Seed priming with gas plasma-activated water in Ethiopia's "orphan" crop tef (Eragrostis tef)
Jazyk angličtina Země Německo Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
BB/S018441/1
Biotechnology and Biological Sciences Research Council - United Kingdom
BB/S016112/1
Biotechnology and Biological Sciences Research Council - United Kingdom
PubMed
38409565
PubMed Central
PMC10896766
DOI
10.1007/s00425-024-04359-5
PII: 10.1007/s00425-024-04359-5
Knihovny.cz E-zdroje
- Klíčová slova
- Accelerated ageing, Gas plasma priming, Plasma agriculture, Seed germination, Seed technology,
- MeSH
- Eragrostis * MeSH
- jedlá semena MeSH
- semena rostlinná MeSH
- šlechtění rostlin MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Etiopie MeSH
Seed priming with gas plasma-activated water results in an increased ageing resilience in Eragrostis tef grains compared to a conventional hydropriming protocol. Tef (Eragrostis tef) is a cereal grass and a major staple crop of Ethiopia and Eritrea. Despite its significant importance in terms of production, consumption, and cash crop value, tef has been understudied and its productivity is low. In this study, tef grains have undergone different priming treatments to enhance seed vigour and seedling performance. A conventional hydropriming and a novel additive priming technology with gas plasma-activated water (GPAW) have been used and tef grains were then subjected to germination performance assays and accelerated ageing. Tef priming increases the germination speed and vigour of the grains. Priming with GPAW retained the seed storage potential after ageing, therefore, presenting an innovative environmental-friendly seed technology with the prospect to address variable weather conditions and ultimately food insecurity. Seed technology opens new possibilities to increase productivity of tef crop farming to achieve a secure and resilient tef food system and economic growth in Ethiopia by sustainable intensification of agriculture beyond breeding.
Department of Biological Sciences Royal Holloway University of London Egham Surrey TW20 0EX UK
Institute of Plant Sciences University of Bern Altenbergrain 21 CH 3013 Bern Switzerland
Zobrazit více v PubMed
Argerich CA, Bradford KJ. The effects of priming and ageing on seed vigour in tomato. J Exp Bot. 1989;40:599–607. doi: 10.1093/jxb/40.5.599. DOI
Bafoil M, Jemmat A, Martinez Y, Merbahi N, Eichwald O, Dunand C, Yousfi M. Effects of low temperature plasmas and plasma activated waters on Arabidopsis thaliana germination and growth. PLoS One. 2018;13:e0195512. doi: 10.1371/journal.pone.0195512. PubMed DOI PMC
Bormashenko E, Shapira Y, Grynyov R, Whyman G, Bormashenko Y, Drori E. Interaction of cold radiofrequency plasma with seeds of beans (Phaseolus vulgaris) J Exp Bot. 2015;66:4013–4021. doi: 10.1093/jxb/erv206. PubMed DOI PMC
Bourke P, Ziuzina D, Boehm D, Cullen P, Keener K. The potential of cold plasma for safe and sustainable food production. Trends Biotechnol. 2018;36:615–626. doi: 10.1016/j.tibtech.2017.11.001. PubMed DOI
Buitink J, Hemminga MA, Hoekstra FA. Is there a role for oligosaccharides in seed longevity? An assessment of intracellular glass stability. Plant Physiol. 2000;122:1217–1224. doi: 10.1104/pp.122.4.1217. PubMed DOI PMC
Butler LH, Hay FR, Ellis RH, Smith RD, Murray TB. Priming and re-drying improve the survival of mature seeds of Digitalis purpurea during storage. Ann Bot. 2009;103:1261–1270. doi: 10.1093/aob/mcp059. PubMed DOI PMC
Cannarozzi G, Plaza-Wüthrich S, Esfeld K, Larti S, Wilson YS, Girma D, de Castro E, Chanyalew S, Blösch R, Farinelli L, Lyons E, Schneider M, Falquet L, Kuhlemeier C, Assefa K, Tadele Z. Genome and transcriptome sequencing identifies breeding targets in the orphan crop tef (Eragrostis tef) BMC Genom. 2014;15:581. doi: 10.1186/1471-2164-15-581. PubMed DOI PMC
Cannarozzi G, Weichert A, Schnell M, Ruiz C, Bossard S, Blosch R, Plaza-Wuthrich S, Chanyalew S, Assefa K, Tadele Z. Waterlogging affects plant morphology and the expression of key genes in tef (Eragrostis tef) Plant Direct. 2018;2:56. doi: 10.1002/pld3.56. PubMed DOI PMC
Chandler JO, Haas FB, Khan S, Bowden L, Ignatz M, Enfissi EMA, Gawthrop F, Griffiths A, Fraser PD, Rensing SA, Leubner-Metzger G. Rocket science: the effect of spaceflight on germination physiology, ageing, and transcriptome of Eruca sativa seeds. Life. 2020;10:49. doi: 10.3390/life10040049. PubMed DOI PMC
Chojnowski M, Corbineau F, Côme D. Physiological and biochemical changes induced in sunflower seeds by osmopriming and subsequent drying, storage and aging. Seed Sci Res. 1997;7:323–332. doi: 10.1017/s096025850000372x. DOI
Colville L, Pritchard HW. Seed life span and food security. New Phytol. 2019;224:557–562. doi: 10.1111/nph.16006. PubMed DOI
Corbineau F, Taskiran-Özbingöl N, El-Maarouf-Bouteau H. Improvement of seed quality by priming: concept and biological basis. Seeds. 2023;2:101–115. doi: 10.3390/seeds2010008. DOI
Deressa TT, Hassan RM. Economic impact of climate change on crop production in Ethiopia: evidence from cross-section measures. J Afr Econ. 2009;18:529–554. doi: 10.1093/jae/ejp002. DOI
Dong S, Liu YL, Zhang M, Zhang J, Wang JH, Li ZH. Maternal light environment interacts with genotype in regulating seed photodormancy in tobacco. Environ Exp Bot. 2022;194:104745. doi: 10.1016/j.envexpbot.2021.104745. DOI
Dorne AJ. Variation in seed germination inhibition of Chenopodium bonus-henricus in relation to altitude of plant growth. Can J Bot. 1981;59:1893–1901. doi: 10.1139/b81-249. DOI
Fabrissin I, Sano N, Seo M, North H. Ageing beautifully: can the benefits of seed priming be separated from a reduced lifespan trade-off? J Exp Bot. 2021;72:2312–2333. doi: 10.1093/jxb/erab004. PubMed DOI
Farnocchia RBF, Benech-Arnold RL, Mantese A, Batlla D. Optimization of timing of next-generation emergence in Amaranthus hybridus is determined via modulation of seed dormancy by the maternal environment. J Exp Bot. 2021;72:4283–4297. doi: 10.1093/jxb/erab141. PubMed DOI
Farooq M, Usman M, Nadeem F, Rehman Hu, Wahid A, Basra SMA, Siddique KHM. Seed priming in field crops: potential benefits, adoption and challenges. Crop Pasture Sci. 2019;70:731–771. doi: 10.1071/CP18604. DOI
Fernández FR, Benech-Arnold R, Mantese A, Batlla D. Optimization of timing of next-generation emergence in Amaranthus hybridus is determined via modulation of seed dormancy by the maternal environment. J Exp Bot. 2021;72:4283–4297. doi: 10.1093/jxb/erab141. PubMed DOI
Fessel SA, Vieira RD, da Cruz MCP, de Paula RC, Panobianco M. Electrical conductivity testing of corn seeds as influenced by temperature and period of storage. Pesqui Agropecu Bras. 2006;4:1551–1559. doi: 10.1590/S0100-204X2006001000013. DOI
Francoz E, Lepiniec L, North HM. Seed coats as an alternative molecular factory: thinking outside the box. Plant Reprod. 2018;31:327–342. doi: 10.1007/s00497-018-0345-2. PubMed DOI
Gebrehiwot HG, Aune JB, Netland J, Eklo OM, Torp T, Brandsæter LO. Weed-competitive ability of teff (Eragrostis tef (Zucc.) Trotter) varieties. Agronomy. 2020;10:108. doi: 10.3390/agronomy10010108. DOI
Girija A, Jifar H, Jones C, Yadav R, Doonan J, Mur LAJ. Tef: a tiny grain with enormous potential. Trends Plant Sci. 2021;27:220–223. doi: 10.1016/j.tplants.2021.11.011. PubMed DOI
Grainge G, Nakabayashi K, Iza F, Leubner-Metzger G, Steinbrecher T. Gas-plasma-activated water impact on photo-dependent dormancy mechanisms in Nicotiana tabacum seeds. Int J Mol Sci. 2022;23:6709. doi: 10.3390/ijms23126709. PubMed DOI PMC
Grainge G, Nakabayashi K, Steinbrecher T, Kennedy S, Ren J, Iza F, Leubner-Metzger G. Molecular mechanisms of seed dormancy release by gas plasma-activated water technology. J Exp Bot. 2022;73:4065–4078. doi: 10.1093/jxb/erac150. PubMed DOI PMC
Graves DB. The emerging role of reactive oxygen and nitrogen species in redox biology and some implications for plasma applications to medicine and biology. J Phys D: Appl Phys. 2012;45:263001. doi: 10.1088/0022-3727/45/26/263001. DOI
Hay FR, Adams J, Manger K, Probert R. The use of non-saturated lithium chloride solutions for experimental control of seed water content. Seed Sci Technol. 2008;36:737–746. doi: 10.15258/sst.2008.36.3.23. DOI
Hourston JE, Pérez M, Gawthrop F, Richards M, Steinbrecher T, Leubner-Metzger G. The effects of high oxygen partial pressure on vegetable Allium seeds with a short shelf-life. Planta. 2020;251:105. doi: 10.1007/s00425-020-03398-y. PubMed DOI PMC
Ibrahim E. Seed priming to alleviate salinity stress in germinating seeds. J Plant Physiol. 2016;192:38–46. doi: 10.1016/j.jplph.2015.12.011. PubMed DOI
ISTA . International rules for seed testing. Basserdorf: International Seed Testing Association; 2015.
Ito M, Oh J-S, Ohta T, Shiratani M, Hori M. Current status and future prospects of agricultural applications using atmospheric-pressure plasma technologies. Plasma Process Polym. 2018;15:1700073. doi: 10.1002/ppap.201700073. DOI
Kreitschitz A, Tadele Z, Gola EM. Slime cells on the surface of Eragrostis seeds maintain a level of moisture around the grain to enhance germination. Seed Sci Res. 2009;19:27–35. doi: 10.1017/S0960258508186287. DOI
Lee JS, Velasco-Punzalan M, Pacleb M, Valdez R, Kretzschmar T, McNally KL, Ismail AM, Cruz PCS, Hamilton NRS, Hay FR. Variation in seed longevity among diverse Indica rice varieties. Ann Bot. 2019;124:447–460. doi: 10.1093/aob/mcz093. PubMed DOI PMC
Marin M, Laverack G, Powell AA, Matthews S. Potential of the electrical conductivity of seed soak water and early counts of radicle emergence to assess seed quality in some native species. Seed Sci Technol. 2018;46:71–86. doi: 10.15258/sst.2018.46.1.07. DOI
Masiello M, Somma S, Lo Porto C, Palumbo F, Favia P, Fracassi F, Logrieco AF, Moretti A. Plasma technology increases the efficacy of prothioconazole against Fusarium graminearum and Fusarium proliferatum contamination of maize (Zea mays) seedlings. Int J Mol Sci. 2021;22:9301. doi: 10.3390/ijms22179301. PubMed DOI PMC
Matthews S, Powell A. Electrical conductivity vigour test: physiological basis and use. Seed Testing Int. 2006;131:32–35.
Nakabayashi K, Leubner-Metzger G. Seed dormancy and weed emergence: from simulating environmental change to understanding trait plasticity, adaptive evolution, and population fitness. J Exp Bot. 2021;72:4181–4185. doi: 10.1093/jxb/erab150. PubMed DOI PMC
Paff K, Asseng S. A review of tef physiology for developing a tef crop model. Eur J Agron. 2018;94:54–66. doi: 10.1016/j.eja.2018.01.008. DOI
Paparella S, Araújo S, Rossi G, Wijayasinghe M, Carbonera D, Balestrazzi A. Seed priming: state of the art and new perspectives. Plant Cell Rep. 2015;34:1281–1293. doi: 10.1007/s00299-015-1784-y. PubMed DOI
Penfield S, MacGregor DR. Effects of environmental variation during seed production on seed dormancy and germination. J Exp Bot. 2017;68:819–825. doi: 10.1093/jxb/erw436. PubMed DOI
Schwember AR, Bradford KJ. Quantitative trait loci associated with longevity of lettuce seeds under conventional and controlled deterioration storage conditions. J Exp Bot. 2010;61:4423–4436. doi: 10.1093/jxb/erq248. PubMed DOI PMC
Soeda Y, Konings MCJM, Vorst O, van Houwelingen AMML, Stoopen GM, Maliepaard CA, Kodde J, Bino RJ, Groot SPC, van der Geest AHM. Gene expression programs during Brassica oleracea seed maturation, osmopriming, and germination are indicators of progression of the germination process and the stress tolerance level. Plant Physiol. 2005;137:354–368. doi: 10.1104/pp.104.051664. PubMed DOI PMC
Sperber K, Steinbrecher T, Graeber K, Scherer G, Clausing S, Wiegand N, Hourston JE, Kurre R, Leubner-Metzger G, Mummenhoff K. Fruit fracture biomechanics and the release of Lepidium didymum pericarp-imposed mechanical dormancy by fungi. Nat Commun. 2017;8:1868. doi: 10.1038/s41467-017-02051-9. PubMed DOI PMC
Springthorpe V, Penfield S. Flowering time and seed dormancy control use external coincidence to generate life history strategy. Elife. 2015;4:e05557. doi: 10.7554/eLife.05557. PubMed DOI PMC
Steinbrecher T, Leubner-Metzger G. The biomechanics of seed germination. J Exp Bot. 2017;68:765–783. doi: 10.1093/jxb/erw428. PubMed DOI
Tadele Z. Orphan crops: their importance and the urgency of improvement. Planta. 2019;250:677–694. doi: 10.1007/s00425-019-03210-6. PubMed DOI
Walters C, Ballesteros D, Vertucci VA. Structural mechanics of seed deterioration: standing the test of time. Plant Sci. 2010;179:565–573. doi: 10.1016/j.plantsci.2010.06.016. DOI
Waskow A, Ibba L, Leftley M, Howling A, Ambrico PF, Furno I. An in situ FTIR study of DBD plasma parameters for accelerated germination of Arabidopsis thaliana seeds. Int J Mol Sci. 2021;22:11540. doi: 10.3390/ijms222111540. PubMed DOI PMC
Weltmann K-D, Kolb JF, Holub M, Uhrlandt D, Šimek M, Ostrikov K, Hamaguchi S, Cvelbar U, Černák M, Locke B, Fridman A, Favia P, Becker K. The future for plasma science and technology. Plasma Process Polym. 2019;16:1800118. doi: 10.1002/ppap.201800118. DOI
Wright A, Bandulasena H, Ibenegbu C, Leak D, Holmes T, Zimmerman W, Shaw A, Iza F. Dielectric barrier discharge plasma microbubble reactor for pretreatment of lignocellulosic biomass. AICHE J. 2018;64:3803–3816. doi: 10.1002/aic.16212. PubMed DOI PMC
Zhou R, Zhou R, Zhang X, Zhuang J, Yang S, Bazaka K, Ostrikov K. Effects of atmospheric-pressure N2, He, Air, and O2 microplasmas on mung bean seed germination and seedling growth. Sci Rep. 2016;6:32603. doi: 10.1038/srep32603. PubMed DOI PMC
Zhou R, Zhou R, Wang P, Xian Y, Mai-Prochnow A, Lu X, Cullen P, Ostrikov KK, Bazaka K. Plasma-activated water: generation, origin of reactive species and biological applications. J Phys D: Appl Phys. 2020;53:303001. doi: 10.1088/1361-6463/ab81cf. DOI
Zinsmeister J, Leprince O, Buitink J. Molecular and environmental factors regulating seed longevity. Biochem J. 2020;477:305–323. doi: 10.1042/bcj20190165. PubMed DOI