Does Microwave Exposure at Different Doses in the Pre/Postnatal Period Affect Growing Rat Bone Development?
Jazyk angličtina Země Česko Médium print
Typ dokumentu časopisecké články
PubMed
38466013
PubMed Central
PMC11019611
DOI
10.33549/physiolres.935148
PII: 935148
Knihovny.cz E-zdroje
- MeSH
- elektromagnetická pole * škodlivé účinky MeSH
- krysa rodu Rattus MeSH
- mikrovlny * škodlivé účinky MeSH
- potkani Sprague-Dawley MeSH
- těhotenství MeSH
- vývoj kostí MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- mužské pohlaví MeSH
- těhotenství MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
Effects of pre/postnatal 2.45 GHz continuous wave (CW), Wireless-Fidelity (Wi-Fi) Microwave (MW) irradiation on bone have yet to be well defined. The present study used biochemical and histological methods to investigate effects on bone formation and resorption in the serum and the tibia bone tissues of growing rats exposed to MW irradiation during the pre/postnatal period. Six groups were created: one control group and five experimental groups subjected to low-level different electromagnetic fields (EMF) of growing male rats born from pregnant rats. During the experiment, the bodies of all five groups were exposed to 2.45 GHz CW-MW for one hour/day. EMF exposure started after fertilization in the experimental group. When the growing male rats were 45 days old in the postnatal period, the control and five experimental groups' growing male and maternal rats were sacrificed, and their tibia tissues were removed. Maternal rats were not included in the study. No differences were observed between the control and five experimental groups in Receptor Activator Nuclear factor-kB (RANK) biochemical results. In contrast, there was a statistically significant increase in soluble Receptor Activator of Nuclear factor-kB Ligand (sRANKL) and Osteoprotegerin (OPG) for 10 V/m and 15 V/m EMF values. Histologically, changes in the same groups supported biochemical results. These results indicate that pre/postnatal exposure to 2.45 GHz EMF at 10 and 15 V/m potentially affects bone development.
Zobrazit více v PubMed
Guidelines for Limiting Exposure to Electromagnetic Fields (100 kHz to 300 GHz) Health Phys. 2020;118:483–524. doi: 10.1097/HP.0000000000001210. PubMed DOI
Prucha J, Skopalik J, Socha V, Hanáková L, Knopfová L, Hána K. Two Types of High Inductive Electromagnetic Stimulation and Their Different Effects on Endothelial Cells. Physiol Res. 2019;68:611–622. doi: 10.33549/physiolres.933998. PubMed DOI
Misek J, Veternik M, Tonhajzerova I, Jakusova V, Janousek L, Jakus J. Radiofrequency Electromagnetic Field Affects Heart Rate Variability in Rabbits. Physiol Res. 2020;69:633–643. doi: 10.33549/physiolres.934425. PubMed DOI PMC
Zhou J, Chen S, Guo H, Xia L, Liu H, Qin Y, He C. Pulsed electromagnetic field stimulates osteoprotegerin and reduces RANKL expression in ovariectomized rats. Rheumatol Int. 2013;33:1135–1141. doi: 10.1007/s00296-012-2499-9. PubMed DOI
Zhou J, Liao Y, Xie H, Liao Y, Zeng Y, Li N, Sun G, Wu Q, Zhou G. Effects of combined treatment with ibandronate and pulsed electromagnetic field on ovariectomy-induced osteoporosis in rats. Bioelectromagnetics. 2017;38:31–40. doi: 10.1002/bem.22012. PubMed DOI
Gürgül S, Erdal N, Yilmaz SN, Yıldız A, Ankaralı H. Deterioration of bone quality by long-term magnetic field with extremely low frequency in rats. Bone. 2008;42:74–80. doi: 10.1016/j.bone.2007.08.040. PubMed DOI
Chang K, Chang WH. Pulsed electromagnetic fields prevent osteoporosis in an ovariectomized female rat model: a prostaglandin E2-associated process. Bioelectromagnetics. 2003;24:189–198. doi: 10.1002/bem.10078. PubMed DOI
Chang K, Chang WH, Huang S, Shih C. Pulsed electromagnetic fields stimulation affects osteoclast formation by modulation of osteoprotegerin, RANK ligand and macrophage colony-stimulating factor. J Orthop Res. 2005;23:1308–1314. doi: 10.1016/j.orthres.2005.03.012.1100230611. PubMed DOI
Erkut A, Tumkaya L, Balik MS, Kalkan Y, Guvercin Y, Yilmaz A, Yuce S, Cure E, Sehitoglu I. The effect of prenatal exposure to 1800 MHz electromagnetic field on calcineurin and bone development in rats. Acta Cir Bras. 2016;31:74–83. doi: 10.1590/S0102-865020160020000001. PubMed DOI
Yasuda H. Discovery of the RANKL/RANK/OPG system. J Bone Miner Metab. 2021;39:2–11. doi: 10.1007/s00774-020-01175-1. PubMed DOI
Soysa NS, Alles N. Osteoclast function and bone-resorbing activity: An overview. Biochem Biophys Res Commun. 2016;476:115–120. doi: 10.1016/j.bbrc.2016.05.019. PubMed DOI
Manolagas SC, Parfitt AM. What old means to bone. Trends Endocrinol Metab. 2010;21:369–374. doi: 10.1016/j.tem.2010.01.010. PubMed DOI PMC
Dallas SL, Prideaux M, Bonewald LF. The osteocyte: an endocrine cell .. and more. Endocr Rev. 2013;34:658–690. doi: 10.1210/er.2012-1026. PubMed DOI PMC
Zimmerman SM, Heard-Lipsmeyer ME, Dimori M, Thostenson JD, Mannene EM, O’Brien CA, Morello R. Loss of RANKL in osteocytes dramatically increases cancellous bone mass in the osteogenesis imperfecta mouse (oim) Bone Rep. 2018;9:61–73. doi: 10.1016/j.bonr.2018.06.008. PubMed DOI PMC
Wada T, Nakashima T, Hiroshi N, Penninger JM. RANKL-RANK signaling in osteoclastogenesis and bone disease. Trends Mol Med. 2006;12:17–25. doi: 10.1016/j.molmed.2005.11.007. PubMed DOI
Suda T, Takahashi N, Udagawa N, Jimi E, Gillespie MT, Martin TJ. Modulation of osteoclast differentiation and function by the new members of the tumor necrosis factor receptor and ligand families. Endocr Rev. 1999;20:345–357. doi: 10.1210/edrv.20.3.0367. PubMed DOI
Yasuda H, Shima N, Nakagawa N, Yamaguchi K, Kinosaki M, Mochizuki S, Tomoyasu A, Yano K, Goto M, Murakami A, Tsuda E, Morinaga T, Higashio K, Udagawa N, Takahashi N, Suda T. Osteoclast differentiation factor is a ligand for osteoprotegerin/osteoclastogenesis-inhibitory factor and is identical to TRANCE/RANKL. Proc Natl Acad Sci U S A. 1998;95:3597–3602. doi: 10.1073/pnas.95.7.3597. PubMed DOI PMC
Simonet WS, Lacey DL, Dunstan CR, Kelley M, Chang MS, Lüthy R, Nguyen HQ, et al. Osteoprotegerin: a novel secreted protein involved in the regulation of bone density. Cell. 1997;89:309–319. doi: 10.1016/S0092-8674(00)80209-3. PubMed DOI
Hofbauer LC, Schoppet M. Clinical implications of the osteoprotegerin/RANKL/RANK system for bone and vascular diseases. JAMA. 2004;292:490–495. doi: 10.1001/jama.292.4.490. PubMed DOI
Elabd SK, Sabry I, Hassan WB, Nour H, Zaky K. Possible neuroendocrine role for oxytocin in bone remodeling. Endocr Regul. 2007;41:131–141. PubMed
Hsu H, Lacey DL, Dunstan CR, Solovyev I, Colombero A, Timms E, Tan H-Lin, et al. Tumor necrosis factor receptor family member RANK mediates osteoclast differentiation and activation induced by osteoprotegerin ligand. Proc Natl Acad Sci U S A. 1999;96:3540–3545. doi: 10.1073/pnas.96.7.3540. PubMed DOI PMC
Boyce BF, Xing L. Biology of RANK, RANKL, and osteoprotegerin. Arthritis Res Ther. 2007;9(Suppl 1):S1. doi: 10.1186/ar2165. PubMed DOI PMC
Kearns AE, Khosla S, Kostenuik PJ. Receptor activator of nuclear factor kappaB ligand and osteoprotegerin regulation of bone remodeling in health and disease. Endocr Rev. 2008;29:155–192. doi: 10.1210/er.2007-0014. PubMed DOI PMC
Chen J, He HC, Xia QJ, Huang LQ, Hu YJ, He CQ. Effects of pulsed electromagnetic fields on the mRNA expression of RANK and CAII in ovariectomized rat osteoclast-like cell. Connect Tissue Res. 2010;51:1–7. doi: 10.3109/03008200902855917. PubMed DOI
Ando K, Mori K, Rédini F, Heymann D. RANKL/RANK/OPG: key therapeutic target in bone oncology. Curr Drug Discov Technol. 2008;5:263–268. doi: 10.2174/157016308785739857. PubMed DOI PMC
Pacheco R, Stock H. Effects of radiation on bone. Curr Osteoporos Rep. 2013;11:299–304. doi: 10.1007/s11914-013-0174-z. PubMed DOI
Jing D, Li F, Jiang M, Cai J, Wu Y, Xie K, Wu X, Tang C, Liu J, Guo W, Shen G, Luo E. Pulsed electromagnetic fields improve bone microstructure and strength in ovariectomized rats through a Wnt/Lrp5/β-catenin signaling-associated mechanism. PLoS One. 2013;8:e79377. doi: 10.1371/journal.pone.0079377. PubMed DOI PMC
Jing D, Cai J, Wu Y, Shen G, Li F, Xu Q, Xie K, Tang C, Liu J, Guo W, Wu X, Jiang M, Luo E. Pulsed electromagnetic fields partially preserve bone mass, microarchitecture, and strength by promoting bone formation in hindlimb-suspended rats. J Bone Miner Res. 2014;29:2250–2261. doi: 10.1002/jbmr.2260. PubMed DOI
Kwan Tat S, Padrines M, Théoleyre S, Heymann D, Fortun Y. IL-6, RANKL, TNF-alpha/IL-1: interrelations in bone resorption pathophysiology. Cytokine Growth Factor Rev. 2004;15:49–60. doi: 10.1016/j.cytogfr.2003.10.005. PubMed DOI
Lacey DL, Timms E, Tan HL, Kelley MJ, Dunstan CR, Burgess T, Elliott R, Colombero A, Elliott G, Scully S, Hsu H, Sullivan J, Hawkins N, Davy E, Capparelli C, Eli A, Qian YX, Kaufman S, Sarosi I, Shalhoub V, Senaldi G, Guo J, Delaney J, Boyle WJ. Osteoprotegerin ligand is a cytokine that regulates osteoclast differentiation and activation. Cell. 1998;93:165–176. doi: 10.1016/S0092-8674(00)81569-X. PubMed DOI
Fata JE, Kong YY, Li J, Sasaki T, Irie-Sasaki J, Moorehead RA, Elliott R, Scully S, Voura EB, Lacey DL, Boyle WJ, Khokha R, Penninger JM. The osteoclast differentiation factor osteoprotegerin-ligand is essential for mammary gland development. Cell. 2000;103:41–50. doi: 10.1016/S0092-8674(00)00103-3. PubMed DOI
Kong YY, Feige U, Sarosi I, Bolon B, Tafuri A, Morony S, Capparelli C, et al. Activated T cells regulate bone loss and joint destruction in adjuvant arthritis through osteoprotegerin ligand. Nature. 1999;402:304–309. doi: 10.1038/46303. PubMed DOI
Anderson DM, Maraskovsky E, Billingsley WL, Dougall WC, Tometsko ME, Roux ER, Teepe MC, DuBose RF, Cosman D, Galibert L. A homologue of the TNF receptor and its ligand enhance T-cell growth and dendritic-cell function. Nature. 1997;390:175–179. doi: 10.1038/36593. PubMed DOI
Burgess TL, Qian Y, Kaufman S, Ring BD, Van G, Capparelli C, Kelley M, Hsu H, Boyle WJ, Dunstan CR, Hu S, Lacey DL. The ligand for osteoprotegerin (OPGL) directly activates mature osteoclasts. J Cell Biol. 1999;145:527–538. doi: 10.1083/jcb.145.3.527. PubMed DOI PMC
Darnay BG, Haridas V, Ni J, Moore PA, Aggarwal BB. Characterization of the intracellular domain of receptor activator of NF-kappaB (RANK). Interaction with tumor necrosis factor receptor-associated factors and activation of NF-kappab and c-Jun N-terminal kinase. J Biol Chem. 1998;273:20551–20555. doi: 10.1074/jbc.273.32.20551. PubMed DOI
Min H, Morony S, Sarosi I, Dunstan CR, Capparelli C, Scully S, Van G, Kaufman S, Kostenuik PJ, Lacey DL, Boyle WJ, Simonet WS. Osteoprotegerin reverses osteoporosis by inhibiting endosteal osteoclasts and prevents vascular calcification by blocking a process resembling osteoclastogenesis. J Exp Med. 2000;192:463–474. doi: 10.1084/jem.192.4.463. PubMed DOI PMC
Bilotta TW, Zati A, Gnudi S, Figus E, Giardino R, Fini M, Pratelli L, Mongiorgi R. Electromagnetic fields in the treatment of postmenopausal osteoporosis: an experimental study conducted by densitometric, dry ash weight and metabolic analysis of bone tissue. Chir Organi Mov. 1994;79:309–313. PubMed
Atay T, Aksoy BA, Aydogan NH, Baydar ML, Yildiz M, Ozdemir R. Effect of electromagnetic field induced by radio frequency waves at 900 to 1800 MHz on bone mineral density of iliac bone wings. J Craniofac Surg. 2009;20:1556–1560. doi: 10.1097/SCS.0b013e3181b78559. PubMed DOI
Vincenzi F, Targa M, Corciulo C, Gessi S, Merighi S, Setti S, Cadossi R, Goldring MB, Borea PA, Varani K. Pulsed electromagnetic fields increased the anti-inflammatory effect of A2A and A3 adenosine receptors in human T/C-28a2 chondrocytes and hFOB 1.19 osteoblasts. PLoS One. 2013;8:e65561. doi: 10.1371/journal.pone.0065561. PubMed DOI PMC
Schwartz Z, Fisher M, Lohmann CH, Simon BJ, Boyan BD. Osteoprotegerin (OPG) production by cells in the osteoblast lineage is regulated by pulsed electromagnetic fields in cultures grown on calcium phosphate substrates. Ann Biomed Eng. 2009;37:437–444. doi: 10.1007/s10439-008-9628-3. PubMed DOI
Shankar VS, Simon BJ, Bax CM, Pazianas M, Moonga BS, Adebanjo OA, Zaidi M. Effects of electromagnetic stimulation on the functional responsiveness of isolated rat osteoclasts. J Cell Physiol. 1998;176:537–544. doi: 10.1002/(SICI)1097-4652(199809)176:3<537::AID-JCP10>3.0.CO;2-X. PubMed DOI
Blair JM, Zhou H, Seibel MJ, Dunstan CR. Mechanisms of disease: roles of OPG, RANKL and RANK in the pathophysiology of skeletal metastasis. Nat Clin Pract Oncol. 2006;3:41–49. doi: 10.1038/ncponc0381. PubMed DOI
Dougall WC, Chaisson M. The RANK/RANKL/OPG triad in cancer-induced bone diseases. Cancer Metastasis Rev. 2006;25:541–549. doi: 10.1007/s10555-006-9021-3. PubMed DOI
Holen I, Shipman CM. Role of osteoprotegerin (OPG) in cancer. Clin Sci (Lond) 2006;110:279–291. doi: 10.1042/CS20050175. PubMed DOI
Theoleyre S, Wittrant Y, Tat SK, Fortun Y, Redini F, Heymann D. The molecular triad OPG/RANK/RANKL: involvement in the orchestration of pathophysiological bone remodeling. Cytokine Growth Factor Rev. 2004;15:457–475. doi: 10.1016/j.cytogfr.2004.06.004. PubMed DOI
Giuliani N, Bataille R, Mancini C, Lazzaretti M, Barille S. Myeloma cells induce imbalance in the osteoprotegerin/osteoprotegerin ligand system in the human bone marrow environment. Blood. 2001;98:3527–3533. doi: 10.1182/blood.V98.13.3527. PubMed DOI
Grimaud E, Soubigou L, Couillaud S, Coipeau P, Moreau A, Passuti N, Gouin F, Redini F, Heymann D. Receptor activator of nuclear factor kappaB ligand (RANKL)/osteoprotegerin (OPG) ratio is increased in severe osteolysis. Am J Pathol. 2003;163:2021–2031. doi: 10.1016/S0002-9440(10)63560-2. PubMed DOI PMC
Voskaridou E, Terpos E. Osteoprotegerin to soluble receptor activator of nuclear factor kappa-B ligand ratio is reduced in patients with thalassaemia-related osteoporosis who receive vitamin D3. Eur J Haematol. 2005;74:359–361. doi: 10.1111/j.1600-0609.2004.00395.x. PubMed DOI
Granchi D, Pellacani A, Spina M, Cenni E, Savarino LM, Baldini N, Giunti A. Serum levels of osteoprotegerin and receptor activator of nuclear factor-kappaB ligand as markers of periprosthetic osteolysis. J Bone Joint Surg Am. 2006;88:1501–1509. doi: 10.2106/JBJS.E.01038. PubMed DOI
Veigl D, Niederlová J, Kryštůfková O. Periprosthetic osteolysis and its association with RANKL expression. Physiol Res. 2007;56:455–462. doi: 10.33549/physiolres.930997. PubMed DOI
Bostanci N, Ilgenli T, Emingil G, Afacan B, Han B, Töz H, Berdeli A, Atilla G, McKay IJ, Hughes FJ, Belibasakis GN. Differential expression of receptor activator of nuclear factor-kappaB ligand and osteoprotegerin mRNA in periodontal diseases. J Periodontal Res. 2007;42:287–293. doi: 10.1111/j.1600-0765.2006.00946.x. PubMed DOI
Bique AM, Kaivosoja E, Mikkonen M, Paulasto-Kröckel M. Choice of osteoblast model critical for studying the effects of electromagnetic stimulation on osteogenesis in vitro. Electromagn Biol Med. 2016;35:353–364. doi: 10.3109/15368378.2016.1138124. PubMed DOI
Chang Y, Hu CC, Wu YY, Ueng SWN, Chang CH, Chen MF. Ibudilast Mitigates Delayed Bone Healing Caused by Lipopolysaccharide by Altering Osteoblast and Osteoclast Activity. Int J Mol Sci. 2021;22:1169. doi: 10.3390/ijms22031169. PubMed DOI PMC
Sert C, Mustafa D, Düz MZ, Akşen F, Kaya A. The preventive effect on bone loss of 50-Hz, 1-mT electromagnetic field in ovariectomized rats. J Bone Miner Metab. 2002;20:345–349. doi: 10.1007/s007740200050. PubMed DOI
Siddiqui JA, Partridge NC. Physiological Bone Remodeling: Systemic Regulation and Growth Factor Involvement. Physiology (Bethesda) 2016;31:233–245. doi: 10.1152/physiol.00061.2014. PubMed DOI PMC
Sakurai T, Sawada Y, Yoshimoto M, Kawai M, Miyakoshi J. Radiation-induced reduction of osteoblast differentiation in C2C12 cells. J Radiat Res. 2007;48:515–521. doi: 10.1269/jrr.07012. PubMed DOI
Willey JS, Lloyd SA, Robbins ME, Bourland JD, Smith-Sielicki H, Bowman LC, Norrdin RW, Bateman TA. Early increase in osteoclast number in mice after whole-body irradiation with 2 Gy X rays. Radiat Res. 2008;170:388–392. doi: 10.1667/RR1388.1. PubMed DOI PMC
Wu G, Chen X, Peng J, Cai Q, Ye J, Xu H, Zheng C, Li X, Ye H, Liu X. Millimeter wave treatment induces apoptosis via activation of the mitochondrial-dependent pathway in human osteosarcoma cells. Int J Oncol. 2012;40:1543–1552. doi: 10.3892/ijo.2012.1330. PubMed DOI