Radiofrequency electromagnetic field affects heart rate variability in rabbits

. 2020 Aug 31 ; 69 (4) : 633-643. [epub] 20200716

Jazyk angličtina Země Česko Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid32672045

The aim of this study was to assess the effects of radiofrequency electromagnetic field (RF EMF) on heart rate variability (HRV) in rabbits with intensity slightly exceeding the limits for occupations. Totally 21 New Zealand white rabbits divided into two groups were used in this double-blind study. The first group of animals without general anesthesia was subjected to HRV examination under exposure to a device generated RF EMF source (frequency 1788 MHz, intensity 160 V/m, lasting 150 min.). The second group (premedications + alpha chloralose mg/kg) underwent the same protocol under the exposure to the real RF EMF signal from the base stations of mobile providers (frequency range 1805 - 1870 MHz - corresponding to the downlink signal of Slovak mobile providers, 160 V/m, 150 min., respectively). Individual 5 min records were used to analyze the HRV parameters: heart rate and root Mean Square of the Successive Differences (rMSSD) for time domain analysis and spectral powers in the low (LF-VFS) and high frequency (HF-VFS) bands for frequency domain analysis. Our study revealed the increased in HRV parameters (HF-HRV, rMSSD) associated with lower heart rate indicating increased cardiac vagal control under the exposure to RF EMF in experimental methods.

Zobrazit více v PubMed

ALANKO T, HIETANEN M, NANDELSTADH P. Occupational exposure to RF fields from base station antennas on rooftops. Ann Telecommun. 2008;63:125–132. doi: 10.1007/s12243-007-0001-6. DOI

BARABAS J, RADIL R. Information Technologies in Biomedicine. Itib. Vol. 7339. Springer; Berlin, Heidelberg: 2012. Evidence of S. Cerevisiae Proliferation Rate Control via Exogenous Low Frequency Electromagnetic Fields; pp. 295–303. 2012. DOI

BARABAS J, RADIL R, MALIKOVA I. Modification of S. cerevisiae growth dynamics using low frequency electromagnetic fields in the 1–2 kHz range. Biomed Res Int. 2015;2015:1–5. doi: 10.1155/2015/694713. PubMed DOI PMC

BELYAEV I. Dependence of non-thermal biological effects of microwaves on physical and biological variables: implications for reproducibility and safety standards. European J Oncol Library. 2010;5:187–218.

BELYAEV I, DEAN A, EGER H, HUBMANN G, JANDRISOVITS R, KERN M, KUNDI M, MOSHAMMER H, LERCHER P, MULLER K, OBERFELD G, OHNSORGE P, PELZMANN P, SCHEINGRABER C, THILL R. European EMF Guideline 2016 for the prevention, diagnosis and treatment of EMF-related health problems and illnesses. Rev Environ Health. 2016;31:363–397. doi: 10.1515/reveh-2016-0011. PubMed DOI

BENARROCH EE. The central autonomic network: functional organization, dysfunction, and perspective. Mayo Clinic proceedings. 1993;68:988–1001. doi: 10.1016/S0025-6196(12)62272-1. PubMed DOI

BUJNAKOVA I, ONDREJKA I, MESTANIK M, VISNOVCOVA Z, MESTANIKOVA A, HRTANEK I, FLESKOVA D, CALKOVSKA A, TONHAJZEROVA I. Autism spectrum disorder is associated with autonomic underarousal. Physiol Res. 2016;65(Suppl 5):S673–S682. doi: 10.33549/physiolres.933528. PubMed DOI

CAMM A, MALIK M, BIGGER J, GÜNTER B, CERUTTI S, CHOEN R Task force of the european society of cardiology and the north american society of pacing and electrophysiology. Heart rate variability: standards of measurement, physiological interpretation and clinical use. Circulation. 1996;93:1043–1065. PubMed

DURDIK M, KOSIK P, MARKOVA E, SOMSEDIKOVA A, GAJDOSECHOVA B, NIKITINA E, HORVATHOVA E, KOZICS K, DAVIS D, BELYAEV I. Microwaves from mobile phone induce reactive oxygen species but not DNA damage, preleukemic fusion genes and apoptosis in hematopoietic stem/progenitor cells. Sci Rep. 2019;9:16182. doi: 10.1038/s41598-019-52389-x. PubMed DOI PMC

FORREST MD. Intracellular calcium dynamics permit a Purkinje neuron model to perform toggle and gain computations upon its inputs. Front Comput Neurosci. 2014;8 doi: 10.3389/fncom.2014.00086. PubMed DOI PMC

GALUSCAK R, HAZDRA P. Dual-band loop feed with enhanced performance. Radioengineering. 2008;17:33–37.

GHAZIZADEH V, NAZIROGLU M. Electromagnetic radiation (Wi-Fi) and epilepsy induce calcium entry and apoptosis through activation of TRPV1 channel in hippocampus and dorsal root ganglion of rats. Metab Brain Dis. 2014;29:787–799. doi: 10.1007/s11011-014-9549-9. PubMed DOI

GMITROV J. Static magnetic field effect on the arterial baroreflex-mediated control of microcirculation: implications for cardiovascular effects due to environmental magnetic fields. Radiat Environ Biophys. 2007;46:281–290. doi: 10.1007/s00411-007-0115-2. PubMed DOI

ARC International Agency for Research on cancer. Non-ionizing Radiation, Part 2: Radiofrequency Electromagnetic Fields. Lyon, France: IARC Press; [Last accessed 18 December 2019]. 2013. Monographs on the Evaluation of Carcinogenic Risks to Humans. http://monographs.iarc.fr/ENG/Monographs/vol102/mono102.pdf. PubMed PMC

ICNIRP. Guidelines for limiting exposure to time-varying electric, magnetic, and electromagnetic fields (up to 300 GHz). International commission on non-Ionizing radiation protection. Health Phys. 1998;74:494–522. PubMed

JEONG JH, KIM JS, LEE BC, MIN YS, KIM DS, RYU JS, SOH KS, SEO KM, SOHN UD. Influence of exposure to electromagnetic field on the cardiovascular system. Auton Autacoid Pharmacol. 2005;25:17–23. doi: 10.1111/j.1474-8673.2004.00328.x. PubMed DOI

KATAOKA N, HIOKI H, KANEKO T, NAKAMURA K. Psychological stress activates a dorsomedial hypothalamus-medullary raphe circuit driving brown adipose tissue thermogenesis and hyperthermia. Cell Metab. 2014;20:346–358. doi: 10.1016/j.cmet.2014.05.018. PubMed DOI

KHADRAWY YA, AHMED NA, ABOULEZZ HS, NMR Effect of electromagnetic radiation from mobile phone on the levels of cortical amino acid neurotransmitters in adult and young rats. Romanian J Biophys. 2009;19:295–305.

KIM JH, HUH YH, KIM HR. Trafficking of synaptic vesicles is changed at the hypothalamus by exposure to an 835 MHz radiofrequency electromagnetic field. Gen Physiol Biophys. 2019a;38:379–388. doi: 10.4149/gpb_2019020. PubMed DOI

KIM JH, LEE JK, KIM HG, KIM KB, KIM HR. Possible effects of radiofrequency electromagnetic field exposure on central nerve system. Biomol Ther (Seoul) 2019b;27:265–275. doi: 10.4062/biomolther.2018.152. PubMed DOI PMC

KINUGASA H, HIRAYANAGI K. Effects of skin surface cooling and heating on autonomic nervous activity and baroreflex sensitivity in humans. Exp Physiol. 1999;84:369–377. doi: 10.1111/j.1469-445X.1999.01839.x. PubMed DOI

KOPANI M, FILOVA B, SEVCIK P, KOSNAC D, MISEK J, POLAK S, KOHAN M, MAJOR J, ZDIMALOVA M, JAKUS J. Iron deposition in rabbit cerebellum after exposure to generated and mobile GSM electromagnetic fields. Bratisl Lek Listy. 2017;118:575–579. doi: 10.4149/BLL_2017_110. PubMed DOI

KOPPEL T, VILCANE I, AHONEN M. 50 Hz magnetic field affects heart rate variability - an experimental study. 2018 EMF-Med 1st World Conference on Biomedical Applications of Electromagnetic Fields (EMF-Med); 10–13 Sept. 2018; Split, Croatia. 2018. DOI

LAZETIC B, NIKIN B. The effect of electromagnetic field on the heart rate of rabbits. Gen Physiol Biophysics. 1988;7:529–535. PubMed

LOEWENSTEIN Y, MAHON S, CHADDERTON P, KITAMURA K, SOMPOLINSKY H, YAROM Y, HAUSSER M. Bistability of cerebellar Purkinje cells modulated by sensory stimulation. Nat Neurosci. 2005;8:202–211. doi: 10.1038/nn1393. PubMed DOI

MASKEY D, KIM M, ARYAL B, PRADHAN J, CHOI IY, PARK KS, SON T, HONG SY, KIM SB, KIM HG, KIM MJ. Effect of 835 MHz radiofrequency radiation exposure on calcium binding proteins in the hippocampus of the mouse brain. Brain Res. 2010;1313:232–241. doi: 10.1016/j.brainres.2009.11.079. PubMed DOI

MISEK J, BELYAEV I, JAKUSOVA V, TONHAJZEROVA I, BARABAS J, JAKUS J. Heart rate variability affected by radiofrequency electromagnetic field in adolescent students. Bioelectromagnetics. 2018a;39:277–288. doi: 10.1002/bem.22115. PubMed DOI

MISEK J, VOJTEK J, VETERNIK M, KOHAN M, JAKUSOVA V, SPANIKOVA G, BELYAEV I, JAKUS J. New radiofrequency exposure system with real telecommunication signals. Advances in Electrical and Electronic Engineering. 2018b;16:101–107. doi: 10.15598/aeee.v16i1.2768. DOI

MOHAMED FA, AHMED AA, EL-KAFOURY BMA, LASHEEN NN. Study of the cardiovascular effects of exposure to electromagnetic field. Life Sci J. 2011;8:260–275.

MOKRÝ J, REMEŇOVÁ T, JAVORKA K. Changes in respiratory rate, blood pressure and heart rate variability in rabbits during orthostasis. Acta Vet Brno. 2006;75:3–12. doi: 10.2754/avb200675010003. DOI

MORRISON SF, NAKAMURA K. Central neural pathways for thermoregulation. Front Biosci. 2011;16:74–104. doi: 10.2741/3677. PubMed DOI PMC

NAKAMURA K, MATSUMURA K, KOBAYASHI S, KANEKO T. Sympathetic premotor neurons mediating thermoregulatory functions. Neurosci Res. 2005;51:1–8. doi: 10.1016/j.neures.2004.09.007. PubMed DOI

NOOR NA, MOHAMMED HS, AHMED NA, RADWAN NM. Variations in amino acid neurotransmitters in some brain areas of adult and young male albino rats due to exposure to mobile phone radiation. Eur Rev Med Pharmacol Sci. 2011;15:729–742. PubMed

PALL ML. Scientific evidence contradicts findings and assumptions of Canadian Safety Panel 6: microwaves act through voltage-gated calcium channel activation to induce biological impacts at non-thermal levels, supporting a paradigm shift for microwave/lower frequency electromagnetic field action. Rev Environ Health. 2015;30:99–116. doi: 10.1515/reveh-2015-0001. PubMed DOI

PARAZZINI M, RAVAZZANI P, THUROCZY G, MOLNAR FB, ARDESI G, SACCHETTINI A, MAINARDI LT. Nonlinear heart rate variability measures under electromagnetic fields produced by GSM cellular phones. Electromagn Biol Med. 2013;32:173–181. doi: 10.3109/15368378.2013.776424. PubMed DOI

PRŮCHA J, SKOPALIK J, SOCHA V, HANÁKOVÁ L, KNOPFOVÁ L, HÁNA K. Two types of high inductive electromagnetic stimulation and their different effects on endothelial cells. Physiol Res. 2019;68:611–622. doi: 10.33549/physiolres.933998. PubMed DOI

PSENAKOVA Z, SMONDRK M, BARABAS J, LO SCIUTO G, BENOVA M. Simulation and Assessment of Pacemaker RF Exposure (2.4 GHz) by PIFA Antenna. 2016 Elektro 11th International Conference; 2016; pp. 569–573. DOI

RAČEK A, BEŇOVÁ K, ARNOUL P, ZÁVODSKÁ M, ANGELIDIS A, CIGÁNKOVÁ V, ŠIMAIOVÁ V, RAČEKOVÁ E. Age-dependent effect of long-term microwave radiation on postnatal neurogenesis in rats: Morphological and behavioral study. Physiol Res. 2018;67:495–503. doi: 10.33549/physiolres.933752. PubMed DOI

SAILI L, HANINI A, SMIRANI C, AZZOUZ I, AZZOUZ A, SAKLY M, ABDELMELEK H, BOUSLAMA Z. Effects of acute exposure to WIFI signals (2.45 GHz) on heart variability and blood pressure in Albinos rabbit. Environ Toxicol Pharmacol. 2015;40:600–605. doi: 10.1016/j.etap.2015.08.015. PubMed DOI

SHAFFER F, GINSBERG JP. An overview of heart rate variability metrics and norms. Front Public Health. 2017;5:258. doi: 10.3389/fpubh.2017.00258. PubMed DOI PMC

SKLEROV M, DAYAN E, BROWNER N. Functional neuroimaging of the central autonomic network: recent developments and clinical implications. Clin Auton Res. 2019;29:555–566. doi: 10.1007/s10286-018-0577-0. PubMed DOI PMC

SMONDRK M, BENOVA M, PSENAKOVA Z. Evaluation of SAR in Human Body Model Comprising of Implanted Pacemaker. 12th International Conference Elektro 2018; 2018; DOI

THAYER JF, LANE RD. A model of neurovisceral integration in emotion regulation and dysregulation. Journal of affective disorders. 2000;61:201–216. doi: 10.1016/S0165-0327(00)00338-4. PubMed DOI

TRZASKA H. Engineering Problems in Bioelectromagnetics. In: MARKOV M, editor. Electromagnetic Fields in Biology and Medicine. CRC Press; Boca Raton, London, New York: 2015. pp. 69–78. DOI

VANGELOVA K, DEYANOV C, ISRAEL M. Cardiovascular risk in operators under radiofrequency electromagnetic radiation. Int J Hyg Environ Health. 2006;209:133–8. doi: 10.1016/j.ijheh.2005.09.008. PubMed DOI

VETERNIK M, TONHAJZEROVA I, MISEK J, JAKUSOVA V, HUDECKOVA H, JAKUS J. The impact of sound exposure on heart rate variability in adolescent students. Physiol Res. 2018;67:695–702. doi: 10.33549/physiolres.933882. PubMed DOI

YARTSEV MM, GIVON-MAYO R, MALLER M, DONCHIN O. Pausing Purkinje cells in the cerebellum of the awake cat. Front Systems Neurosci. 2009:3. doi: 10.3389/neuro.06.002.2009. PubMed DOI PMC

YU C, PENG RY. Biological effects and mechanisms of shortwave radiation: a review. Mil Med Res. 2017;4:24. doi: 10.1186/s40779-017-0133-6. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...