Global dynamics and computational modeling approach for analyzing and controlling of alcohol addiction using a novel fractional and fractal-fractional modeling approach
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články
PubMed
38429318
PubMed Central
PMC11310334
DOI
10.1038/s41598-024-54578-9
PII: 10.1038/s41598-024-54578-9
Knihovny.cz E-zdroje
- Klíčová slova
- Alcohol addiction model, Existence and uniqueness, Fractal–fractional Caputo operator, Simulation, Ulam–Hyers stability,
- MeSH
- alkoholismus * MeSH
- ethanol MeSH
- fraktály MeSH
- lidé MeSH
- návykové chování * MeSH
- počítačová simulace MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- ethanol MeSH
In recent years, alcohol addiction has become a major public health concern and a global threat due to its potential negative health and social impacts. Beyond the health consequences, the detrimental consumption of alcohol results in substantial social and economic burdens on both individuals and society as a whole. Therefore, a proper understanding and effective control of the spread of alcohol addictive behavior has become an appealing global issue to be solved. In this study, we develop a new mathematical model of alcohol addiction with treatment class. We analyze the dynamics of the alcohol addiction model for the first time using advanced operators known as fractal-fractional operators, which incorporate two distinct fractal and fractional orders with the well-known Caputo derivative based on power law kernels. The existence and uniqueness of the newly developed fractal-fractional alcohol addiction model are shown using the Picard-Lindelöf and fixed point theories. Initially, a comprehensive qualitative analysis of the alcohol addiction fractional model is presented. The possible equilibria of the model and the threshold parameter called the reproduction number are evaluated theoretically and numerically. The boundedness and biologically feasible region for the model are derived. To assess the stability of the proposed model, the Ulam-Hyers coupled with the Ulam-Hyers-Rassias stability criteria are employed. Moreover, utilizing effecting numerical schemes, the models are solved numerically and a detailed simulation and discussion are presented. The model global dynamics are shown graphically for various values of fractional and fractal dimensions. The present study aims to provide valuable insights for the understanding the dynamics and control of alcohol addiction within a community.
Department of Computer Science and Mathematics Lebanese American University Byblos Lebanon
Department of Mathematics Abdul Wali Khan University Mardan Mardan Khyber Pakhtunkhwa Pakistan
Department of Mathematics University of Peshawar Peshawar Khyber Pakhtunkhwa Pakistan
IT4Innovations VSB Technical University of Ostrava Ostrava Czech Republic
Zobrazit více v PubMed
World Health Organization., https://www.who.int/news-room/fact-sheets/detail/alcohol.
World Health Organization., https://www.who.int/teams/mental-health-and-substance-use/alcohol-drugs-and-addictive-behaviours/alcohol.
Jamil, S. et al. Fractional order age dependent covid-19 model: An equilibria and quantitative analysis with modeling. Results Phys.53, 106928 (2023).10.1016/j.rinp.2023.106928 DOI
Ullah, S., Khan, M. A., Farooq, M. & Gul, T. Modeling and analysis of tuberculosis (tb) in khyber pakhtunkhwa, pakistan. Math. Comput. Simul.165, 181–199 (2019).10.1016/j.matcom.2019.03.012 DOI
Zafar, Z. U. A. et al. Numerical simulation and analysis of the stochastic hiv/aids model in fractional order. Results Phys.53, 106995 (2023).10.1016/j.rinp.2023.106995 DOI
Liu, X., Ullah, S., Alshehri, A. & Altanji, M. Mathematical assessment of the dynamics of novel coronavirus infection with treatment: A fractional study. Chaos Solitons Fractals153, 111534 (2021). 10.1016/j.chaos.2021.111534 PubMed DOI PMC
Khan, G. et al. Heat transfer in mhd thin film flow with concentration using lie point symmetry approach. Case Stud. Thermal Eng.49, 103238 (2023).10.1016/j.csite.2023.103238 DOI
Khajji, B., Moumine, E. M., Ferjouchia, H., Balatif, O. & Rachik, M. Optimal control and discrete-time modelling of alcohol model with physical and psychological complications. J. Math. Comput. Sci.10(5), 1969–1986 (2020).
Khajji, B., Kouidere, A., Balatif, O., & Rachik, M. “Mathematical modeling, analysis and optimal control of an alcohol drinking model with liver complication,” Commun. Math. Biol. Neurosci., vol. 2020, pp. Article–ID, (2020).
An, Z., Zhang, S., Xu, J. et al., “Stability analysis of an alcoholism model with public health education and nsfd scheme,” Discrete Dyn. Nat. Soc., vol. 2020, (2020).
Bonyah, E., Khan, M., Okosun, K. & Gómez-Aguilar, J. Modelling the effects of heavy alcohol consumption on the transmission dynamics of gonorrhea with optimal control. Math. Biosci.309, 1–11 (2019). 10.1016/j.mbs.2018.12.015 PubMed DOI
Kumar, A., Kumar, S., Momani, S. & Hadid, S. A chaos study of fractal-fractional predator-prey model of mathematical ecology. Math. Comput. Simul.10.1016/j.matcom.2023.09.010 (2023).10.1016/j.matcom.2023.09.010 DOI
Barros, L. C. et al. The memory effect on fractional calculus: an application in the spread of covid-19. Comput. Appl. Math.40, 1–21 (2021).10.1007/s40314-021-01456-z DOI
Nisar, K. S., Farman, M., Abdel-Aty, M. & Cao, J. A review on epidemic models in sight of fractional calculus. Alex. Eng. J.75, 81–113 (2023).10.1016/j.aej.2023.05.071 DOI
Diethelm, K. A fractional calculus based model for the simulation of an outbreak of dengue fever. Nonlinear Dyn.71, 613–619 (2013).10.1007/s11071-012-0475-2 DOI
Saeedian, M., Khalighi, M., Azimi-Tafreshi, N., Jafari, G. & Ausloos, M. Memory effects on epidemic evolution: The susceptible-infected-recovered epidemic model. Phys. Rev. E95(2), 022409 (2017). 10.1103/PhysRevE.95.022409 PubMed DOI PMC
Almeida, R., Bastos, N. R. & Monteiro, M. T. T. Modeling some real phenomena by fractional differential equations. Math. Methods Appl. Sci.39(16), 4846–4855 (2016).10.1002/mma.3818 DOI
Podlubny, I. Fractional differential equations: an introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications, vol. 198. Elsevier, (1998).
Caputo, M. & Fabrizio, M. A new definition of fractional derivative without singular kernel. Progr. Fract. Differ. Appl1(2), 1–13 (2015).
Atangana, A. & Baleanu, D. “New fractional derivatives with nonlocal and non-singular kernel: theory and application to heat transfer model,” Therm. Sci., pp. 763–769.
Khan, A., Alshehri, H. M., Gómez-Aguilar, J., Khan, Z. A. & Fernández-Anaya, G. A predator-prey model involving variable-order fractional differential equations with mittag-leffler kernel. Adv. Differ. Equ.2021(1), 1–18 (2021).
Bedi, P., Kumar, A. & Khan, A. Controllability of neutral impulsive fractional differential equations with atangana-baleanu-caputo derivatives. Chaos Solitons Fractals150, 111153 (2021).10.1016/j.chaos.2021.111153 DOI
Khajji, B., Boujallal, L., Elhia, M., Balatif, O. & Rachik, M. A fractional-order model for drinking alcohol behaviour leading to road accidents and violence. Math. Model. Comput.9, 501–518 (2022).10.23939/mmc2022.03.501 DOI
Begum, R., Tunç, O., Khan, H., Gulzar, H. & Khan, A. A fractional order zika virus model with mittag-leffler kernel. Chaos Solitons Fractals146, 110898 (2021).10.1016/j.chaos.2021.110898 PubMed DOI PMC
Singh, J., Kumar, D., Qurashi, M. A. & Baleanu, D. A new fractional model for giving up smoking dynamics. Adv. Difference Equ.2017(1), 1–16 (2017).10.1186/s13662-017-1139-9 DOI
Momani, S., Chauhan, R., Kumar, S. & Hadid, S. Analysis of social media addiction model with singular operator. Fractals10.1142/S0218348X23400972 (2023).10.1142/S0218348X23400972 DOI
Guo, Y. & Li, T. Fractional-order modeling and optimal control of a new online game addiction model based on real data. Commun. Nonlinear Sci. Numer. Simul.121, 107221 (2023).10.1016/j.cnsns.2023.107221 DOI
Sher, M., Shah, K., Sarwar, M., Alqudah, M. A. & Abdeljawad, T. Mathematical analysis of fractional order alcoholism model. Alex. Eng. J.78, 281–291 (2023).10.1016/j.aej.2023.07.010 DOI
Atangana, A. Fractal-fractional differentiation and integration: Connecting fractal calculus and fractional calculus to predict complex system. Chaos Solitons Fractals102, 396–406 (2017).10.1016/j.chaos.2017.04.027 DOI
Wang, W. & Khan, M. Analysis and numerical simulation of fractional model of bank data with fractal-fractional Atangana-Baleanu derivative. J. Comput. Appl. Math.369, 112646 (2019).10.1016/j.cam.2019.112646 DOI
Li, X.-P. et al. Modeling the dynamics of coronavirus with super-spreader class: A fractal-fractional approach. Results Phys.34, 105179 (2022). 10.1016/j.rinp.2022.105179 PubMed DOI PMC
Alzubaidi, A. M., Othman, H. A., Ullah, S., Ahmad, N. & Alam, M. M. Analysis of monkeypox viral infection with human to animal transmission via a fractional and fractal-fractional operators with power law kernel. Math. Biosci. Eng.20, 6666–6690 (2023). 10.3934/mbe.2023287 PubMed DOI
Heavy Drinking Among U.S. Adults 2018 CDC., https://www.cdc.gov/nchs/products/databriefs/db374.htm. PubMed
Adu, I., Osman, M. & Yang, C. Mathematical model of drinking epidemic. Br. J. Math. Comput. Sci.22(5), 1–10 (2017).10.9734/BJMCS/2017/33659 DOI
Van den Driessche, P. & Watmough, J. Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission. Math. Biosci.180(1–2), 29–48 (2002). 10.1016/S0025-5564(02)00108-6 PubMed DOI
Hyers, D. H. On the stability of the linear functional equation. Proc. Natl. Acad. Sci.27(4), 222–224 (1941). 10.1073/pnas.27.4.222 PubMed DOI PMC
Rassias, T. M. On the stability of the linear mapping in banach spaces. Proc. Am. Math. Soc.72(2), 297–300 (1978).10.1090/S0002-9939-1978-0507327-1 DOI
Khan, H., Tunç, C. & Khan, A. Stability results and existence theorems for nonlinear delay-fractional differential equations with [Image: see text]-operator. J. Appl. Anal. Comput.10(2), 584–597 (2020).
Ackora-Prah, J., Seidu, B., Okyere, E. & Asamoah, J. K. Fractal-fractional caputo maize streak virus disease model. Fractal Fractional7(2), 189 (2023).10.3390/fractalfract7020189 DOI
Khan, A., Khan, H., Gómez-Aguilar, J. & Abdeljawad, T. Existence and hyers-ulam stability for a nonlinear singular fractional differential equations with mittag-leffler kernel. Chaos Solitons Fractals127, 422–427 (2019).10.1016/j.chaos.2019.07.026 DOI
Qureshi, S. & Jan, R. Modeling of measles epidemic with optimized fractional order under caputo differential operator. Chaos Solitons Fractals145, 110766 (2021).10.1016/j.chaos.2021.110766 DOI
Sharma, S. & Samanta, G. Drinking as an epidemic: A mathematical model with dynamic behaviour. J. Appl. Math. Inf.31, 1–25 (2013).
Atangana, A. & Qureshi, S. Modeling attractors of chaotic dynamical systems with fractal-fractional operators. Chaos Solitons Fractals123, 320–337 (2019).10.1016/j.chaos.2019.04.020 DOI