. Energy Syst.10.1007/s12667-024-00676-6 (2024).10.1007/s12667-024-00676-6 DOI
Habibi, S., Effatnejad, R., Hedayati, M. & Hajihosseini, P. Stochastic energy management of a microgrid incorporating two-point estimation method, mobile storage, and fuzzy multi-objective enhanced grey wolf optimizer. Sci. Rep.14(1), 1667 (2024). 10.1038/s41598-024-51166-9 PubMed DOI PMC
Karimi, H., Jadid, S. & Hasanzadeh, S. Optimal-sustainable multi-energy management of microgrid systems considering integration of renewable energy resources: A multi-layer four-objective optimization. Sustain. Prod. Consumpt.36, 126–138 (2023).10.1016/j.spc.2022.12.025 DOI
Mat Jusof, M. F., Mohammad, S., Abd Razak, A. A. & Kasruddin Nasir, A. N. Adaptive Sine-cosine algorithms for global optimization. In IEEE International Conference on Automatic Control and Intelligent Systems (I2CACIS) (2018) 10.1109/I2CACIS.2018.8603684
Gupta, S. & Deep, K. A hybrid self-adaptive sine cosine algorithm with opposition-based learning. Expert Syst. Appl.10.1016/j.eswa.2018.10.050 (2018).10.1016/j.eswa.2018.10.050 DOI
Zamli, K. Z., Din, F., Nasser, A. B. & Alsewari, A. R. Combinatorial test suite generation strategy using enhanced sine cosine algorithm. In ECCE2019, Lecture Notes in Electrical Engineering (Springer, 2020), 10.1007/978-981-15-2317-5_12
Ji, Y. et al. An adaptive chaotic sine cosine algorithm for constrained and unconstrained optimization, Hindawi. Complexity10.1155/2020/6084917 (2020).10.1155/2020/6084917 DOI
Vásquez, L. O. P., Redondo, J. L., Hervás, J. D. Á., Ramírez, V. M. & Torres, J. L. Balancing CO2 emissions and economic cost in a microgrid through an energy management system using MPC and multi-objective optimization. Appl. Energy347, 120998 (2023).10.1016/j.apenergy.2023.120998 DOI
Kumar, N., Dahiya, S. & Singh Parmar, K. P. Multi-objective economic emission dispatch optimization strategy considering battery energy storage system in islanded microgrid. J. Oper. Autom. Power Eng.12(4), 296–311 (2024).
Dixit, S., Singh, P., Ogale, J., Bansal, P. & Sawle, Y. Energy management in microgrids with renewable energy sources and demand response. Comput. Electr. Eng.110, 108848 (2023).10.1016/j.compeleceng.2023.108848 DOI
Majeed, M. A., Phichaisawat, S., Asghar, F. & Hussan, U. optimal energy management system for grid-tied microgrid: An improved adaptive genetic algorithm. IEEE Access11, 117351–117361. 10.1109/ACCESS.2023.3326505 (2023).10.1109/ACCESS.2023.3326505 DOI
Nallolla, C. A., Vijayapriya, P., Chittathuru, D. & Padmanaban, S. Multi-objective optimization algorithms for a hybrid AC/DC microgrid using RES: A comprehensive review. Electronics12(4), 1062. 10.3390/electronics12041062 (2023).10.3390/electronics12041062 DOI
Parvin, M., Yousefi, H. & Noorollahi, Y. Techno-economic optimization of a renewable micro grid using multi-objective particle swarm optimization algorithm. Energy Convers. Manag.277, 116639 (2023).10.1016/j.enconman.2022.116639 DOI
Kumar, N., Dahiya, S. & Parmar, K. P. Sensitivity analysis based multi-objective economic emission dispatch in microgrid. J. Oper. Autom. Power Eng. (2023).
Yan, Z. et al. Renewable energy effects on energy management based on demand response in microgrids environment. Renew. Energy213, 205–217. 10.1016/j.renene.2023.05.051 (2023).10.1016/j.renene.2023.05.051 DOI
Fatemi, S., Ketabi, A. & Mansouri, S. A. A multi-level multi-objective strategy for eco-environmental management of electricity market among micro-grids under high penetration of smart homes, plug-in electric vehicles and energy storage devices. J. Energy Storage67, 107632 (2023).10.1016/j.est.2023.107632 DOI
Premadasa, P. N. D., Silva, C. M. M. R. S., Chandima, D. P. & Karunadasa, J. P. A multi-objective optimization model for sizing an off-grid hybrid energy microgrid with optimal dispatching of a diesel generator. J. Energy Storage68, 107621 (2023).10.1016/j.est.2023.107621 DOI
Abid, M. S. et al. A novel multi-objective optimization based multi-agent deep reinforcement learning approach for microgrid resources planning. Appl. Energy353, 122029 (2024).10.1016/j.apenergy.2023.122029 DOI
Cheraghi, R. & Jahangir, M. H. Multi-objective optimization of a hybrid renewable energy system supplying a residential building using NSGA-II and MOPSO algorithms. Energy Convers. Manag.294, 117515 (2023).10.1016/j.enconman.2023.117515 DOI
Güven, A. F., Yörükeren, N., Tag-Eldin, E. & Samy, M. M. Multi-objective optimization of an islanded green energy system utilizing sophisticated hybrid metaheuristic approach. IEEE Access11, 103044–103068. 10.1109/ACCESS.2023.3296589 (2023).10.1109/ACCESS.2023.3296589 DOI
Azizi, A. et al. Decentralized multi-objective energy management with dynamic power electronic converters and demand response constraints. IEEE Access11, 146297–146312. 10.1109/ACCESS.2023.3344209 (2023).10.1109/ACCESS.2023.3344209 DOI
Feng, Y., Chen, J. & Luo, J. Life cycle cost analysis of power generation from underground coal gasification with carbon capture and storage (CCS) to measure the economic feasibility. Resour. Policy92, 104996. 10.1016/j.resourpol.2024.104996 (2024).10.1016/j.resourpol.2024.104996 DOI
Zhang, R. et al. Centralized active power decoupling method for the CHB converter with reduced components and simplified control. IEEE Trans. Power Electron.39(1), 47–52. 10.1109/TPEL.2023.3321671 (2024).10.1109/TPEL.2023.3321671 DOI
Li, P., Hu, J., Qiu, L., Zhao, Y. & Ghosh, B. K. A distributed economic dispatch strategy for power-water networks. IEEE Trans. Control Netw. Syst.9(1), 356–366. 10.1109/TCNS.2021.3104103 (2022).10.1109/TCNS.2021.3104103 DOI
Meng, Q., Hussain, S., Luo, F., Wang, Z. & Jin, X. An online reinforcement learning-based energy management strategy for microgrids with centralized control. IEEE Trans. Ind. Appl.10.1109/TIA.2024.3430264 (2024).10.1109/TIA.2024.3430264 DOI
Shirkhani, M. et al. A review on microgrid decentralized energy/voltage control structures and methods. Energy Rep.10, 368–380. 10.1016/j.egyr.2023.06.022 (2023).10.1016/j.egyr.2023.06.022 DOI
Duan, Y., Zhao, Y. & Hu, J. An initialization-free distributed algorithm for dynamic economic dispatch problems in microgrid: Modeling, optimization and analysis. Sustain. Energy Grids Netw.34, 101004. 10.1016/j.segan.2023.101004 (2023).10.1016/j.segan.2023.101004 DOI
Wang, C. et al. An improved hybrid algorithm based on biogeography/complex and metropolis for many-objective optimization. Math. Probl. Eng.2017, 2462891. 10.1155/2017/2462891 (2017).10.1155/2017/2462891 DOI
Fathy, A. & Abdelaziz, A. Y. Single and multi-objective operation management of micro-grid using krill herd optimization and ant lion optimizer algorithms. Int. J. Energy Environ. Eng.9(1), 257–271 (2018).10.1007/s40095-018-0266-8 DOI
Wang, R. & Zhang, R. Techno-economic analysis and optimization of hybrid energy systems based on hydrogen storage for sustainable energy utilization by a biological-inspired optimization algorithm. J. Energy Storage66, 107469. 10.1016/j.est.2023.107469 (2023).10.1016/j.est.2023.107469 DOI
Aghajani, G. & Ghadimi, N. Multi-objective energy management in a micro-grid. Energy Rep.4(1), 218–225 (2018).10.1016/j.egyr.2017.10.002 DOI
Wang, S. et al. An identification method for anomaly types of active distribution network based on data mining. IEEE Trans. Power Syst.39(4), 5548–5560. 10.1109/TPWRS.2023.3288043 (2024).10.1109/TPWRS.2023.3288043 DOI
Aghajani, G. R., Shayanfar, H. A. & Shayeghi, H. Presenting a multi-objective generation scheduling model for pricing demand response rate in micro-grid energy management. Energy Convers. Manag.106, 308–321 (2012).10.1016/j.enconman.2015.08.059 DOI
Xu, X., Lin, Z., Li, X., Shang, C. & Shen, Q. Multi-objective robust optimisation model for MDVRPLS in refined oil distribution. Int. J. Prod. Res.60(22), 6772–6792. 10.1080/00207543.2021.1887534 (2022).10.1080/00207543.2021.1887534 DOI
Zhang, J. et al. A novel multiple-medium-AC-port power electronic transformer. IEEE Trans. Ind. Electron.71(7), 6568–6578. 10.1109/TIE.2023.3301550 (2024).10.1109/TIE.2023.3301550 DOI
Zhang, J. et al. An embedded DC power flow controller based on full-bridge modular multilevel converter. IEEE Trans. Ind. Electron.71(3), 2556–2566. 10.1109/TIE.2023.3265041 (2024).10.1109/TIE.2023.3265041 DOI
Zhou, Y., Zhai, Q., Xu, Z., Wu, L. & Guan, X. Multi-stage adaptive stochastic-robust scheduling method with affine decision policies for hydrogen-based multi-energy microgrid. IEEE Trans. Smart Grid15(3), 2738–2750. 10.1109/TSG.2023.3340727 (2024).10.1109/TSG.2023.3340727 DOI
Zhang, J. et al. A novel multiport transformer-less unified power flow controller. IEEE Trans. Power Electron.39(4), 4278–4290. 10.1109/TPEL.2023.3347900 (2024).10.1109/TPEL.2023.3347900 DOI
Jiao, K. et al. Study on the multi-objective optimization of reliability and operating cost for natural gas pipeline network. Oil Gas Sci. Technol. Rev. IFP Energies Nouvelles76, 42. 10.2516/ogst/2021020 (2021).10.2516/ogst/2021020 DOI
Ju, Y., Liu, W., Zhang, Z. & Zhang, R. Distributed Three-phase power flow for AC/DC hybrid networked microgrids considering converter limiting constraints. IEEE Trans. Smart Grid13(3), 1691–1708. 10.1109/TSG.2022.3140212 (2022).10.1109/TSG.2022.3140212 DOI
Zhou, B. et al. Experimental study of a WEC array-floating breakwater hybrid system in multiple-degree-of-freedom motion. Appl. Energy371, 123694. 10.1016/j.apenergy.2024.123694 (2024).10.1016/j.apenergy.2024.123694 DOI
Mohapatra, B. et al. Optimizing grid-connected PV systems with novel super-twisting sliding mode controllers for real-time power management. Sci. Rep.14, 4646. 10.1038/s41598-024-55380-3 (2024). 10.1038/s41598-024-55380-3 PubMed DOI PMC
Rekioua, D. et al. Optimization and intelligent power management control for an autonomous hybrid wind turbine photovoltaic diesel generator with batteries. Sci. Rep.13, 21830. 10.1038/s41598-023-49067-4 (2023). 10.1038/s41598-023-49067-4 PubMed DOI PMC
Venkatesh, P., Gnanadass, R. & Padhy, N. P. Comparison and application of evolutionary programming techniques to combined economic emission dispatch with line flow constraints. IEEE Trans. Power Syst.18(2), 688–697 (2003).10.1109/TPWRS.2003.811008 DOI
Fettah, K. et al. A pareto strategy based on multi-objective optimal integration of distributed generation and compensation devices regarding weather and load fluctuations. Sci. Rep.14, 10423. 10.1038/s41598-024-61192-2 (2024). 10.1038/s41598-024-61192-2 PubMed DOI PMC
Agajie, E. F. et al. Optimization of off-grid hybrid renewable energy systems for cost-effective and reliable power supply in Gaita Selassie Ethiopia. Sci. Rep.14, 10929. 10.1038/s41598-024-61783-z (2024). 10.1038/s41598-024-61783-z PubMed DOI PMC
Bouguerra, A. et al. Enhancing PEM fuel cell efficiency with flying squirrel search optimization and Cuckoo Search MPPT techniques in dynamically operating environments. Sci. Rep.14, 13946. 10.1038/s41598-024-64915-7 (2024). 10.1038/s41598-024-64915-7 PubMed DOI PMC
Rajagopalan, A. et al. Chaotic self-adaptive interior search algorithm to solve combined economic emission dispatch problems with security constraints. Int. Trans. Electr. Energ Syst.10.1002/2050-7038.12026 (2019).10.1002/2050-7038.12026 DOI
Sahoo, G. K. et al. Scaled conjugate-artificial neural network-based novel framework for enhancing the power quality of grid-tied microgrid systems. Alex. Eng. J.80(2023), 520–541. 10.1016/j.aej.2023.08.081 (2023).10.1016/j.aej.2023.08.081 DOI
Nagarajan, K., Rajagopalan, A., Selvaraj, P., Ravi, H. K. & Kareem, I. A. Demand response-integrated economic emission dispatch using improved remora optimization algorithm. In AI approaches to smart and sustainable power systems 120–140 (IGI Global, 2024).
Karthik, N., Parvathy, A. K., Arul, R. & Padmanathan, K. A new heuristic algorithm for economic load dispatch incorporating wind power. In Artificial Intelligence and Evolutionary Computations in Engineering Systems: Computational Algorithm for AI Technology, Proceedings of ICAIECES 2020 47–65 (Springer Singapore, 2022).
Karthik, N., Rajagopalan, A., Prakash, V. R., Montoya, O. D., Sowmmiya, U. & Kanimozhi, R. Environmental economic load dispatch considering demand response using a new heuristic optimization algorithm. AI Techniques for Renewable Source Integration and Battery Charging Methods in Electric Vehicle Applications 220–242 (2023).
Nagarajan, K., Parvathy, A. K. & Rajagopalan, A. Multi-objective optimal reactive power dispatch using levy interior search algorithm. Int. J. Electr. Eng. Inform.12(3), 547–570 (2020).
Mohseni-Bonab, S. M., Rabiee, A., Mohammadi-Ivatloo, B., Jalilzadeh, S. & Nojavan, S. A two-point estimate method for uncertainty modeling in multi-objective optimal reactive power dispatch problem. Int. J. Electr. Power Energy Syst.75, 194–204 (2016).10.1016/j.ijepes.2015.08.009 DOI
Mirjalili, S. SCA: A sine cosine algorithm for solving optimization problems. Knowl. Based Syst.96, 120–133 (2016).10.1016/j.knosys.2015.12.022 DOI
Elaziz, M. A., Oliva, D. & Xiong, S. An improved opposition-based sine cosine algorithm for global optimization. Expert Syst. Appl.90, 484–500 (2016).10.1016/j.eswa.2017.07.043 DOI
Pradhan, M., Roy, P. K. & Pal, T. Oppositional based grey wolf optimization algorithm for economic dispatch problem of power system. Ain Shams Eng. J.9(4), 2015–2025 (2018).10.1016/j.asej.2016.08.023 DOI
Tavazoli, M. S. & Haeri, M. Comparison of different one-dimensional maps as chaotic search pattern in chaos optimization algorithms. Appl. Math. Computat.187, 1076–1085 (2007).10.1016/j.amc.2006.09.087 DOI
Arora, K. et al. Optimization methodologies and testing on standard benchmark functions of load frequency control for interconnected multi area power system in smart grids. Mathematics8, 980 (2020).10.3390/math8060980 DOI
Li, F., Shen, W., Cai, X., Gao, L. & Wang, G. G. A fast surrogate-assisted particle swarm optimization algorithm for computationally expensive problems. Appl. Soft Comput.92, 106303 (2020).10.1016/j.asoc.2020.106303 DOI
Li, L., Zhou, Y. & Xie, J. A free search krill herd algorithm for functions optimization. Math. Probl. Eng.2014(1), 936374 (2014).
Moghaddam, A. A., Seifi, A., Niknam, T. & Pahlavani, A. R. A. Multi-objective operation management of a renewable MG (micro-grid) with back-up micro-turbine/fuel cell/battery hybrid power source. Energy36, 6490–6507 (2011).10.1016/j.energy.2011.09.017 DOI
Rezvani, A., Gandomkar, M., Izadbakhsh, M. & Ahmadi, A. Environmental/economic scheduling of a micro-grid with renewable energy resources. J. Clean. Prod.87, 216–226 (2015).10.1016/j.jclepro.2014.09.088 DOI
Pachauri, N. et al. Robust fractional-order control scheme for PV-penetrated grid-connected microgrid. Mathematics11, 1283. 10.3390/math11061283 (2023).10.3390/math11061283 DOI
Khosravi, N. et al. Improvement of power quality parameters using modulated-unified power quality conditioner and switched-inductor boost converter by the optimization techniques for a hybrid AC/DC microgrid. Sci. Rep.12, 21675. 10.1038/s41598-022-26001-8 (2022). 10.1038/s41598-022-26001-8 PubMed DOI PMC
Narasimha Prasad, T. et al. Power management in hybrid ANFIS PID based AC–DC microgrids with EHO based cost optimized droop control strategy. Energy Rep.8, 15081–15094. 10.1016/j.egyr.2022.11.014 (2022).10.1016/j.egyr.2022.11.014 DOI
Sharma, S. et al. Modeling and sensitivity analysis of grid-connected hybrid green microgrid system. Ain Shams Eng. J.13(4), 101679. 10.1016/j.asej.2021.101679 (2022).10.1016/j.asej.2021.101679 DOI
Abdalla, A. N. et al. Optimized economic operation of microgrid: Combined cooling and heating power and hybrid energy storage systems. ASME J. Energy Resour. Technol.143(7), 070906. 10.1115/1.4050971 (2021).10.1115/1.4050971 DOI
Dashtdar, M. et al. Design of optimal energy management system in a residential microgrid based on smart control. Smart Sci.10.1080/23080477.2021.1949882 (2021).10.1080/23080477.2021.1949882 DOI
Sahoo, G. K., Choudhury, S., Rathore, R. S. & Bajaj, M. A novel prairie dog-based meta-heuristic optimization algorithm for improved control, better transient response, and power quality enhancement of hybrid microgrids. Sensors23, 5973. 10.3390/s23135973 (2023). 10.3390/s23135973 PubMed DOI PMC
Choudhury, S. et al. Energy management and power quality improvement of microgrid system through modified water wave optimization. Energy Rep.9, 6020–6041. 10.1016/j.egyr.2023.05.068 (2023).10.1016/j.egyr.2023.05.068 DOI
Moghaddam, A. A., Seifi, A. & Niknam, T. Multi-operation management of a typical micro-grids using particle swarm optimization: A comparative study. Renew. Sustain. Energy Rev.16(2), 1268–1281 (2012).10.1016/j.rser.2011.10.002 DOI
Khosravi, N. et al. A novel control approach to improve the stability of hybrid AC/DC microgrids. Appl. Energy344, 121261. 10.1016/j.apenergy.2023.121261 (2023).10.1016/j.apenergy.2023.121261 DOI
Abraham, D. S. et al. Fuzzy-based efficient control of DC microgrid configuration for PV-energized EV charging station. Energies16, 2753. 10.3390/en16062753 (2023).10.3390/en16062753 DOI