Ivacaftor pharmacokinetics and lymphatic transport after enteral administration in rats
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
38444938
PubMed Central
PMC10912587
DOI
10.3389/fphar.2024.1331637
PII: 1331637
Knihovny.cz E-zdroje
- Klíčová slova
- bioavailability, intestinal absorption, ivacaftor, lymphatic transport, pharmacokintetics,
- Publikační typ
- časopisecké články MeSH
Background: Ivacaftor is a modern drug used in the treatment of cystic fibrosis. It is highly lipophilic and exhibits a strong positive food effect. These characteristics can be potentially connected to a pronounced lymphatic transport after oral administration. Methods: A series of studies was conducted to describe the basic pharmacokinetic parameters of ivacaftor in jugular vein cannulated rats when dosed in two distinct formulations: an aqueous suspension and an oil solution. Additionally, an anesthetized mesenteric lymph duct cannulated rat model was studied to precisely assess the extent of lymphatic transport. Results: Mean ± SD ivacaftor oral bioavailability was 18.4 ± 3.2% and 16.2 ± 7.8%, respectively, when administered as an aqueous suspension and an oil solution. The relative contribution of the lymphatic transport to the overall bioavailability was 5.91 ± 1.61% and 4.35 ± 1.84%, respectively. Conclusion: Lymphatic transport plays only a minor role in the process of ivacaftor intestinal absorption, and other factors are, therefore, responsible for its pronounced positive food effect.
Zobrazit více v PubMed
Boleslavska T., Svetlik S., Zvatora P., Bosak J., Dammer O., Beranek J., et al. (2020). Preclinical evaluation of new formulation concepts for abiraterone acetate bioavailability enhancement based on the inhibition of pH-induced precipitation. Eur. J. Pharm. Biopharm. 151, 81–90. 10.1016/j.ejpb.2020.04.005 PubMed DOI
Caliph S. M., Charman W. N., Porter C. J. (2000). Effect of short-medium-and long-chain fatty acid-based vehicles on the absolute oral bioavailability and intestinal lymphatic transport of halofantrine and assessment of mass balance in lymph-cannulated and non-cannulated rats. J. Pharm. Sci. 89 (8), 1073–1084. 10.1002/1520-6017(200008)89:8<1073::aid-jps12>3.0.co;2-v PubMed DOI
Charman W. N. A., Stella V. J. (1986). Estimating the maximal potential for intestinal lymphatic transport of lipophilic drug molecules. Int. J. Pharm. 34 (1-2), 175–178. 10.1016/0378-5173(86)90027-x DOI
Choo E. F., Boggs J., Zhu C. Q., Lubach J. W., Catron N. D., Jenkins G., et al. (2014). The role of lymphatic transport on the systemic bioavailability of the bcl-2 protein family inhibitors navitoclax (ABT-263) and ABT-199. Drug Metab. Dispos. 42 (2), 207–212. 10.1124/dmd.113.055053 PubMed DOI
Dahan A., Mendelman A., Amsili S., Ezov N., Hoffman A. (2007). The effect of general anesthesia on the intestinal lymphatic transport of lipophilic drugs: comparison between anesthetized and freely moving conscious rat models. Eur. J. Pharm. Sci. 32 (4-5), 367–374. 10.1016/j.ejps.2007.09.005 PubMed DOI
Deeks E. D. (2013). Ivacaftor: a review of its use in patients with cystic fibrosis. Drugs 73 (14), 1595–1604. 10.1007/s40265-013-0115-2 PubMed DOI
Deeks E. D. (2016). Lumacaftor/ivacaftor: a review in cystic fibrosis. Drugs 76 (12), 1191–1201. 10.1007/s40265-016-0611-2 PubMed DOI
EMA (2012). Kalydeco - summary of product characteristics.
EMA (2022). ICH guideline M10 on bioanalytical method validation and study sample analysis.
FDA (2012). Addendum #2 - Pharmacology and toxicology secondary review for NDA 203188.
Grove M., Nielsen J. L., Pedersen G. P., Mullertz A. (2006). Bioavailability of seocalcitol IV: evaluation of lymphatic transport in conscious rats. Pharm. Res-Dordr 23 (11), 2681–2688. 10.1007/s11095-006-9109-z PubMed DOI
Hauss D. J., Fogal S. E., Ficorilli J. V., Price C. A., Roy T., Jayaraj A. A., et al. (1998). Lipid-based delivery systems for improving the bioavailability and lymphatic transport of a poorly water-soluble LTB4 inhibitor. J. Pharm. Sci. 87 (2), 164–169. 10.1021/js970300n PubMed DOI
Hoy S. M. (2019). Elexacaftor/ivacaftor/tezacaftor: first approval. Drugs 79 (18), 2001–2007. 10.1007/s40265-019-01233-7 PubMed DOI
Hrinova E., Skorepova E., Cerna I., Kralovicova J., Kozlik P., Krizek T., et al. (2022). Explaining dissolution properties of rivaroxaban cocrystals. Int. J. Pharm. 622, 121854. 10.1016/j.ijpharm.2022.121854 PubMed DOI
Jelinek P., Rousarova J., Rysanek P., Jezkova M., Havlujova T., Pozniak J., et al. (2022). Application of oil-in-water cannabidiol emulsion for the treatment of rheumatoid arthritis. Cannabis Cannabinoid 2022, 176. 10.1089/can.2022.0176 PubMed DOI PMC
Khoo S. M., Shackleford D. M., Porter C. J., Edwards G. A., Charman W. N. (2003). Intestinal lymphatic transport of halofantrine occurs after oral administration of a unit-dose lipid-based formulation to fasted dogs. Pharm. Res. 20 (9), 1460–1465. 10.1023/a:1025718513246 PubMed DOI
Koziolek M., Alcaro S., Augustijns P., Basit A. W., Grimm M., Hens B., et al. (2019). The mechanisms of pharmacokinetic food-drug interactions - a perspective from the UNGAP group. Eur. J. Pharm. Sci. 134, 31–59. 10.1016/j.ejps.2019.04.003 PubMed DOI
Kralovicova J., Bartunek A., Hofmann J., Krizek T., Kozlik P., Rousarova J., et al. (2022). Pharmacokinetic variability in pre-clinical studies: sample study with abiraterone in rats and implications for short-term comparative pharmacokinetic study designs. Pharmaceutics 14 (3), 643. 10.3390/pharmaceutics14030643 PubMed DOI PMC
Miao Y. F., Zhao S. H., Zuo J., Sun J. Q., Wang J. N. (2022). Reduced the food effect and enhanced the oral bioavailability of ivacaftor by self-nanoemulsifying drug delivery system (SNEDDS) using a new oil phase. Drug Des. Dev. Ther. 16, 1531–1546. 10.2147/DDDT.S356967 PubMed DOI PMC
Padhi D., Salfi M., Harris R. Z. (2007). The pharmacokinetics of cinacalcet are unaffected following consumption of high- and low-fat meals. Am. J. Ther. 14 (3), 235–240. 10.1097/01.mjt.0000212703.71625.26 PubMed DOI
Paterson S. L., Barry P. J., Horsley A. R. (2020). Tezacaftor and ivacaftor for the treatment of cystic fibrosis. Expert Rev. Resp. Med. 14 (1), 15–30. 10.1080/17476348.2020.1682998 PubMed DOI
Porter C. J. H., Trevaskis N. L., Charman W. N. (2007). Lipids and lipid-based formulations: optimizing the oral delivery of lipophilic drugs. Nat. Rev. Drug Discov. 6 (3), 231–248. 10.1038/nrd2197 PubMed DOI
Rysanek P., Grus T., Lukac P., Kozlik P., Krizek T., Pozniak J., et al. (2021). Validity of cycloheximide chylomicron flow blocking method for the evaluation of lymphatic transport of drugs. Brit J. Pharmacol. 178 (23), 4663–4674. 10.1111/bph.15644 PubMed DOI
Rysanek P., Grus T., Sima M., Slanar O. (2020). Lymphatic transport of drugs after intestinal absorption: impact of drug formulation and physicochemical properties. Pharm. Res. 37 (9), 166. 10.1007/s11095-020-02858-0 PubMed DOI
Salamunova P., Krejci T., Rysanek P., Salon I., Kroupova J., Hubatova-Vackova A., et al. (2023). Serum and lymph pharmacokinetics of nilotinib delivered by yeast glucan particles per os . Int. J. Pharm. 634, 122627. 10.1016/j.ijpharm.2023.122627 PubMed DOI
Salem A. H., Agarwal S. K., Dunbar M., Nuthalapati S., Chien D., Freise K. J., et al. (2016). Effect of low- and high-fat meals on the pharmacokinetics of venetoclax, a selective first-in-class BCL-2 inhibitor. J. Clin. Pharmacol. 56 (11), 1355–1361. 10.1002/jcph.741 PubMed DOI
Trevaskis N. L., Hu L., Caliph S. M., Han S., Porter C. J. (2015). The mesenteric lymph duct cannulated rat model: application to the assessment of intestinal lymphatic drug transport. J. Vis. Exp. 97, 52389. 10.3791/52389 PubMed DOI PMC
Valtola A., Kokki H., Gergov M., Ojanpera I., Ranta V. P., Hakala T. (2007). Does coronary artery bypass surgery affect metoprolol bioavailability. Eur. J. Clin. Pharmacol. 63 (5), 471–478. 10.1007/s00228-007-0276-6 PubMed DOI
Watson W. C., Gordon R. S., Jr (1962). Studies on the digestion, absorption and metabolism of castor oil. Biochem. Pharmacol. 11, 229–236. 10.1016/0006-2952(62)90078-3 PubMed DOI
Zhang Y., Huo M. R., Zhou J. P., Xie S. F. (2010). PKSolver: an add-in program for pharmacokinetic and pharmacodynamic data analysis in Microsoft Excel. Comput. Meth Prog. Bio 99 (3), 306–314. 10.1016/j.cmpb.2010.01.007 PubMed DOI