Microbial nanotechnology for agriculture, food, and environmental sustainability: Current status and future perspective

. 2024 Jun ; 69 (3) : 491-520. [epub] 20240229

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid38421484
Odkazy

PubMed 38421484
DOI 10.1007/s12223-024-01147-2
PII: 10.1007/s12223-024-01147-2
Knihovny.cz E-zdroje

The field of nanotechnology has the mysterious capacity to reform every subject it touches. Nanotechnology advancements have already altered a variety of scientific and industrial fields. Nanoparticles (NPs) with sizes ranging from 1 to 100 nm (nm) are of great scientific and commercial interest. Their functions and characteristics differ significantly from those of bulk metal. Commercial quantities of NPs are synthesized using chemical or physical methods. The use of the physical and chemical approaches remained popular for many years; however, the recognition of their hazardous effects on human well-being and conditions influenced serious world perspectives for the researchers. There is a growing need in this field for simple, non-toxic, clean, and environmentally safe nanoparticle production methods to reduce environmental impact and waste and increase energy productivity. Microbial nanotechnology is relatively a new field. Using various microorganisms, a wide range of nanoparticles with well-defined chemical composition, morphology, and size have been synthesized, and their applications in a wide range of cutting-edge technological areas have been investigated. Green synthesis of the nanoparticles is cost-efficient and requires low maintenance. The present review highlights the synthesis of the nanoparticles by different microbes, their characterization, and their biotechnological potential. It further deals with the applications in biomedical, food, and textile industries as well as its role in biosensing, waste recycling, and biofuel production.

Zobrazit více v PubMed

Abdeen S, Isaac RR, Geo S, Sornalekshmi S, Rose A, Praseetha P (2013) Evaluation of antimicrobial activity of biosynthesized iron and silver nanoparticles using the fungi Fusarium oxysporum and Actinomycetes sp. on human pathogens. Nano Biomed Eng 5:39–45 DOI

Abdel-Aziz SM, Prasad R, Hamed AA, Abdelraof M (2018) Fungal nanoparticles: A novel tool for a green biotechnology? In: Prasad R, Kumar V, Kumar M, Wang S (eds) Fungal nanobionics: Principles and applications. Springer Singapore, Singapore, pp 61–87. https://doi.org/10.1007/978-981-10-8666-3_3 DOI

Abdel-Raouf N, Al-Enazi NM, Ibraheem IB (2017) Green biosynthesis of gold nanoparticles using Galaxaura elongata and characterization of their antibacterial activity. Arab J Chem 10:S3029–S3039. https://doi.org/10.1016/j.arabjc.2013.11.044 DOI

Abdelbasir SM, Shalan AE (2019) An overview of nanomaterials for industrial wastewater treatment. Korean J Chem Eng 36:1209–1225. https://doi.org/10.1007/s11814-019-0306-y DOI

AbdelRahim K, Mahmoud SY, Ali AM, Almaary KS, Mustafa AE-ZM, Husseiny SM (2017) Extracellular biosynthesis of silver nanoparticles using Rhizopus stolonifer. Saudi J Biol Sci 24:208–216. https://doi.org/10.1016/j.sjbs.2016.02.025 PubMed DOI

Abid N, Khan AM, Shujait S, Chaudhary K, Ikram M, Imran M, Haider J, Khan M, Khan Q, Maqbool M (2021) Synthesis of nanomaterials using various top-down and bottom-up approaches, influencing factors, advantages, and disadvantages: A review. Adv Colloid Interface Sci 300:102597. https://doi.org/10.1016/j.cis.2021.102597 PubMed DOI

Adisa IO, Pullagurala VLR, Peralta-Videa JR, Dimkpa CO, Elmer WH, Gardea-Torresdey JL, White JC (2019) Recent advances in nano-enabled fertilizers and pesticides: A critical review of mechanisms of action. Environ Sci Nano 6:2002–2030 DOI

Agarwal P, Gupta R, Agarwal N (2019) Advances in synthesis and applications of microalgal nanoparticles for wastewater treatment. J Nanotechnol 2019:1–9. https://doi.org/10.1155/2019/7392713 DOI

Ahamad I, Bano F, Anwer R, Srivastava P, Kumar R, Fatma T (2022) Antibiofilm activities of biogenic silver nanoparticles against Candida albicans. Front Microbiol 12:4093. https://doi.org/10.3389/fmicb.2021.741493 DOI

Ahmad A, Senapati S, Khan MI, Kumar R, Ramani R, Srinivas V, Sastry M (2003) Intracellular synthesis of gold nanoparticles by a novel alkalotolerant actinomycete. Rhodococcus Species Nanotechnology 14:824. https://doi.org/10.1088/0957-4484/14/7/323 DOI

Ahmad Z, Pandey R, Sharma S, Khuller G (2006) Alginate nanoparticles as antituberculosis drug carriers: Formulation development, pharmacokinetics and therapeutic potential. Indian J Chest Dis Allied Sci 48:171–176 PubMed

Ahmed SF, Mofijur M, Rafa N, Chowdhury AT, Chowdhury S, Nahrin M, Islam AS, Ong HC (2022) Green approaches in synthesising nanomaterials for environmental nanobioremediation: Technological advancements, applications, benefits and challenges. Environ Res 204:111967. https://doi.org/10.1016/j.envres.2021.111967 PubMed DOI

Akther T, Mathipi V, Kumar NS, Davoodbasha M, Srinivasan H (2019) Fungal-mediated synthesis of pharmaceutically active silver nanoparticles and anticancer property against A549 cells through apoptosis. Environ Sci Pollut Res 26:13649–13657. https://doi.org/10.1007/s11356-019-04718-w DOI

Al-Bahrani R, Raman J, Lakshmanan H, Hassan AA, Sabaratnam V (2017) Green synthesis of silver nanoparticles using tree oyster mushroom Pleurotus ostreatus and its inhibitory activity against pathogenic bacteria. Mater Lett 186:21–25. https://doi.org/10.1016/j.matlet.2016.09.069 DOI

Alghuthaymi MA, Kalia A, Bhardwaj K, Bhardwaj P, Abd-Elsalam KA, Valis M, Kuca K (2021) Nanohybrid antifungals for control of plant diseases: Current status and future perspectives. J Fungi 7:1–20. https://doi.org/10.3390/jof7010048 DOI

Ali M, Kim B, Belfield KD, Norman D, Brennan M, Ali GS (2015) Inhibition of Phytophthora parasitica and P. capsici by silver nanoparticles synthesized using aqueous extract of Artemisia absinthium. Phytopathology 105:1183–1190. https://doi.org/10.1094/PHYTO-01-15-0006-R PubMed DOI

Alidoust D, Isoda A (2013) Effect of γFe 2 O 3 nanoparticles on photosynthetic characteristic of soybean (Glycine max (L.) Merr.): foliar spray versus soil amendment. Acta Physiol Plant 35:3365–3375. https://doi.org/10.1007/s11738-013-1369-8 DOI

Ameen F, AlYahya S, Govarthanan M, ALjahdali S, N, Al-Enazi N, Alsamhary K, Alshehri W, Alwakeel S, Alharbi S (2020) Soil bacteria Cupriavidus sp. mediates the extracellular synthesis of antibacterial silver nanoparticles. J Mol Struct 1202:127233. https://doi.org/10.1016/j.molstruc.2019.127233 DOI

Antunes F, Chandel A, Milessi T, Santos J, Rosa C, Da Silva S (2014) Bioethanol production from sugarcane bagasse by a novel Brazilian pentose fermenting yeast Scheffersomyces shehatae UFMG-HM 52.2: Evaluation of fermentation medium. Int J Chem Eng 2014:1–9. https://doi.org/10.1155/2014/180681 DOI

Aqeel U, Aftab T, Khan MMA, Naeem M, Khan MN (2022) A comprehensive review of impacts of diverse nanoparticles on growth, development and physiological adjustments in plants under changing environment. Chemosphere 291:132672. https://doi.org/10.1016/j.chemosphere.2021.132672 PubMed DOI

Artus GR, Zimmermann J, Reifler FA, Brewer SA, Seeger S (2012) A superoleophobic textile repellent towards impacting drops of alkanes. Appl Surf Sci 258:3835–3840. https://doi.org/10.1016/j.apsusc.2011.12.041 DOI

Asif A, Hasan MZ (2018) Application of nanotechnology in modern textiles: A review. Int J Curr Eng Technol 8:227–231

Ayoub HA, Khairy M, Elsaid S, Rashwan FA, Abdel-Hafez HF (2018) Pesticidal activity of nanostructured metal oxides for generation of alternative pesticide formulations. J Agri Food Chem 66:5491–5498. https://doi.org/10.1021/acs.jafc.8b01600 DOI

Azeez L, Adejumo AL, Lateef A, Adebisi SA, Adetoro RO, Adewuyi SO, Tijani KO, Olaoye S (2019) Zero-valent silver nanoparticles attenuate Cd and Pb toxicities on Moringa oleifera via immobilization and induction of phytochemicals. Plant Physiol Biochem 139:283–292. https://doi.org/10.1016/j.plaphy.2019.03.030 PubMed DOI

Baek M, Kim M, Cho H, Lee J, Yu J, Chung H, Choi S (2011). Factors influencing the cytotoxicity of zinc oxide nanoparticles: Particle size and surface charge. J Phys: Conference Series, vol 1. IOP Publishing, p 012044. https://doi.org/10.1088/1742-6596/304/1/012044 DOI

Bai Y, Yang T, Liang J, Qu J (2016) The role of biogenic Fe-Mn oxides formed in situ for arsenic oxidation and adsorption in aquatic ecosystems. Water Res 98:119–127. https://doi.org/10.1016/j.watres.2016.03.068 PubMed DOI

Balakumaran M, Ramachandran R, Kalaichelvan P (2015) Exploitation of endophytic fungus, Guignardia mangiferae for extracellular synthesis of silver nanoparticles and their in vitro biological activities. Microbiol Res 178:9–17. https://doi.org/10.1016/j.micres.2015.05.009 PubMed DOI

Balasooriya ER, Jayasinghe CD, Jayawardena UA, Ruwanthika RWD, Mendis de Silva R, Udagama PV (2017) Honey mediated green synthesis of nanoparticles: new era of safe nanotechnology. J Nanomater 2017:1–11. https://doi.org/10.1155/2017/5919836 DOI

Baruah A, Chaudhary V, Malik R, Tomer VK (2019) Nanotechnology based solutions for wastewater treatment. In: Ahsan A, Ismail AF (eds) In: Nanotechnology in Water and wastewater treatment. Elsevier, pp 337–368. https://doi.org/10.1016/B978-0-12-813902-8.00017-4 DOI

Ben-Yoav H, Almog RO, Sverdlov Y, Sternheim M, Belkin S, Freeman A, Shacham-Diamand Y (2012) Modified working electrodes for electrochemical whole-cell microchips. Electrochim Acta 82:109–114. https://doi.org/10.1016/j.electacta.2012.03.042 DOI

Bhattacharya T, Rather G, Akter R, Kabir MT, Rauf A, Rahman M (2021) Nutraceuticals and bio-inspired materials from microalgae and their future perspectives. Curr Top Med Chem 21:1037–1051. https://doi.org/10.2174/1568026621666210524095925 PubMed DOI

Bisht N, Chauhan PS (2020) Excessive and disproportionate use of chemicals cause soil contamination and nutritional stress. In: Larramendy ML, Soloneski S (eds) Soil contamination-threats and sustainable solutions. pp 1–10

Bolade OP, Williams AB, Benson NU (2020) Green synthesis of iron-based nanomaterials for environmental remediation: A review. Environ Nanotechnol Monit Manag 13:100279. https://doi.org/10.1016/j.enmm.2019.100279 DOI

Borah D, Das N, Das N, Bhattacharjee A, Sarmah P, Ghosh K, Chandel M, Rout J, Pandey P, Ghosh NN (2020) Alga-mediated facile green synthesis of silver nanoparticles: photophysical, catalytic and antibacterial activity. Appl Organomet Chem 34:e5597. https://doi.org/10.1002/aoc.5597 DOI

Borgatta J, Ma C, Hudson-Smith N, Elmer W, Plaza Perez CD, De La Torre-Roche R, Zuverza-Mena N, Haynes CL, White JC, Hamers RJ (2018) Copper based nanomaterials suppress root fungal disease in watermelon (Citrullus lanatus): role of particle morphology, composition and dissolution behavior. ACS Sustain Chem Eng 6:14847–14856. https://doi.org/10.1021/acssuschemeng.8b03379 DOI

Borse V, Kaler A, Banerjee UC (2015) Microbial synthesis of platinum nanoparticles and evaluation of their anticancer activity. Int J Emerg Trends Electr Electron 11:26–31

Bradley D, Cuypers D, Pelkmans L (2009) 2

Brindha K, Mohanraj S, Rajaguru P, Pugalenthi V (2023) Simultaneous production of renewable biohydrogen, biobutanol and biopolymer from phytogenic CoNPs-assisted Clostridial fermentation for sustainable energy and environment. Sci Total Environ 859:160002. https://doi.org/10.1016/j.scitotenv.2022.160002 PubMed DOI

Burniston N, Bygott C, Stratton J (2004) Nano technoology meets titanium dioxide. Surf Coat Int Part A, Coat J 87:179–184

Chaturvedi M, Yadav T, Masih SC (2020) Biogenic synthesis of nanoparticles from algae and its various applications. In: Upadhyay AK, Singh DP (eds) Algae and Sustainable Technologies. CRC Press, Boca Raton, pp 185–200 DOI

Chaud M, Souto EB, Zielinska A, Severino P, Batain F, Oliveira-Junior J, Alves T (2021) Nanopesticides in agriculture: benefits and challenge in agricultural productivity, toxicological risks to human health and environment. Toxics 9:2–19. https://doi.org/10.3390/toxics9060131 DOI

Chauhan A, Verma R, Kumari S, Sharma A, Shandilya P, Li X, Batoo KM, Imran A, Kulshrestha S, Kumar R (2020) Photocatalytic dye degradation and antimicrobial activities of Pure and Ag-doped ZnO using Cannabis sativa leaf extract. Sci Rep 10:7881. https://doi.org/10.1038/s41598-020-64419-0 PubMed DOI PMC

Chauhan A, Zubair S, Tufail S, Sherwani A, Sajid M, Raman SC, Azam A, Owais M (2011) Fungus-mediated biological synthesis of gold nanoparticles: potential in detection of liver cancer. Int J Nanomed 6:2305–2319. https://doi.org/10.2147/IJN.S23195 DOI

Chen H, Weiss J, Shahidi F (2006) Nanotechnology in nutraceuticals and functional foods. Food Technol (chicago) 60:30–36

Cheng S, Li N, Jiang L, Li Y, Xu B, Zhou W (2019) Biodegradation of metal complex Naphthol Green B and formation of iron–sulfur nanoparticles by marine bacterium Pseudoalteromonas sp. CF10-13. Bioresour Technol 273:49–55. https://doi.org/10.1016/j.biortech.2018.10.082 PubMed DOI

Chi NTL, Veeraragavan GR, Brindhadevi K, Chinnathambi A, Salmen SH, Alharbi SA, Krishnan R, Pugazhendhi A (2022) Fungi fabrication, characterization, and anticancer activity of silver nanoparticles using metals resistant Aspergillus niger. Environ Res 208:112721. https://doi.org/10.1016/j.envres.2022.112721 DOI

Chiranjeeb K, Rajani BMRDS (2021) Nano biosensors and its applications in agriculture. Agriblossom 10:21–32

Choudhary RC, Kumaraswamy R, Kumari S, Sharma S, Pal A, Raliya R, Biswas P, Saharan V (2017) Cu-chitosan nanoparticle boost defense responses and plant growth in maize (Zea mays L.). Sci Rep 7:9754. https://doi.org/10.1038/s41598-017-08571-0 PubMed DOI PMC

Chuyen HV, Roach PD, Golding JB, Parks SE, Nguyen MH (2017) Effects of pretreatments and air drying temperatures on the carotenoid composition and antioxidant capacity of dried gac peel. J Food Process Preserv 41:e13226. https://doi.org/10.1111/jfpp.13226 DOI

Clarance P, Luvankar B, Sales J, Khusro A, Agastian P, Tack JC, Al Khulaifi MM, Al-Shwaiman HA, Elgorban AM, Syed A, Kim HJ (2020) Green synthesis and characterization of gold nanoparticles using endophytic fungi Fusarium solani and its in-vitro anticancer and biomedical applications. Saudi J Biol Sci 27:706–712. https://doi.org/10.1016/j.sjbs.2019.12.026 PubMed DOI

Clark LC Jr, Lyons C (1962) Electrode systems for continuous monitoring in cardiovascular surgery. Ann New York Acad Sci 102:29–45. https://doi.org/10.1111/j.1749-6632.1962.tb13623.x DOI

Correa-Llantén DN, Muñoz-Ibacache SA, Castro ME, Muñoz PA, Blamey JM (2013) Gold nanoparticles synthesized by Geobacillus sp. strain ID17 a thermophilic bacterium isolated from Deception Island. Antarctica Microb Cell Fact 12:1–6. https://doi.org/10.1186/1475-2859-12-75 DOI

Costa L, Hemmer J, Wanderlind EH, Gerlach O, Santos A, Tamanaha M, Bella-Cruz A, Corrêa R, Bazani H, Radetski C (2020) Green synthesis of gold nanoparticles obtained from algae Sargassum cymosum: optimization, characterization and stability. BioNanoScience 10:1049–1062. https://doi.org/10.1007/s12668-020-00776-4 DOI

Cumplido-Nájera CF, González-Morales S, Ortega-Ortíz H, Cadenas-Pliego G, Benavides-Mendoza A, Juárez-Maldonado A (2019) The application of copper nanoparticles and potassium silicate stimulate the tolerance to Clavibacter michiganensis in tomato plants. Sci Hortic 245:82–89. https://doi.org/10.1016/j.scienta.2018.10.007 DOI

Da Silva SS, Chandel AK (2014). In: Silvério da Silva S, Chandel AK (eds) Biofuels in Brazil. Springer International Publishing, Cham, Switzerland DOI

Dahoumane SA, Mechouet M, Wijesekera K, Filipe CD, Sicard C, Bazylinski DA, Jeffryes C (2017) Algae-mediated biosynthesis of inorganic nanomaterials as a promising route in nanobiotechnology–a review. Green Chem 19:552–587 DOI

Deljou A, Goudarzi S (2016) Green extracellular synthesis of the silver nanoparticles using thermophilic Bacillus sp. AZ1 and its antimicrobial activity against several human pathogenetic bacteria. Iran J Biotechnol 14(2):25–32. https://doi.org/10.15171/IJB.1259 PubMed DOI PMC

DeRosa MC, Monreal C, Schnitzer M, Walsh R, Sultan Y (2010) Nanotechnology in Fertilizers Nature Nanotechnol 5:91–91. https://doi.org/10.1038/nnano.2010.2 DOI

Devi HS, Boda MA, Shah MA, Parveen S, Wani AH (2019) Green synthesis of iron oxide nanoparticles using Platanus orientalis leaf extract for antifungal activity. Green Process Synth 8:38–45. https://doi.org/10.1515/gps-2017-0145 DOI

Dhoke SK, Mahajan P, Kamble R, Khanna A (2013) Effect of nanoparticles suspension on the growth of mung (Vigna radiata) seedlings by foliar spray method. Nanotechnol Develop 3:e1–e1. https://doi.org/10.4081/nd.2013.e1 DOI

Dikshit PK, Kumar J, Das AK, Sadhu S, Sharma S, Singh S, Gupta PK, Kim BS (2021) Green synthesis of metallic nanoparticles: Applications and limitations. Catalysts 11:902 DOI

Dimkpa CO, White JC, Elmer WH, Gardea-Torresdey J (2017) Nanoparticle and ionic Zn promote nutrient loading of sorghum grain under low NPK fertilization. J Agric Food Chem 65:8552–8559. https://doi.org/10.1021/acs.jafc.7b02961 PubMed DOI

Du X, Carriquiry MA (2013) Flex-fuel vehicle adoption and dynamics of ethanol prices: lessons from Brazil. Energy Policy 59:507–512. https://doi.org/10.1016/j.enpol.2013.04.008 DOI

Durán M, Ponezi AN, Faljoni-Alario A, Teixeira MF, Justo GZ, Durán N (2012) Potential applications of violacein: A microbial pigment. Med Chem Res 21:1524–1532. https://doi.org/10.1007/s00044-011-9654-9 DOI

Edis Z, Wang J, Waqas MK, Ijaz M, Ijaz M (2021) Nanocarriers-mediated drug delivery systems for anticancer agents: An overview and perspectives. Int J Nanomed 16:1313. https://doi.org/10.2147/IJN.S289443 DOI

Eggert H, Greaker M (2014) Promoting second generation biofuels: does the first generation pave the road? Energies 7:4430–4445. https://doi.org/10.3390/en7074430 DOI

El-Kassas HY, Aly-Eldeen MA, Gharib SM (2016) Green synthesis of iron oxide (Fe DOI

El-Naggar ME, Hassabo AG, Mohamed AL, Shaheen TI (2017) Surface modification of SiO PubMed DOI

El-Saadony MT, Saad AM, Soliman SM, Salem HM, Desoky E-SM, Babalghith AO, El-Tahan AM, Ibrahim OM, Ebrahim AA, Abd El-Mageed TA (2022) Role of nanoparticles in enhancing crop tolerance to abiotic stress: A comprehensive review. Front Plant Sci 13:1–31. https://doi.org/10.3389/fpls.2022.946717 DOI

Elbeshehy EK, Elazzazy AM, Aggelis G (2015) Silver nanoparticles synthesis mediated by new isolates of Bacillus spp., nanoparticle characterization and their activity against bean yellow mosaic virus and human pathogens. Front Microbiol 6:453. https://doi.org/10.3389/fmicb.2015.00453 PubMed DOI PMC

Elgorban A, Aref S, Seham S, Elhindi K, Bahkali A, Sayed S, Manal M (2016a) Extracellular synthesis of silver nanoparticles using Aspergillus versicolor and evaluation of their activity on plant pathogenic fungi. Mycosphere 7:844–852. https://doi.org/10.5943/mycosphere/7/6/15 DOI

Elgorban AM, Al-Rahmah AN, Sayed SR, Hirad A, Mostafa AA-F, Bahkali AH (2016b) Antimicrobial activity and green synthesis of silver nanoparticles using Trichoderma viride. Biotechnol Biotechnol Equip 30:299–304. https://doi.org/10.1080/13102818.2015.1133255 DOI

Enweremadu C, Rutto H, Oladeji J (2011) Investigation of the relationship between some basic flow properties of shea butter biodiesel and their blends with diesel fuel. Int J Phys Sci 6:758–767. https://doi.org/10.5897/IJPS10.553 DOI

Faramarzi S, Anzabi Y, Jafarizadeh-Malmiri H (2020) Nanobiotechnology approach in intracellular selenium nanoparticle synthesis using Saccharomyces cerevisiae—fabrication and characterization. Arch Microbiol 202:1203–1209. https://doi.org/10.1007/s00203-020-01831-0 PubMed DOI

Fariq A, Khan T, Yasmin A (2017) Microbial synthesis of nanoparticles and their potential applications in biomedicine. J Appl Biomed 15:241–248. https://doi.org/10.1016/j.jab.2017.03.004 DOI

Fatima F, Verma SR, Pathak N, Bajpai P (2016) Extracellular mycosynthesis of silver nanoparticles and their microbicidal activity. J Global Antimicrob Resist 7:88–92. https://doi.org/10.1016/j.jgar.2016.07.013 DOI

Gahlawat G, Choudhury AR (2019) A review on the biosynthesis of metal and metal salt nanoparticles by microbes. RSC Adv 9:12944–12967. https://doi.org/10.1039/C8RA10483B PubMed DOI PMC

Gann PH, Ma J, Giovannucci E, Willett W, Sacks FM, Hennekens CH, Stampfer MJ (1999) Lower prostate cancer risk in men with elevated plasma lycopene levels: results of a prospective analysis. Cancer Res 59:1225–1230 PubMed

Ghafariyan MH, Malakouti MJ, Dadpour MR, Stroeve P, Mahmoudi M (2013) Effects of magnetite nanoparticles on soybean chlorophyll. Environ Sci Technol 47:10645–10652. https://doi.org/10.1021/es402249b PubMed DOI

Gnanaprakasam P, Jeena SE, Premnath D, Selvaraju T (2016) Simple and robust green synthesis of AuNPs on reduced graphene oxide for the simultaneous detection of toxic heavy metal ions and bioremediation using bacterium as the scavenger. Electroanalysis 28:1885–1893. https://doi.org/10.1002/elan.201600002 DOI

Gopu M, Kumar P, Selvankumar T, Senthilkumar B, Sudhakar C, Govarthanan M, Selva Kumar R, Selvam K (2021) Green biomimetic silver nanoparticles utilizing the red algae Amphiroa rigida and its potent antibacterial, cytotoxicity and larvicidal efficiency. Bioprocess Biosystems Eng 44:217–223. https://doi.org/10.1007/s00449-020-02426-1 DOI

Govindappa M, Lavanya M, Aishwarya P, Pai K, Lunked P, Hemashekhar B, Arpitha B, Ramachandra Y, Raghavendra VB (2020) Synthesis and characterization of endophytic fungi, Cladosporium perangustum mediated silver nanoparticles and their antioxidant, anticancer and nano-toxicological study. BioNanoScience 10:928–941. https://doi.org/10.1007/s12668-020-00719-z DOI

Gu H, Ho P, Tong E, Wang L, Xu B (2003) Presenting vancomycin on nanoparticles to enhance antimicrobial activities. Nano Lett 3:1261–1263. https://doi.org/10.1021/nl034396z DOI

Gu MB, Dhurjati PS, Van Dyk TK, LaRossa RA (1996) A miniature bioreactor for sensing toxicity using recombinant bioluminescent Escherichia coli cells. Biotechnol Progress 12:393–397. https://doi.org/10.1021/bp9600142 DOI

Gu MB, Gil GC (2001) A multi-channel continuous toxicity monitoring system using recombinant bioluminescent bacteria for classification of toxicity. Biosens Bioelectron 16:661–666. https://doi.org/10.1016/S0956-5663(01)00195-6 PubMed DOI

Guilger-Casagrande M, Lima Rd (2019) Synthesis of silver nanoparticles mediated by fungi: A review. Front Bioeng Biotechnol 7:287. https://doi.org/10.3389/fbioe.2019.00287 PubMed DOI PMC

Gupta D (2007) Antimicrobial treatments for textiles. Indian J Text Res 32:254–263

Haas MJ, Scott KM, Alleman TL, McCormick RL (2001) Engine performance of biodiesel fuel prepared from soybean soapstock: A high quality renewable fuel produced from a waste feedstock. Energy Fuel 15:1207–1212. https://doi.org/10.1021/ef010051x DOI

Hamed SM, Abdel-Alim MM, Abdel-Raouf N, Ibraheem I (2017) Biosynthesis of silver chloride nanoparticles using the cyanobacterium Anabaena variabilis. Life Sci J 14:25–30

Hamida RS, Ali MA, Redhwan A, Bin-Meferij MM (2020) Cyanobacteria–a promising platform in green nanotechnology: A review on nanoparticles fabrication and their prospective applications. Int J Nanomed 15:6033–6066. https://doi.org/10.2147/IJN.S256134 DOI

Hasan S (2015) A review on nanoparticles: their synthesis and types. Res J Recent Sci 2277:2502

Haydon B, Eng P (2012) Nanomaterials and their applications in textiles, standards: Domestic standardization for Canadian manufacturers and importers and international standardization developments. Industry Canada, pp 1–36

He L, Liu Y, Mustapha A, Lin M (2011) Antifungal activity of zinc oxide nanoparticles against Botrytis cinerea and Penicillium expansum. Microbiol Res 166:207–215. https://doi.org/10.1016/j.micres.2010.03.003 PubMed DOI

He S, Guo Z, Zhang Y, Zhang S, Wang J, Gu N (2007) Biosynthesis of gold nanoparticles using the bacteria Rhodopseudomonas capsulata. Material Lett 61:3984–3987. https://doi.org/10.1016/j.matlet.2007.01.018 DOI

Hemanth Kumar NK, Murali M, Gowtham HG, Sreenivasa MY, Amruthesh KN, Jagannath S (2021) Application of microbial nanotechnology in agriculture. In: Ansari MA, Rehman S (eds) Microbial nanotechnology: Green synthesis and applications. Springer Singapore, Singapore, pp 275–285. https://doi.org/10.1007/978-981-16-1923-6_13 DOI

Hidangmayum A, Debnath A, Guru A, Singh B, Upadhyay S, Dwivedi P (2023) Mechanistic and recent updates in nano-bioremediation for developing green technology to alleviate agricultural contaminants. Int J Environ Sci Technol 20:11693–11718. https://doi.org/10.1007/s13762-022-04560-7 DOI

Hietzschold S, Walter A, Davis C, Taylor AA, Sepunaru L (2019) Does nitrate reductase play a role in silver nanoparticle synthesis? Evidence for NADPH as the sole reducing agent. ACS Sustain Chem Eng 7:8070–8076. https://doi.org/10.1021/acssuschemeng.9b00506 DOI

Ho S-H, Ye X, Hasunuma T, Chang J-S, Kondo A (2014) Perspectives on engineering strategies for improving biofuel production from microalgae—a critical review. Biotechnol Adv 32:1448–1459. https://doi.org/10.1016/j.biotechadv.2014.09.002 PubMed DOI

Hossain A, Hong X, Ibrahim E, Li B, Sun G, Meng Y, Wang Y, An Q (2019) Green synthesis of silver nanoparticles with culture supernatant of a bacterium Pseudomonas rhodesiae and their antibacterial activity against soft rot pathogen Dickeya dadantii. Molecules 24:2303. https://doi.org/10.3390/molecules24122303 PubMed DOI PMC

Hotessa Halake N, Muda Haro J (2022) Role of nanobiotechnology towards Agri-Food System. J Nanotechnol 2022:6108610. https://doi.org/10.1155/2022/6108610 DOI

Hou J, Liu F, Wu N, Ju J, Yu B (2016) Efficient biodegradation of chlorophenols in aqueous phase by magnetically immobilized aniline-degrading Rhodococcus rhodochrous strain. J Nanobiotechnol 14:1–8. https://doi.org/10.1186/s12951-016-0158-0 DOI

Hsieh PY-H, Ofori JA (2007) Innovations in food technology for health. Asia Pac J Clin Nutr 16:65–73 PubMed

Hu X, Saravanakumar K, Jin T, Wang M-H (2019) Mycosynthesis, characterization, anticancer and antibacterial activity of silver nanoparticles from endophytic fungus Talaromyces purpureogenus. Int J Nanomed 14:3427–3438. https://doi.org/10.2147/IJN.S200817 DOI

Huang H, Ullah F, Zhou D-X, Yi M, Zhao Y (2019) Mechanisms of ROS regulation of plant development and stress responses. Front Plant Sci 10:800. https://doi.org/10.3389/fpls.2019.00800 PubMed DOI PMC

Huang Y-W, Cambre M, Lee H-J (2017) The toxicity of nanoparticles depends on multiple molecular and physicochemical mechanisms. Int J Mol Sci 18:2702. https://doi.org/10.3390/ijms18122702 PubMed DOI PMC

Hulkoti NI, Taranath T (2014) Biosynthesis of nanoparticles using microbes—a review. Colloids Surf B Biointerface 121:474–483. https://doi.org/10.1016/j.colsurfb.2014.05.027 DOI

Husseiny M, Abd El-Aziz M, Badr Y, Mahmoud M (2007) Biosynthesis of gold nanoparticles using Pseudomonas aeruginosa. Spectrochim Acta A Mol Biomol Spectrosc 67:1003–1006. https://doi.org/10.1016/j.saa.2006.09.028 PubMed DOI

Hyun B-R, Bartnik A, Lee J-K, Imoto H, Sun L, Choi JJ, Chujo Y, Hanrath T, Ober CK, Wise F (2010) Role of solvent dielectric properties on charge transfer from PbS nanocrystals to molecules. Nano Lett 10:318–323. https://doi.org/10.1021/nl903623n PubMed DOI

Ibrahim E, Fouad H, Zhang M, Zhang Y, Qiu W, Yan C, Li B, Mo J, Chen J (2019) Biosynthesis of silver nanoparticles using endophytic bacteria and their role in inhibition of rice pathogenic bacteria and plant growth promotion. RSC Adv 9:29293–29299. https://doi.org/10.1039/C9RA04246F PubMed DOI PMC

Imada K, Sakai S, Kajihara H, Tanaka S, Ito S (2016) Magnesium oxide nanoparticles induce systemic resistance in tomato against bacterial wilt disease. Plant Pathol 65:551–560. https://doi.org/10.1111/ppa.12443 DOI

Inamdar DY, Lad AD, Pathak AK, Dubenko I, Ali N, Mahamuni S (2010) Ferromagnetism in ZnO nanocrystals: doping and surface chemistry. J Phys Chem C 114:1451–1459. https://doi.org/10.1021/jp909053f DOI

Inamdar DY, Vaidya SR, Mahamuni S (2014) On the photoluminescence emission of ZnO nanocrystals. J Exp Nanosci 9:533–540. https://doi.org/10.1080/17458080.2012.676678 DOI

Ingle A, Gade A, Pierrat S, Sonnichsen C, Rai M (2008) Mycosynthesis of silver nanoparticles using the fungus Fusarium acuminatum and its activity against some human pathogenic bacteria. Curr Nanosci 4:141–144. https://doi.org/10.2174/157341308784340804 DOI

Iram S, Khan S, Ansary AA, Arshad M, Siddiqui S, Ahmad E, Khan RH, Khan MS (2016) Biogenic terbium oxide nanoparticles as the vanguard against osteosarcoma. Spectrochim Acta A Mol Biomol Spectrosc 168:123–131. https://doi.org/10.1016/j.saa.2016.05.053 PubMed DOI

Jadoun S, Chauhan NPS, Zarrintaj P, Barani M, Varma RS, Chinnam S, Rahdar A (2022) Synthesis of nanoparticles using microorganisms and their applications: A review. Environ Chem Lett 20:3153–3197. https://doi.org/10.1007/s10311-022-01444-7 DOI

Jan H, Gul R, Andleeb A, Ullah S, Shah M, Khanum M, Ullah I, Hano C, Abbasi BH (2021) A detailed review on biosynthesis of platinum nanoparticles (PtNPs), their potential antimicrobial and biomedical applications. J Saudi Chem Soc 25:101297. https://doi.org/10.1016/j.jscs.2021.101297 DOI

Jaswir I, Noviendri D, Hasrini RF, Octavianti F (2011) Carotenoids: sources, medicinal properties and their application in food and nutraceutical industry. J Med Plants Res 5:7119–7131. https://doi.org/10.5897/JMPRx11.011 DOI

Jian Y, Chen X, Ahmed T, Shang Q, Zhang S, Ma Z, Yin Y (2022) Toxicity and action mechanisms of silver nanoparticles against the mycotoxin-producing fungus Fusarium graminearum. J Adv Res 38:1–12. https://doi.org/10.1016/j.jare.2021.09.006 PubMed DOI

Johnson M (2015) Synthesis and characterization of cytotoxic silver nanoparticles using marine brown seaweed Sargassum johnstonii setchell & nl gardner. World J Pharma Res 9:1545–1555

Kale SK, Parishwad GV, Patil ASHAS (2021) Emerging agriculture applications of silver nanoparticles. ES Food Agroforestry 3:17–22. https://doi.org/10.30919/esfaf438 DOI

Kamel MY, Hassabo AG (2021) Anti-microbial finishing for natural textile fabrics. J Text Color Polym 18:83–95. https://doi.org/10.21608/jtcps.2021.72333.1054 DOI

Kanhed P, Birla S, Gaikwad S, Gade A, Seabra AB, Rubilar O, Duran N, Rai M (2014) In vitro antifungal efficacy of copper nanoparticles against selected crop pathogenic fungi. Mat Lett 115:13–17. https://doi.org/10.1016/j.matlet.2013.10.011 DOI

Karmous I, Vaidya S, Dimkpa C, Zuverza-Mena N, da Silva W, Barroso KA, Milagres J, Bharadwaj A, Abdelraheem W, White JC, Elmer WH (2023) Biologically synthesized zinc and copper oxide 27 nanoparticles using Cannabis sativa L. enhance soybean (Glycine max) defense against Fusarium virguliforme. Pestic Biochem Physiol 194:105486. https://doi.org/10.1016/j.pestbp.2023.105486 PubMed DOI

Karthik L, Kumar G, Kirthi AV, Rahuman A, Bhaskara Rao K (2014) Streptomyces sp. LK3 mediated synthesis of silver nanoparticles and its biomedical application. Bioprocess Biosyst Eng 37:261–267. https://doi.org/10.1007/s00449-013-0994-3 PubMed DOI

Kaushal M (2018) Role of microbes in plant protection using intersection of nanotechnology and biology. In: Abd-Elsalam K, Prasad R (eds) Nanobiotechnology applications in plant protection. Nanotechnology in the Life Sciences. Springer, Cham, pp 111–135. https://doi.org/10.1007/978-3-319-91161-8_5 DOI

Khan F, Shahid A, Zhu H, Wang N, Javed MR, Ahmad N, Xu J, Alam MA, Mehmood MA (2022) Prospects of algae-based green synthesis of nanoparticles for environmental applications. Chemosphere 293:133571. https://doi.org/10.1016/j.chemosphere.2022.133571 PubMed DOI

Khan SA, Ahmad A (2014) Enzyme mediated synthesis of water-dispersible, naturally protein capped, monodispersed gold nanoparticles; their characterization and mechanistic aspects. RSC Adv 4:7729–7734. https://doi.org/10.1039/C3RA43888K DOI

Khot LR, Sankaran S, Maja JM, Ehsani R, Schuster EW (2012) Applications of nanomaterials in agricultural production and crop protection: A review. Crop Protect 35:64–70. https://doi.org/10.1016/j.cropro.2012.01.007 DOI

Kim M, Lim JW, Kim HJ, Lee SK, Lee SJ, Kim T (2015) Chemostat-like microfluidic platform for highly sensitive detection of heavy metal ions using microbial biosensors. Biosens Bioelectron 65:257–264. https://doi.org/10.1016/j.bios.2014.10.028 PubMed DOI

Kim SW, Kim KS, Lamsal K, Kim YJ, Kim SB, Jung MY, Sim SJ, Kim HS, Chang SJ, Kim JK (2009) An in vitro study of the antifungal effect of silver nanoparticles on oak wilt pathogen Raffaelea sp. J Microbiol Biotechnol 19:760–764. https://doi.org/10.4014/jmb.0812.649 PubMed DOI

Klitzke S, Metreveli G, Peters A, Schaumann GE, Lang F (2015) The fate of silver nanoparticles in soil solution—sorption of solutes and aggregation. Sci Total Environ 535:54–60. https://doi.org/10.1016/j.scitotenv.2014.10.108 PubMed DOI

Konishi Y, Nomura T, Tsukiyama T, Saitoh N (2004) Microbial preparation of gold nanoparticles by anaerobic bacterium. Trans Mater Res Soc Jpn 29:2341–2344

Kthiri A, Hamimed S, Othmani A, Landoulsi A, O’Sullivan S, Sheehan D (2021) Novel static magnetic field effects on green chemistry biosynthesis of silver nanoparticles in Saccharomyces cerevisiae. Sci Rep 11:20078. https://doi.org/10.1038/s41598-021-99487-3 PubMed DOI PMC

Kumar CG, Poornachandra Y, Chandrasekhar C (2015) Green synthesis of bacterial mediated anti-proliferative gold nanoparticles: inducing mitotic arrest (G2/M phase) and apoptosis (intrinsic pathway). Nanoscale 7:18738–18750. https://doi.org/10.1039/C5NR04577K PubMed DOI

Kumar M, Sharma MP (2014) Potential assessment of microalgal oils for biodiesel production: A review. J Mater Environ Sci 5:757–766

Kumar P, Kim KH, Bansal V, Lazarides T, Kumar N (2017) Progress in the sensing techniques for heavy metal ions using nanomaterials. J Ind Eng Chem 54:30–43. https://doi.org/10.1016/j.jiec.2017.06.010 DOI

Kumari M, Pandey S, Bhattacharya A, Mishra A, Nautiyal CS (2017) Protective role of biosynthesized silver nanoparticles against early blight disease in Solanum lycopersicum. Plant Physiol Biochem 121:216–225. https://doi.org/10.1016/j.plaphy.2017.11.004 PubMed DOI

Kundu D, Hazra C, Chatterjee A, Chaudhari A, Mishra S (2014) Extracellular biosynthesis of zinc oxide nanoparticles using Rhodococcus pyridinivorans NT2: multifunctional textile finishing, biosafety evaluation and in vitro drug delivery in colon carcinoma. J Photochem Photobiol b: Biol 140:194–204. https://doi.org/10.1016/j.jphotobiol.2014.08.001 DOI

Lee KH, Choi IS, Kim Y-G, Yang D-J, Bae H-J (2011) Enhanced production of bioethanol and ultrastructural characteristics of reused Saccharomyces cerevisiae immobilized calcium alginate beads. Bioresour Technol 102:8191–8198. https://doi.org/10.1016/j.biortech.2011.06.063 PubMed DOI

Lei Y, Chen W, Mulchandani A (2006) Microbial biosensors. Anal Chim Acta 568:200–210. https://doi.org/10.1016/j.aca.2005.11.065 PubMed DOI

Li J, Hu J, Ma C, Wang Y, Wu C, Huang J, Xing B (2016) Uptake, translocation and physiological effects of magnetic iron oxide (γ-Fe2O3) nanoparticles in corn (Zea mays L.). Chemosphere 159:326–334. https://doi.org/10.1016/j.chemosphere.2016.05.083 PubMed DOI

Li J, Ma G, Liu H, Liu H (2018) Yeast cells carrying metal nanoparticles. Mater Chem Phys 207:373–379. https://doi.org/10.1016/j.matchemphys.2018.01.001 DOI

Liang X, Perez MAM-J, Nwoko KC, Egbers P, Feldmann J, Csetenyi L, Gadd GM (2019) Fungal formation of selenium and tellurium nanoparticles. Appl Microbiol Biotechnol 103:7241–7259. https://doi.org/10.1007/s00253-019-09995-6 PubMed DOI PMC

Lichtfouse E (2005) Environmental chemistry: Green chemistry and pollutants in ecosystems. Springer Science & Business Media DOI

Lim JW, Ha D, Lee J, Lee SK, Kim T (2015) Review of micro/nanotechnologies for microbial biosensors. Front bioeng biotechnol 3:61. https://doi.org/10.3389/fbioe.2015.00061 PubMed DOI PMC

Loo YY, Rukayadi Y, Nor-Khaizura M-A-R, Kuan CH, Chieng BW, Nishibuchi M, Radu S (2018) In vitro antimicrobial activity of green synthesized silver nanoparticles against selected gram negative foodborne pathogens. Front Microbiol 9:1555. https://doi.org/10.3389/fmicb.2018.01555 PubMed DOI PMC

Lowry GV, Avellan A, Gilbertson LM (2019) Opportunities and challenges for nanotechnology in the agri-tech revolution. Nature Nanotechnol 14:517–522 DOI

Ma G, Zhao Z, Liu H (2016) Yeast cells encapsulating polymer nanoparticles as Trojan particles via in situ polymerization inside cells. Macromolecules 49:1545–1551. https://doi.org/10.1021/acs.macromol.6b00016 DOI

Madbouly AK, Abdel-Aziz MS, Abdel-Wahhab MA (2017) Biosynthesis of nanosilver using Chaetomium globosum and its application to control Fusarium wilt of tomato in the greenhouse. IET Nanobiotechnol 11:702–708. https://doi.org/10.1049/iet-nbt.2016.0213 DOI PMC

Mahanty S, Chatterjee S, Ghosh S, Tudu P, Gaine T, Bakshi M, Das S, Das P, Bhattacharyya S, Bandyopadhyay S (2020) Synergistic approach towards the sustainable management of heavy metals in wastewater using mycosynthesized iron oxide nanoparticles: Biofabrication, adsorptive dynamics and chemometric modeling study. J Water Process Eng 37:101426. https://doi.org/10.1016/j.jwpe.2020.101426 DOI

Mahmud R, Nabi F (2017) Application of nanotechnology in the field of textile. IOSR J Polym Text Eng 4:1–6 DOI

Mahnashi MH, Muddapur UM, Turakani B, Shaikh IA, Al Awadh AA, Alshahrani MM, Almazni IA, Malpani J, Goudar SV, Sindagimath V (2022) A review on versatile eco-friendly applications of microbial proteases in biomedical and industrial applications. Sci Adv Mater 14:622–637. https://doi.org/10.1166/sam.2022.4264 DOI

Mann S (2001) Biomineralization: Principles and concepts in bioinorganic materials chemistry. Oxford University Press, Oxford DOI

Matz C, Deines P, Boenigk J, Arndt H, Eberl L, Kjelleberg S, Jürgens K (2004) Impact of violacein-producing bacteria on survival and feeding of bacterivorous nanoflagellates. Appl Environ Microbiol 70:1593–1599. https://doi.org/10.1128/AEM.70.3.1593-1599.2004 PubMed DOI PMC

Messaoudi O, Bendahou M (2020) Biological synthesis of nanoparticles using endophytic microorganisms: Current development. In: Sen M (ed) Nanotechnology and the Environment. Intech Open. https://doi.org/10.5772/intechopen.93734 DOI

Mikhailova EO (2022) Green synthesis of platinum nanoparticles for biomedical applications. J Funct Biomater 13:260. https://doi.org/10.3390/jfb13040260 PubMed DOI PMC

Milledge JJ, Smith B, Dyer PW, Harvey P (2014) Macroalgae-derived biofuel: A review of methods of energy extraction from seaweed biomass. Energies 7:7194–7222. https://doi.org/10.3390/en7117194 DOI

Min JS, Kim KS, Kim SW, Jung JH, Lamsal K, Kim SB, Jung MY, Lee YS (2009) Effects of colloidal silver nanoparticles on sclerotium-forming phytopathogenic fungi. Plant Pathol J 25:376–380. https://doi.org/10.5423/PPJ.2009.25.4.376 DOI

Mishra A, Tripathy SK, Wahab R, Jeong S-H, Hwang I, Yang Y-B, Kim Y-S, Shin H-S, Yun S-I (2011a) Microbial synthesis of gold nanoparticles using the fungus Penicillium brevicompactum and their cytotoxic effects against mouse mayo blast cancer C2C12 cells. Appl Microbiol Biotechnol 92:617–630. https://doi.org/10.1007/s00253-011-3556-0 PubMed DOI

Mishra A, Tripathy SK, Yun SI (2011b) Bio-synthesis of gold and silver nanoparticles from Candida guilliermondii and their antimicrobial effect against pathogenic bacteria. J Nanosci Nanotechnol 11:243–248. https://doi.org/10.1166/jnn.2011.3265 PubMed DOI

Mishra A, Tripathy SK, Yun SI (2012) Fungus mediated synthesis of gold nanoparticles and their conjugation with genomic DNA isolated from Escherichia coli and Staphylococcus aureus. Process Biochem 47:701–711. https://doi.org/10.1016/j.procbio.2012.01.017 DOI

Mishra AN, Bhadauria S, Gaur MS, Pasricha R (2010) Extracellular microbial synthesis of gold nanoparticles using fungus Hormoconis resinae. JOM 62:45–48. https://doi.org/10.1007/s11837-010-0168-6 DOI

Mitrano D, Ranville JF, Bednar A, Kazor K, Hering AS, Higgins CP (2014) Tracking dissolution of silver nanoparticles at environmentally relevant concentrations in laboratory, natural, and processed waters using single particle ICP-MS (spICP-MS). Environm Sci: Nano 1:248–259. https://doi.org/10.1039/C3EN00108C DOI

Mittal D, Kaur G, Singh P, Yadav K, Ali SA (2020) Nanoparticle-based sustainable agriculture and food science: Recent advances and future outlook. Front Nanotechnol 2:579954. https://doi.org/10.3389/fnano.2020.579954 DOI

Mohamed AL, El-Naggar ME, Hassabo AG (2021) Preparation of hybrid nanoparticles to enhance the electrical conductivity and performance properties of cotton fabrics. J Mater Res Technol 12:542–554. https://doi.org/10.1016/j.jmrt.2021.02.035 DOI

Mohamed AL, El-Naggar ME, Shaheen TI, Hassabo AG (2017) Laminating of chemically modified silan based nanosols for advanced functionalization of cotton textiles. Int J Biol Macromol 95:429–437. https://doi.org/10.1016/j.ijbiomac.2016.10.082 PubMed DOI

Mohammed Fayaz A, Girilal M, Rahman M, Venkatesan R, Kalaichelvan PT (2011) Biosynthesis of silver and gold nanoparticles using thermophilic bacterium Geobacillus stearothermophilus. Process Biochem 46:1958–1962. https://doi.org/10.1016/j.procbio.2011.07.003 DOI

Mohanta YK, Nayak D, Biswas K, Singdevsachan SK, Abd Allah EF, Hashem A, Alqarawi AA, Yadav D, Mohanta TK (2018) Silver nanoparticles synthesized using wild mushroom show potential antimicrobial activities against food borne pathogens. Molecules 23(3):655. https://doi.org/10.3390/molecules23030655 PubMed DOI PMC

Muhsin TM, Hachim AK (2014) Mycosynthesis and characterization of silver nanoparticles and their activity against some human pathogenic bacteria. World J Microbiol Biotechnol 30:2081–2090. https://doi.org/10.1007/s11274-014-1634-z PubMed DOI

Mukherjee A, Sarkar D, Sasmal S (2021) A review of green synthesis of metal nanoparticles using algae. Front Microbiol 12:693899. https://doi.org/10.3389/fmicb.2021.693899 PubMed DOI PMC

Mukherjee P, Senapati S, Mandal D, Ahmad A, Khan MI, Kumar R, Sastry M (2002) Extracellular synthesis of gold nanoparticles by the fungus Fusarium oxysporum. ChemBioChem 3:461–463. https://doi.org/10.1002/1439-7633 PubMed DOI

Murali M, Naziya B, Singh SB, Chandrashekar S, Udayashankar AC, Amruthesh KN (2021) Management of plant fungal disease by microbial nanotechnology. In: Ansari MA, Rehman S (eds) Microbial nanotechnology: Green synthesis and applications. Springer Singapore, Singapore, pp 287–305. https://doi.org/10.1007/978-981-16-1923-6_14 DOI

Nadaroglu H, Güngör AA, Selvi İ (2017) Synthesis of nanoparticles by green synthesis method. Int J Innovat Res Rev 1:6–9

Nair R, Varghese SH, Nair BG, Maekawa T, Yoshida Y, Kumar DS (2010) Nanoparticulate material delivery to plants. Plant Sci 179:154–163. https://doi.org/10.1016/j.plantsci.2010.04.012 DOI

Namazkar S, Ahmad WA (2013) Spray-dried prodigiosin from Serratia marcescens as a colorant. Biosci Biotechnol Res Asia 10. https://doi.org/10.13005/bbra/1094

Namvar F, Azizi S, Ahmad MB, Shameli K, Mohamad R, Mahdavi M, Tahir PM (2015) Green synthesis and characterization of gold nanoparticles using the marine macroalgae Sargassum muticum. Res Chem Intermed 41:5723–5730. https://doi.org/10.1007/s11164-014-1696-4 DOI

Nangia Y, Wangoo N, Goyal N, Shekhawat G, Suri CR (2009) A novel bacterial isolate Stenotrophomonas maltophilia as living factory for synthesis of gold nanoparticles. Microb Cell Fact 8:39. https://doi.org/10.1186/1475-2859-8-39 PubMed DOI PMC

Ocsoy I, Paret ML, Ocsoy MA, Kunwar S, Chen T, You M, Tan W (2013) Nanotechnology in plant disease management: DNA-directed silver nanoparticles on graphene oxide as an antibacterial against Xanthomonas perforans. ACS Nano 7:8972–8980. https://doi.org/10.1021/nn4034794 PubMed DOI

Odaci D, Timur S, Telefoncu A (2008) Bacterial sensors based on chitosan matrices. Sens Actuat B: Chem 134:89–94. https://doi.org/10.1016/j.snb.2008.04.013 DOI

Ogunyemi SO, Zhang M, Abdallah Y, Ahmed T, Qiu W, Ali MA, Yan C, Yang Y, Chen J, Li B (2020) The bio-synthesis of three metal oxide nanoparticles (ZnO, MnO2, and MgO) and their antibacterial activity against the bacterial leaf blight pathogen. Front Microbiol 11:588326. https://doi.org/10.3389/fmicb.2020.588326 PubMed DOI PMC

Omran BA (2020) Fundamentals of nanotechnology and nanobiotechnology. In: Omran BA (ed) Nanobiotechnology: A Multidisciplinary Field of Science. Springer International Publishing, Cham, pp 1–36. https://doi.org/10.1007/978-3-030-46071-6_1 DOI

Ozkan G, Bilek SE (2014) Microencapsulation of natural food colourants. Int J Nutr Food Sci 3:145–156. https://doi.org/10.11648/j.ijnfs.20140303.13 DOI

Ozturk BY (2019) Intracellular and extracellular green synthesis of silver nanoparticles using Desmodesmus sp.: Their antibacterial and antifungal effects. Caryologia 72:29–43

Palchoudhury S, Jungjohann KL, Weerasena L, Arabshahi A, Gharge U, Albattah A, Miller J, Patel K, Holler RA (2018) Enhanced legume root growth with pre-soaking in α-Fe PubMed DOI PMC

Palmqvist N, Bejai S, Meijer J, Seisenbaeva GA, Kessler VG (2015) Nano titania aided clustering and adhesion of beneficial bacteria to plant roots to enhance crop growth and stress management. Sci Rep 5:1–12. https://doi.org/10.1038/srep10146 DOI

Panáček A, Kolář M, Večeřová R, Prucek R, Soukupová J, Kryštof V, Hamal P, Zbořil R, Kvítek L (2009) Antifungal activity of silver nanoparticles against Candida spp. Biomaterials 30:6333–6340. https://doi.org/10.1016/j.biomaterials.2009.07.065 PubMed DOI

Pandey P, Irulappan V, Bagavathiannan MV, Senthil-Kumar M (2017) Impact of combined abiotic and biotic stresses on plant growth and avenues for crop improvement by exploiting physio-morphological traits. Front Plant Sci 8:537. https://doi.org/10.3389/fpls.2017.00537 PubMed DOI PMC

Parapouli M, Vasileiadis A, Afendra A-S, Hatziloukas E (2020) Saccharomyces cerevisiae and its industrial applications. AIMS Microbiol 6:1–31. https://doi.org/10.3934/microbiol.2020001 PubMed DOI PMC

Paret ML, Vallad GE, Averett DR, Jones JB, Olson SM (2013) Photocatalysis: Effect of light-activated nanoscale formulations of TiO PubMed DOI

Parveen K, Banse V, Ledwani L (2016) Green synthesis of nanoparticles: Their advantages and disadvantages. In: AIP conference proceedings. vol 1. AIP Publishing, LLC, p 020048. https://doi.org/10.1063/1.4945168 DOI

Patil MP, Kang M-j, Niyonizigiye I, Singh A, Kim J-O, Seo YB, Kim G-D (2019) Extracellular synthesis of gold nanoparticles using the marine bacterium Paracoccus haeundaensis BC74171T and evaluation of their antioxidant activity and antiproliferative effect on normal and cancer cell lines. Colloids Surf B Biointerface 183:110455. https://doi.org/10.1016/j.colsurfb.2019.110455 DOI

Peijnenburg W, Baalousha M, Chen J, Chaudry QVon der kammer F., Kuhlbusch TAJ, Lead J., Nickel C., Quik JTK, Renker M., et al (2015) A review of the properties and processes determining the fate of engineered nanomaterials in the aquatic environment. Crit Rev Environ Sci Technol 45:2084–2134. https://doi.org/10.1080/10643389.2015.1010430 DOI

Peiris M, Fernando S, Jayaweera P, Arachchi N, Guansekara T (2018a) Comparison of antimicrobial properties of silver nanoparticles synthesized from selected bacteria. Indian J Microbiol 58:301–311. https://doi.org/10.1007/s12088-018-0723-3 PubMed DOI PMC

Peiris M, Gunasekara T, Jayaweera P, Fernando S (2018b) TiO PubMed DOI

Perde-Schrepler M, Florea A, Brie I, Virag P, Fischer-Fodor E, Vâlcan A, Gurzău E, Lisencu C, Maniu A (2019) Size-Dependent Cytotoxicity and Genotoxicity of Silver Nanoparticles in Cochlear Cells in Vitro J Nanomater 2019:1–12. https://doi.org/10.1155/2019/6090259 DOI

Phanjom P, Ahmed G (2017) Effect of different physicochemical conditions on the synthesis of silver nanoparticles using fungal cell filtrate of Aspergillus oryzae (MTCC No. 1846) and their antibacterial effect. Adv Nat Sci: Nanosci Nanotechnol 8:045016. https://doi.org/10.1088/2043-6254/aa92bc DOI

Philippe A, Schaumann GE (2014) Interactions of dissolved organic matter with natural and engineered inorganic colloids: A review. Environ Sci Technol 48:8946–8962. https://doi.org/10.1021/es502342r PubMed DOI

Pradhan N, Singh S, Ojha N, Shrivastava A, Barla A, Rai V, Bose S (2015) Facets of nanotechnology as seen in food processing, packaging, and preservation industry. BioMed Res Int 2015:1–17. https://doi.org/10.1155/2015/365672 DOI

Prasad R, Bhattacharyya A, Nguyen QD (2017) Nanotechnology in sustainable agriculture: Recent developments, challenges, and perspectives. Front Microbiol 8:1014. https://doi.org/10.3389/fmicb.2017.01014 PubMed DOI PMC

Priyadarshini E, Pradhan N, Sukla LB, Panda PK (2014) Controlled synthesis of gold nanoparticles using Aspergillus terreus IF0 and its antibacterial potential against Gram negative pathogenic bacteria. J Nanotechnol 2014:653198. https://doi.org/10.1155/2014/653198 DOI

Pugazhenthiran N, Anandan S, Kathiravan G, Udaya Prakash NK, Crawford S, Ashokkumar M (2009) Microbial synthesis of silver nanoparticles by Bacillus sp. J Nanopart Res 11:1811–1815. https://doi.org/10.1007/s11051-009-9621-2 DOI

Purohit J, Chattopadhyay A, Singh NK (2019) Green synthesis of microbial nanoparticle: Approaches to application. In: Prasad R (ed) Microbial Nanobionics. Nanotechnology in the Life Sciences. Springer, Cham, pp 35–60. https://doi.org/10.1007/978-3-030-16534-5_3 DOI

Qian Y, Yu H, He D, Yang H, Wang W, Wan X, Wang L (2013) Biosynthesis of silver nanoparticles by the endophytic fungus Epicoccum nigrum and their activity against pathogenic fungi. Bioprocess Biosystems Eng 36:1613–1619. https://doi.org/10.1007/s00449-013-0937-z DOI

Rai M, dos Santos JC, Soler MF, Marcelino PRF, Brumano LP, Ingle AP, Gaikwad S, Gade A, da Silva SS (2016) Strategic role of nanotechnology for production of bioethanol and biodiesel. Nanotechno Rev 5:231–250. https://doi.org/10.1515/ntrev-2015-0069 DOI

Rai M, Ingle AP, Gade A, Duran N (2015) Synthesis of silver nanoparticles by Phoma gardeniae and in vitro evaluation of their efficacy against human disease-causing bacteria and fungi. IET Nanobiotechnol 9:71–75. https://doi.org/10.1049/iet-nbt.2014.0013 PubMed DOI

Rai M, Ingle AP, Pandit R, Paralikar P, Shende S, Gupta I, Biswas JK, da Silva SS (2018) Copper and copper nanoparticles: Role in management of insect-pests and pathogenic microbes. Nanotechnol Rev 7:303–315. https://doi.org/10.1515/ntrev-2018-0031 DOI

Raj S, Trivedi R, Soni V (2021) Biogenic synthesis of silver nanoparticles, characterization and their applications—a review. Surfaces 5:67–90. https://doi.org/10.3390/surfaces5010003 DOI

Rajeswaran S, Somasundaram Thirugnanasambandan S, Dewangan NK, Moorthy RK, Kandasamy S, Vilwanathan R (2020) Multifarious pharmacological applications of green routed eco-friendly iron nanoparticles synthesized by Streptomyces sp. (SRT12). Biol Trace Elem Res 194:273–283. https://doi.org/10.1007/s12011-019-01777-5 PubMed DOI

Rajkumar R, Ezhumalai G, Gnanadesigan M (2021) A green approach for the synthesis of silver nanoparticles by Chlorella vulgaris and its application in photocatalytic dye degradation activity. EnvironTechnol Innovat 21:101282. https://doi.org/10.1016/j.eti.2020.101282 DOI

Ramasamy M, Lee J (2016) Recent nanotechnology approaches for prevention and treatment of biofilm-associated infections on medical devices. BioMed Research Int 2016:1–17. https://doi.org/10.1155/2016/1851242 DOI

Rana A, Yadav K, Jagadevan S (2020) A comprehensive review on green synthesis of nature-inspired metal nanoparticles: Mechanism, application and toxicity. J Clean Prod 272:122880. https://doi.org/10.1016/j.jclepro.2020.122880 DOI

Reddy AS, Chen CY, Chen CC, Jean JS, Chen HR, Tseng MJ, Fan CW, Wang JC (2010) Biological synthesis of gold and silver nanoparticles mediated by the bacteria Bacillus subtilis. J Nanosci Nanotechnol 10:6567–6574. https://doi.org/10.1166/jnn.2010.2519 PubMed DOI

Reddy KV, Sree NRS, Kumar PS, Ranjit P (2022) Microbial enzymes in the biosynthesis of metal nanoparticles. In: Maddela NR, Abiodun AS, Prasad R (eds) Ecological Interplays in Microbial Enzymology. Springer Nature Singapore, Singapore, pp 329–350. https://doi.org/10.1007/978-981-19-0155-3_15 DOI

Rengasamy M, Shenoy MM, Dogra S, Asokan N, Khurana A, Poojary S, Jayaraman J, Valia AR, Sardana K, Kolalapudi S (2020) Indian association of dermatologists, venereologists and leprologists (IADVL) task force against recalcitrant tinea (ITART) consensus on the management of glabrous tinea (INTACT). Indian Dermatol Online J 11:502 PubMed DOI PMC

Riggio C, Pagni E, Raffa V, Cuschieri A (2011) Nano-oncology: Clinical application for cancer therapy and future perspectives. J Nanomater 2011:1–17. https://doi.org/10.1155/2011/164506 DOI

Roselli M, Finamore A, Garaguso I, Britti MS, Mengheri E (2003) Zinc oxide protects cultured enterocytes from the damage induced by Escherichia coli. J Nutr 133:4077–4082 PubMed DOI

Roshmi T, Soumya K, Jyothis M, Radhakrishnan E (2015) Effect of biofabricated gold nanoparticle-based antibiotic conjugates on minimum inhibitory concentration of bacterial isolates of clinical origin. Gold Bulletin 48:63–71. https://doi.org/10.1007/s13404-015-0162-4 DOI

Roychoudhury A (2020) Yeast-mediated green synthesis of nanoparticles for biological applications. Indian J Pharm Biol Res 8:26–31

Rui M, Ma C, Hao Y, Guo J, Rui Y, Tang X, Zhao Q, Fan X, Zhang Z, Hou T (2016) Iron oxide nanoparticles as a potential iron fertilizer for peanut (Arachis hypogaea). Front Plant Sci 7:815. https://doi.org/10.3389/fpls.2016.00815 PubMed DOI PMC

Sachdev S, Ansari SA, Ansari MI, Fujita M, Hasanuzzaman M (2021) Abiotic stress and reactive oxygen species: Generation, signaling, and defense mechanisms. Antioxidants 10:277. https://doi.org/10.3390/antiox10020277 PubMed DOI PMC

Sahoo A, Satapathy KB, Sahoo SK, Panigrahi GK (2022) Microbased biorefinery for gold nanoparticle production: Recent advancements, applications and future aspects. Prep Biochem Biotechnol 6:1–12. https://doi.org/10.1080/10826068.2022.2122065 DOI

Sahoo S, Pradhan PP (2022) Microbial nano-formulations: New approach for management of pests. In: Rout SD, Sahu C, Banik D (eds) Mahapatra A. Advances in Agricultural Technologies, AkiNik Publications, New Delhi pp, pp 243–253

Saito M (1993) Antibacterial, deodorizing, and UV absorbing materials obtained with zinc oxide (ZnO) coated fabrics. J Coated Fabrics 23:150–164. https://doi.org/10.1177/152808379302300205 DOI

Salam HA, Sivaraj R, Venckatesh R (2014) Green synthesis and characterization of zinc oxide nanoparticles from Ocimum basilicum L. var. purpurascens Benth.-Lamiaceae leaf extract. Mater Lett 131:16–18. https://doi.org/10.1016/j.matlet.2014.05.033 DOI

Salem SS, Fouda A (2021) Green synthesis of metallic nanoparticles and their prospective biotechnological applications: An overview. Biol Trace Elem Res 199:344–370. https://doi.org/10.1007/s12011-020-02138-3 PubMed DOI

Sampath S, Madhavan Y, Muralidharan M, Sunderam V, Lawrance AV, Muthupandian S (2022) A review on algal mediated synthesis of metal and metal oxide nanoparticles and their emerging biomedical potential. J Biotechnol 360:92–109. https://doi.org/10.1016/j.jbiotec.2022.10.009 PubMed DOI

Sani-Kast N, Labille J, Ollivier P, Slomberg D, Hungerbühler K, Scheringer M (2017) A network perspective reveals decreasing material diversity in studies on nanoparticle interactions with dissolved organic matter. Proceed Nat Acad Sci 114:E1756–E1765. https://doi.org/10.1073/pnas.1608106114 DOI

Santos ELI, Rostro-Alanís M, Parra-Saldívar R, Alvarez AJ (2018) A novel method for bioethanol production using immobilized yeast cells in calcium-alginate films and hybrid composite pervaporation membrane. Bioresour Technol 247:165–173. https://doi.org/10.1016/j.biortech.2017.09.091 PubMed DOI

Saravanan M, Arokiyaraj S, Lakshmi T, Pugazhendhi A (2018a) Synthesis of silver nanoparticles from Phenerochaete chrysosporium (MTCC-787) and their antibacterial activity against human pathogenic bacteria. Microb Pathog 117:68–72. https://doi.org/10.1016/j.micpath.2018.02.008 PubMed DOI

Saravanan M, Barik SK, MubarakAli D, Prakash P, Pugazhendhi A (2018b) Synthesis of silver nanoparticles from Bacillus brevis (NCIM 2533) and their antibacterial activity against pathogenic bacteria. Microb Pathog 116:221–226. https://doi.org/10.1016/j.micpath.2018.01.038 PubMed DOI

Sawai J (2003) Quantitative evaluation of antibacterial activities of metallic oxide powders (ZnO, MgO and CaO) by conductimetric assay. J Microbiol Methods 54:177–182. https://doi.org/10.1016/S0167-7012(03)00037-X PubMed DOI

Scognamiglio V (2013) Nanotechnology in glucose monitoring: Advances and challenges in the last 10 years. Biosens Bioelectron 47:12–25. https://doi.org/10.1016/j.bios.2013.02.043 PubMed DOI

Sen T, Barrow CJ, Deshmukh SK (2019) Microbial pigments in the food industry—challenges and the way forward. Front Nutr 6:7. https://doi.org/10.3389/fnut.2019.00007 PubMed DOI PMC

Seshadri S, Prakash A, Kowshik M (2012) Biosynthesis of silver nanoparticles by marine bacterium, Idiomarina sp. PR58-8. Bullet Mater Sci 35:1201–1205. https://doi.org/10.1007/s12034-012-0417-0 DOI

Sharma A, Sagar A, Rana J, Rani R (2022) Green synthesis of silver nanoparticles and its antibacterial activity using fungus Talaromyces purpureogenus isolated from Taxus baccata Linn. Micro Nano Syst Lett 10:2. https://doi.org/10.1186/s40486-022-00144-9 DOI

Sheikhloo Z, Salouti M, Katiraee F (2011) Biological synthesis of gold nanoparticles by fungus Epicoccumnigrum. J Cluster Sci 22:661–665. https://doi.org/10.1007/s10876-011-0412-4 DOI

Shende S, Gade A, Rai M (2017) Large-scale synthesis and antibacterial activity of fungal-derived silver nanoparticles. Environ Chem Lett 15:427–434. https://doi.org/10.1007/s10311-016-0599-6 DOI

Shitanda I, Takamatsu S, Watanabe K, Itagaki M (2009) Amperometric screen-printed algal biosensor with flow injection analysis system for detection of environmental toxic compounds. Electrochim Acta 54:4933–4936. https://doi.org/10.1016/j.electacta.2009.04.005 DOI

Shivaji S, Madhu S, Singh S (2011) Extracellular synthesis of antibacterial silver nanoparticles using psychrophilic bacteria. Process Biochem 46:1800–1807. https://doi.org/10.1016/j.procbio.2011.06.008 DOI

Shu M, He F, Li Z, Zhu X, Ma Y, Zhou Z, Yang Z, Gao F, Zeng M (2020) Biosynthesis and antibacterial activity of silver nanoparticles using yeast extract as reducing and capping agents. Nanoscale Res Lett 15:1–9. https://doi.org/10.1186/s11671-019-3244-z DOI

Singh P, Kim Y-J, Zhang D, Yang D-C (2016) Biological synthesis of nanoparticles from plants and microorganisms. Trends Biotechnol 34:588–599. https://doi.org/10.1016/j.tibtech.2016.02.006 PubMed DOI

Singh T, Shukla S, Kumar P, Wahla V, Bajpai VK, Rather IA (2017) Application of nanotechnology in food science: Perception and overview. Front Microbiol 8:1501. https://doi.org/10.3389/fmicb.2017.01501 PubMed DOI PMC

Sivaraj A, Kumar V, Sunder R, Parthasarathy K, Kasivelu G (2020) Commercial yeast extracts mediated green synthesis of silver chloride nanoparticles and their anti-mycobacterial activity. J Clust Sci 31:287–291. https://doi.org/10.1007/s10876-019-01626-4 DOI

Skalickova S, Baron M, Sochor J (2017) Nanoparticles biosynthesized by yeast: A review of their application. Kvasny Prumysl 63(6):290–292. https://doi.org/10.18832/kp201727 DOI

Smith K, Evans DA, El-Hiti GA (2008) Role of modern chemistry in sustainable arable crop protection. Philos Trans R Soc Lond B Biol Sci 363:623–637. https://doi.org/10.1098/rstb.2007.2174 PubMed DOI

Soliman MK, Abu-Elghait M, Salem SS, Azab MS (2022) Multifunctional properties of silver and gold nanoparticles synthesis by Fusarium pseudonygamai. Biomass Convers Biorefin 16:1–18. https://doi.org/10.1007/s13399-022-03507-9 DOI

Soni N, Prakash S (2012) Synthesis of gold nanoparticles by the fungus Aspergillus niger and its efficacy against mosquito larvae. Rep Parasitol 2:1–7. https://doi.org/10.2147/RIP.S29033 DOI

Srikar SK, Giri DD, Pal DB, Mishra PK, Upadhyay SN (2016) Green synthesis of silver nanoparticles: A review. Green Sustain Chem 6:34–56. https://doi.org/10.4236/gsc.2016.61004 DOI

Srinath B, Namratha K, Byrappa K (2017) Eco-friendly synthesis of gold nanoparticles by gold mine bacteria Brevibacillus formosus and their antibacterial and biocompatible studies. IOSR J Pharm 7:53–60

Srinath B, Namratha K, Byrappa K (2018) Eco-friendly synthesis of gold nanoparticles by Bacillus subtilis and their environmental applications. Adv Sci Lett 24:5942–5946. https://doi.org/10.1166/asl.2018.12224 DOI

Srivastava S, Bhargava A (2022) Green nanoparticles: The future of nanobiotechnology. Springer, Singapore. https://doi.org/10.1007/978-981-16-7106-7 DOI

Su L, Jia W, Hou C, Lei Y (2011) Microbial biosensors: A review. Biosens Bioelectron 26:1788–1799. https://doi.org/10.1016/j.bios.2010.09.005 PubMed DOI

Sundaravadivelan C, Padmanabhan MN (2014) Effect of mycosynthesized silver nanoparticles from filtrate of Trichoderma harzianum against larvae and pupa of dengue vector Aedes aegypti L. Environ Sci Pollut Res 21:4624–4633. https://doi.org/10.1007/s11356-013-2358-6 DOI

Sunkar S, Nachiyar CV (2012) Biogenesis of antibacterial silver nanoparticles using the endophytic bacterium Bacillus cereus isolated from Garcinia xanthochymus. Asian Pac J Trop Biomed 2:953–959. https://doi.org/10.1016/S2221-1691(13)60006-4 PubMed DOI PMC

Tariq M, Mohammad KN, Ahmed B, Siddiqui MA, Lee J (2022) Biological synthesis of silver nanoparticles and prospects in plant disease management. Molecules 27:4754. https://doi.org/10.3390/molecules27154754 PubMed DOI PMC

Thakur M, Wang B, Verma ML (2022) Development and applications of nanobiosensors for sustainable agricultural and food industries: Recent developments, challenges and perspectives. Environ Technol Innov 26:102371. https://doi.org/10.1016/j.eti.2022.102371 DOI

Thalmann B, Voegelin A, Morgenroth E, Kaegi R (2016) Effect of humic acid on the kinetics of silver nanoparticle sulfidation. Environ Sci: Nano 3:203–212. https://doi.org/10.1039/C5EN00209E DOI

Ulagesan S, Nam T-J, Choi Y-H (2021) Biogenic preparation and characterization of Pyropia yezoensis silver nanoparticles (Py AgNPs) and their antibacterial activity against Pseudomonas aeruginosa. Bioprocess Biosys Eng 44:443–452. https://doi.org/10.1007/s00449-020-02454-x DOI

Underwood T (2020) Pan-cancer analysis of whole genomes. Nature 578:82–93. https://doi.org/10.1038/s41586-020-1969-6 DOI

Urnukhsaikhan E, Bold B-E, Gunbileg A, Sukhbaatar N, Mishig-Ochir T (2021) Antibacterial activity and characteristics of silver nanoparticles biosynthesized from Carduus crispus. Sci Rep 11:21047. https://doi.org/10.1038/s41598-021-00520-2 PubMed DOI PMC

Vala AK (2015) Exploration on green synthesis of gold nanoparticles by a marine-derived fungus Aspergillus sydowii. Environ Prog Sustain Energy 34:194–197. https://doi.org/10.1002/ep.11949 DOI

Verma ML, Barrow CJ, Puri M (2013) Nanobiotechnology as a novel paradigm for enzyme immobilisation and stabilisation with potential applications in biodiesel production. Appl Microbiol Biotechnol 97:23–39. https://doi.org/10.1007/s00253-012-4535-9 PubMed DOI

Verma R, Chauhan A, Shandilya M, Li X, Kumar R, Kulshrestha S (2020) Antimicrobial potential of Ag-doped ZnO nanostructure synthesized by the green method using Moringa oleifera extract. J Environ Chem Eng 8:103730. https://doi.org/10.1016/j.jece.2020.103730 DOI

Vetchinkina E, Loshchinina E, Kupryashina M, Burov A, Nikitina V (2019) Shape and size diversity of gold, silver, selenium, and silica nanoparticles prepared by green synthesis using fungi and bacteria. Indust Eng Chem Res 58:17207–17218. https://doi.org/10.1021/acs.iecr.9b03345 DOI

Vidali M (2001) Bioremediation. An overview. Pure Appl Chem 73:1163–1172. https://doi.org/10.1351/pac200173071163 DOI

Vijayakumar M, Surendhar G, Natrayan L, Patil PP, Ram P, Paramasivam P (2022) Evolution and recent scenario of nanotechnology in agriculture and food industries. J Nanomater 2022:1–17. https://doi.org/10.1155/2022/1280411 DOI

Virkutyte J, Varma RS (2011) Green synthesis of metal nanoparticles: Biodegradable polymers and enzymes in stabilization and surface functionalization. Chem Sci 2:837–846. https://doi.org/10.1039/C0SC00338G DOI

Waghmare S, Deshmukh A, Kulkarni S, Oswaldo L (2011) Biosynthesis and characterization of manganese and zinc nanoparticles. Universal J Environ Res Technol 1:64–69

Waghmare SS, Deshmukh AM, Sadowski Z (2014) Biosynthesis, optimization, purification and characterization of gold nanoparticles. Afr J Microbiol Res 8:138–146. https://doi.org/10.5897/AJMR10.143 DOI

Wang D, Saleh NB, Byro A, Zepp R, Sahle-Demessie E, Luxton TP, Ho KT, Burgess RM, Flury M, White JC (2022a) Nano-enabled pesticides for sustainable agriculture and global food security. Nat Nanotechnol 17:347–360. https://doi.org/10.1038/s41565-022-01082-8 PubMed DOI PMC

Wang D, Xue B, Wang L, Zhang Y, Liu L, Zhou Y (2021) Fungus-mediated green synthesis of nano-silver using Aspergillus sydowii and its antifungal/antiproliferative activities. Sci Rep 11:10356. https://doi.org/10.1038/s41598-021-89854-5 PubMed DOI PMC

Wang L, Ning C, Pan T, Cai K (2022b) Role of silica nanoparticles in abiotic and biotic stress tolerance in plants: A review. Int J Mol Sci 23(4):1947. https://doi.org/10.3390/ijms23041947 PubMed DOI PMC

Wang X, Li J, Liu R, Hai R, Zou D, Zhu X, Luo N (2017a) Responses of bacterial communities to CuO nanoparticles in activated sludge system. Environ Sci Technol 51:5368–5376. https://doi.org/10.1021/acs.est.6b06137 PubMed DOI

Wang X, Zhang D, Pan X, Lee D-J, Al-Misned FA, Mortuza MG, Gadd GM (2017b) Aerobic and anaerobic biosynthesis of nano-selenium for remediation of mercury contaminated soil. Chemosphere 170:266–273. https://doi.org/10.1016/j.chemosphere.2016.12.020 PubMed DOI

Wani NA, Khanday WI, Tirumale S (2021) Biosynthesis of iron oxide nanoparticles using ethyl acetate extract of Chaetomium cupreum and their anticancer activity. Matrix Sci Pharma 40:23–30. https://doi.org/10.4103/MTSP.MTSP_6_20 DOI

White JC, Gardea-Torresdey J (2021) Nanoscale agrochemicals for crop health: A key line of attack in the battle for global food security vol 55. ACS Publications

Win TT, Khan S, Bo B, Zada S, Fu P (2021) Green synthesis and characterization of Fe3O4 nanoparticles using Chlorella-K01 extract for potential enhancement of plant growth stimulating and antifungal activity. Sci Rep 11:1–11. https://doi.org/10.1038/s41598-021-01538-2 DOI

Wypij M, Golinska P, Dahm H, Rai M (2017) Actinobacterial-mediated synthesis of silver nanoparticles and their activity against pathogenic bacteria. IET Nanobiotechnol 11:336–342. https://doi.org/10.1049/iet-nbt.2016.0112 PubMed DOI

Xu P, Wang W, Chen S (2005) Application of nanosol on the antistatic property of polyester. Melliand Int 11:56–59

Yadav S, Modi P, Dave A, Vijapura A, Patel D, Patel M (2020) Effect of abiotic stress on crops. Sustain Crop Prod 3:1–16

Yeo SY, Jeong SH (2003) Preparation and characterization of polypropylene/silver nanocomposite fibers. Polym Int 52:1053–1057. https://doi.org/10.1002/pi.1215 DOI

Yetisen AK, Qu H, Manbachi A, Butt H, Dokmeci MR, Hinestroza JP, Skorobogatiy M, Khademhosseini A, Yun SH (2016) Nanotechnology in textiles. ACS Nano 10:3042–3068. https://doi.org/10.1021/acsnano.5b08176 PubMed DOI

Ying S, Guan Z, Ofoegbu PC, Clubb P, Rico C, He F, Hong J (2022) Green synthesis of nanoparticles: Current developments and limitations. Environ Technol Innovat 26:102336. https://doi.org/10.1016/j.eti.2022.102336 DOI

Yusefi M, Shameli K, Ali RR, Pang S-W, Teow S-Y (2020) Evaluating anticancer activity of plant-mediated synthesized iron oxide nanoparticles using Punica granatum fruit peel extract. J Mol Struct 1204:127539. https://doi.org/10.1016/j.molstruc.2019.127539 DOI

Zabed H, Faruq G, Sahu JN, Azirun MS, Hashim R, Nasrulhaq Boyce A (2014) Bioethanol production from fermentable sugar juice. Sci World J 2014:1–11. https://doi.org/10.1155/2014/957102 DOI

Zaki S, El Kady MF, Abd-El-Haleem D (2011) Biosynthesis and structural characterization of silver nanoparticles from bacterial isolates. Mater Res Bull 46:1571–1576. https://doi.org/10.1016/j.materresbull.2011.06.025 DOI

Zhang F, Keasling J (2011) Biosensors and their applications in microbial metabolic engineering. Trends Microbiol 19:323–329. https://doi.org/10.1016/j.tim.2011.05.003 PubMed DOI

Zhao L, Lu L, Wang A, Zhang H, Huang M, Wu H, Xing B, Wang Z, Ji R (2020) Nano-biotechnology in agriculture: Use of nanomaterials to promote plant growth and stress tolerance. J Agric Food Chem 68:1935–1947. https://doi.org/10.1021/acs.jafc.9b06615 PubMed DOI

Zonaro E, Piacenza E, Presentato A, Monti F, Dell’Anna R, Lampis S, Vallini G (2017) Ochrobactrum sp. MPV1 from a dump of roasted pyrites can be exploited as bacterial catalyst for the biogenesis of selenium and tellurium nanoparticles. Microb Cell Fact 16:1–17. https://doi.org/10.1186/s12934-017-0826-2 DOI

Zonooz NF, Salouti M (2011) Extracellular biosynthesis of silver nanoparticles using cell filtrate of Streptomyces sp. ERI-3. Sci Iran 18:1631–1635. https://doi.org/10.1016/j.scient.2011.11.029 DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...