Electromagnetic fields - do they pose a cardiovascular risk?
Jazyk angličtina Země Česko Médium print
Typ dokumentu časopisecké články
PubMed
37159854
PubMed Central
PMC10226401
DOI
10.33549/physiolres.934938
PII: 934938
Knihovny.cz E-zdroje
- MeSH
- autonomní nervový systém MeSH
- dospělí MeSH
- elektromagnetická pole * škodlivé účinky MeSH
- kardiovaskulární nemoci * MeSH
- lidé MeSH
- mladý dospělý MeSH
- rizikové faktory kardiovaskulárních chorob MeSH
- rizikové faktory MeSH
- Check Tag
- dospělí MeSH
- lidé MeSH
- mladý dospělý MeSH
- Publikační typ
- časopisecké články MeSH
Mobile wireless communication technologies have now become an everyday part of our lives, 24 hours a day, 7 days a week. Monitoring the autonomous system under exposition to electromagnetic fields may play an important role in broading of our still limited knowledge on their effect on human body. Thus, we studied the interaction of the high frequency electromagnetic field (HF EMF) with living body and its effect on the autonomic control of heart rate using Heart Rate Variability (HRV) linear and nonlinear analyses in healthy volunteers. A group of young healthy probands (n=30, age mean: 24.2 ± 3.5 years) without any symptoms of disease was exposed to EMF with f=2400 MHz (Wi Fi), and f=2600 MHz (4G) for 5 minutes applied on the chest area. The short-term heart rate variability (HRV) metrics were used as an indicator of complex cardiac autonomic control. The evaluated HRV parameters: RR interval (ms), high frequency spectral power (HF-HRV in [ln(ms2)]) as an index of cardiovagal control, and a symbolic dynamic index of 0V %, indicating cardiac sympathetic activity. The cardiac-linked parasympathetic index HF-HRV was significantly reduced (p =0.036) and sympathetically mediated HRV index 0V % was significantly higher (p=0.002) during EMF exposure at 2400 MHz (Wi-Fi), compared to simulated 4G frequency 2600 MHz. No significant differences were found in the RR intervals. Our results revealed a shift in cardiac autonomic regulation towards sympathetic overactivity and parasympathetic underactivity indexed by HRV parameters during EMF exposure in young healthy persons. It seems that HF EMF exposure results in abnormal complex cardiac autonomic regulatory integrity which may be associated with higher risk of later cardiovascular complications already in healthy probands.
Zobrazit více v PubMed
Jakušová V. Ultraviolet radiation and mobile communication: physical properties, biological effects and health protection. (In Slovak) Bratislava: Samosato; 2009. p. 97 s.
Ekici B, Tanindi A, Ekici G, Diker E. The effects of the duration of mobile phone use on heart rate variability parameters in healthy subjects. Anatol J Cardiol. 2016:833–838. doi: 10.14744/AnatolJCardiol.2016.6717. PubMed DOI PMC
Barutcu I, Esen AM, Kaya D, Turkmen M, Karakaya O, Saglam M, Melek M, Çelik A, Kilit C, Onrat E, Kirma C. Do mobile phones pose a potential risk to autonomic modulation of the heart? Pacing Clin Electrophysiol. 2011;34:1511–1514. doi: 10.1111/j.1540-8159.2011.03162.x. PubMed DOI
Balikci K, Cem Ozcan I, Turgut-Balik D, Balik HH. A survey study on some neurological symptoms and sensations experienced by long term users of mobile phones. Pathol Biol (Paris) 2005;53:30–34. doi: 10.1016/j.patbio.2003.12.002. PubMed DOI
Taheri M, Mortazavi SMJ, Moradi M, Mansouri S, Hatam GR, Nouri F. Evaluation of the effect of radiofrequency radiation emitted from wi-fi router and mobile phone simulator on the antibacterial susceptibility of pathogenic Bacteria Listeria monocytogenes and Escherichia coli. Dose-Response: An Int J. 2017;15:1–8. doi: 10.1177/1559325816688527. PubMed DOI PMC
Rajendra Acharya U, Paul Joseph K, Kannathal N, Lim CM, Suri JS. Heart rate variability: a review. Med Biol Eng Comput. 2006;44:1031–1051. doi: 10.1007/s11517-006-0119-0. PubMed DOI
Acharya RU, Lim C, Joseph P. Heart rate variability analysis using correlation dimension and detrended fluctuation analysis. ITBM-RBM. 2002;23:333–339. doi: 10.1016/S1297-9562(02)90002-1. DOI
Joseph P, Acharya UR, Poo Ch, Chee J, Lim Ch, Iyengar S, Wei H. Effect of reflexological stimulation on heart rate variability. ITBM-RBM. 2004;25:40–45. doi: 10.1016/j.rbmret.2004.02.002. DOI
Ahamed TVI, Karthick NG, Joseph PK. Effect of mobile phone radiation on heart rate variability. Computers in Biology and Medicine. 2008;38:709–712. doi: 10.1016/j.compbiomed.2008.03.004. PubMed DOI
Levy MN, Schwartz PJ. Vagal control of the heart: experimental basis and clinical implications. Future. Armonk. 1994
Tonhajzerova I, Ondrejka I, Javorka K, Turianikova Z, Farsky I, Javorka M. Cardiac autonomic regulation is impaired in girls with major depression. Prog Neuropsychopharmacol Biol Psychiatry. 2010;34:613–8. doi: 10.1016/j.pnpbp.2010.02.023. PubMed DOI
Visnovcova Z, Mestanik M, Gala M, Mestanikova A, Tonhajzerova I. The complexity of electrodermal activity is altered in mental cognitive stressors. Comput Biol Med. 2016;79:123–129. doi: 10.1016/j.compbiomed.2016.10.014. PubMed DOI
Thorat KD, Shelke V. Effects of mobile phone radiation on heart rate variation in healthy volunteers. Res J Pharmaceut. Biol Chem Sci. 2013;4:840–845.
Laborde S, Mosley E, Thayer JF. Heart rate variability and cardiac vagal tone in psychophysiological research - recommendations for experiment planning, data analysis, and data reporting. Front Psychol. 2017;8:213. doi: 10.3389/fpsyg.2017.00213. PubMed DOI PMC
Misek J, Belyaev I, Jakusova V, Tonhajzerova I, Barabas J, Jakus J. Heart rate variability affected by radiofrequency electromagnetic field in adolescent students. Bioelectromagnetics. 2018;39:277–288. doi: 10.1002/bem.22115. PubMed DOI
Wallace J, Andrianome S, Ghosn R, Blanchard ES, Telliez F, Selmaoui B. Heart rate variability in healthy young adults exposed to global system for mobile communication (GSM) 900-MHz radiofrequency signal from mobile phones. Environ Res. 2020;191:110097. doi: 10.1016/j.envres.2020.110097. PubMed DOI
Ramshur JT. Design, evaluation, and application of heart rate variability analysis software (HRVAS) The University of Memphis; 2010. DOI
Camm A. Heart rate variability: standards of measurement, physiological interpretation and clinical use. Tasks force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology, 1996. Circulation. 93:1043–1065. PubMed
Javorka K, Čalkovská A, Danko J, Dókuš K, Funiak S, Gwozdziewicz M, et al. Heart rate variability (in Slovak) Martin: Osveta; 2008. p. 204p.
Bujnakova I, Ondrejka I, Mestanik M, Visnovcova Z, Mestanikova A, Hrtanek I, Fleskova D, Calkovska A, Tonhajzerova I. Autism spectrum disorder is associated with autonomic underarousal. Physiol Res. 2016;65(Suppl 5):S673–S682. doi: 10.33549/physiolres.933528. PubMed DOI
Navrátil L, Rosina J. Medicínská biofyzika. (in Czech) Praha: Grada; 2005. p. 524s.
Hampton RCh. The fundamentals of Wi-Fi Antennas. Technical Article. 2015
Yang Ming, Sun Yufa, Li Fan. A Compact Wideband Printed Antenna for 4G/5G/WLAN Wireless Applications. Int J Antennas Propagation. 2019;2019:3209840. doi: 10.1155/2019/3209840. DOI
Dasdag S, Akdag MZ. The link between radiofrequencies emitted from wireless technologies and oxidative stress. J Chem Neuroanatomy. 2016;75:85–93. doi: 10.1016/j.jchemneu.2015.09.001. PubMed DOI
Veternik M, Tonhajzerova I, Misek J, Jakusova V, Hudeckova H, Jakus J. The impact of sound exposure on heart rate variability in adolescent students. Physiol Res. 2018;67:695–702. doi: 10.33549/physiolres.933882. PubMed DOI
Oliver F, Acharya UR, Krishnan SM, Min LC. Analysis of cardiovascular signals using spatial filling index and time-frequency domain. Biomed Online J USA. 2004;3:30. doi: 10.1186/1475-925X-3-30. PubMed DOI PMC
Guzzetti S, Borroni E, Garbelli PE, Ceriani E, Della Bella P, Montano N, Cogliati C, Somers VK, Malliani A, Porta A. Symbolic dynamics of heart rate variability. A probe to investigate cardiac autonomic modulation Circulation. 2005;112:465–470. doi: 10.1161/CIRCULATIONAHA.104.518449. PubMed DOI
Brosschot JF, Verkuil B, Thayer JF. Generalized unsafety theory of stress: unsafe environments and conditions, and the default stress response. Int J Environ Res Public Health. 2018;15:464. doi: 10.3390/ijerph15030464. PubMed DOI PMC
Porta A, Guzzeti S, Furlan R, Gnecchi-Ruscone T, Montano N, Malliani A. Complexity and nonlinearity in short-term heart rate variability: comparison of methods based on local nonlinear prediction. Trans Biomed Eng. 2007;54:94–106. doi: 10.1109/TBME.2006.883789. PubMed DOI
Slavikova M, Sekaninova N, Bona O, Visnovcova Z, Tonhajzerova I. Biofeedback - A promising non-pharmacological tool of stress - related disorders. Acta Medica Martiniana. 2020;20:1–8. doi: 10.2478/acm-2020-0001. DOI
Voss A, Schulz S, Schroeder R, Baumert M, Caminal P. Methods derived from nonlinear dynamics for analysing heart rate variability. Philos Trans A Math Phys Eng Sci. 2009;367:277–96. doi: 10.1098/rsta.2008.0232. PubMed DOI
Porta A, Gnecchi-Ruscone T, Tobaldini E, Guzzetti S, Furlan R, Malliani A, Montano N. Symbolic analysis of short-term heart period variability during graded head-up tilt. Computers in Cardiology. 2006;33:109–112.
Mann K, Röschke J, Connemann B, Beta H. No effects of pulsed high-frequency electromagnetic fields on heart rate variability during human sleep. Neuropsychobiology. 1998;38:251–256. doi: 10.1159/000026549. PubMed DOI
Mohamed FA, Ahmed AA, El-Kafoury BMA, Lasheen NN. Study of the cardiovascular effects of exposure to electromagnetic field. Life Sci J. 2011;8:260–275.
Visnovcova Z, Mestanik M, Javorka M, Mokra D, Gala M, Jurko A, Calkovska A, Tonhajzerova I. Complexity and time asymmetry of heart rate variability are altered in acute mental stress. Physiol Meas. 2014;35:1319–1334. doi: 10.1088/0967-3334/35/7/1319. PubMed DOI
Gmitrov J. Static magnetic field effect on the arterial baroreflex-mediated control of microcirculation: implications for cardiovascular effects due to environmental magnetic fields. Radiat Environ Biophys. 2007;46:281–290. doi: 10.1007/s00411-007-0115-2. PubMed DOI
Salah MB, Abdelmelek H, Abderraba M. Effects of olive leave extract on metabolic disorders and oxidative stress induced by 2.45 GHz WIFI signals. Environ Toxicol Pharmacol. 2013;36:826–834. doi: 10.1016/j.etap.2013.07.013. PubMed DOI
Thayer JF, Lane RD. A model of neurovisceral integration in emotion regulation and dysregulation. J Affect Disord. 2000;61:201–216. doi: 10.1016/S0165-0327(00)00338-4. PubMed DOI
Wehrwein EA, Orer HS, Barman SM. Overview of the Anatomy, Physiology, and Pharmacology of the Autonomic Nervous System. Compr Physiol. 2016;6:1239–1278. doi: 10.1002/cphy.c150037. PubMed DOI
Tonhajzerová I. et al. 978-80-8187-009-5Psychofyziológia: Od stresovej odpovede po Biofeedback. Martin. 2016:164s.
Misek J, Veterník M, Tonhajzerova I, Jakusova V, Janousek L, Jakus J. Radiofrequency electromagnetic field affects heart rate variability in rabbits. Physiol Res. 2020;69:633–643. doi: 10.33549/physiolres.934425. PubMed DOI PMC
Benarroch EE. The central autonomic network: functional organization, dysfunction, and perspective. Mayo Clin Proc. 1993;68:988–1001. doi: 10.1016/S0025-6196(12)62272-1. PubMed DOI
Tonhajzerová I. 978-80-89544-92-9 EAN 9788089544929Psychophysiology: Respiratory sinus arrhythmia in the context of the polyvagal theory. (in Slovak) Martin. 2015;79s
Porges SW. The polyvagal perspective. Biol Psychol. 2007;74:116–143. doi: 10.1016/j.biopsycho.2006.06.009. PubMed DOI PMC
Tonhajzerova I, Ondrejka I, Ferencova N, Bujnakova I, Grendar M, Olexova LB, Hrtanek I, Visnovcova Z. Alternations in the Cardiovascular Autonomic Regulation and Growth Factors in Autism. Physiol Res. 2021;70:551–561. doi: 10.33549/physiolres.934662. PubMed DOI PMC
Shaffer F, Ginsberg JP. An overview of heart rate variability metrics and norms. Front Public Health. 2017;5:258. doi: 10.3389/fpubh.2017.00258. PubMed DOI PMC
Mestanik M, Mestanikova A, Langer P, Grendar M, Jurko A, Sekaninova N, Visnovcova N, Tonhajzerova I. Respiratory sinus arrhythmia - testing the method of choice for evaluation of cardiovagal regulation. Respir Physiol Neurobiol. 2019;259:86–92. doi: 10.1016/j.resp.2018.08.002. PubMed DOI
Young Benton. Heart-rate variability: a biomarker to study the influence of nutrition on physiological and psychological health? Behav Pharmacol. 2018;29(Spec issue 2–3):140–151. doi: 10.1097/FBP.0000000000000383. PubMed DOI PMC
Porta A, Tobaldini E, Guzzetti S, Furlan R, Montano N. Gnecchi-Ruscone TAssessment of cardiac autonomic modulation during graded head-up tilt by symbolic analysis of heart rate variability. Am J Physiol Heart Circ Physiol. 2007;293:H702–H708. doi: 10.1152/ajpheart.00006.2007. PubMed DOI
Silva L, Geraldini VR, De Olivera BP, Silva CAA, Porta A, Fazan R. Comparison between spectral analysis and symbolic dynamics for heart rate variability analysis in the rat. Sci Rep. 2017;7:1–8. doi: 10.1038/s41598-017-08888-w. PubMed DOI PMC
Catai AM, Pastre CM, Godoy MF, Silva ED, Takahashi ACM, Vanderlei LCM. Heart rate variability: are you using it properly? Standardisation checklist of procedures. Braz J Phys Ther. 2020;24:91–102. doi: 10.1016/j.bjpt.2019.02.006. PubMed DOI PMC
Moura-Tonello SCG, Carvalho VO, Godoy MF, Porta A, Leal ÂMO, Bocchi EA, Catai AM. Evaluation of cardiac autonomic modulation using symbolic dynamics after cardiac transplantation. Braz J Cardiovasc Surg. 2019;34:572–580. doi: 10.21470/1678-9741-2019-0236. PubMed DOI PMC