Electromagnetic fields - do they pose a cardiovascular risk?

. 2023 Apr 30 ; 72 (2) : 199-208.

Jazyk angličtina Země Česko Médium print

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid37159854

Mobile wireless communication technologies have now become an everyday part of our lives, 24 hours a day, 7 days a week. Monitoring the autonomous system under exposition to electromagnetic fields may play an important role in broading of our still limited knowledge on their effect on human body. Thus, we studied the interaction of the high frequency electromagnetic field (HF EMF) with living body and its effect on the autonomic control of heart rate using Heart Rate Variability (HRV) linear and nonlinear analyses in healthy volunteers. A group of young healthy probands (n=30, age mean: 24.2 ± 3.5 years) without any symptoms of disease was exposed to EMF with f=2400 MHz (Wi Fi), and f=2600 MHz (4G) for 5 minutes applied on the chest area. The short-term heart rate variability (HRV) metrics were used as an indicator of complex cardiac autonomic control. The evaluated HRV parameters: RR interval (ms), high frequency spectral power (HF-HRV in [ln(ms2)]) as an index of cardiovagal control, and a symbolic dynamic index of 0V %, indicating cardiac sympathetic activity. The cardiac-linked parasympathetic index HF-HRV was significantly reduced (p =0.036) and sympathetically mediated HRV index 0V % was significantly higher (p=0.002) during EMF exposure at 2400 MHz (Wi-Fi), compared to simulated 4G frequency 2600 MHz. No significant differences were found in the RR intervals. Our results revealed a shift in cardiac autonomic regulation towards sympathetic overactivity and parasympathetic underactivity indexed by HRV parameters during EMF exposure in young healthy persons. It seems that HF EMF exposure results in abnormal complex cardiac autonomic regulatory integrity which may be associated with higher risk of later cardiovascular complications already in healthy probands.

Zobrazit více v PubMed

Jakušová V. Ultraviolet radiation and mobile communication: physical properties, biological effects and health protection. (In Slovak) Bratislava: Samosato; 2009. p. 97 s.

Ekici B, Tanindi A, Ekici G, Diker E. The effects of the duration of mobile phone use on heart rate variability parameters in healthy subjects. Anatol J Cardiol. 2016:833–838. doi: 10.14744/AnatolJCardiol.2016.6717. PubMed DOI PMC

Barutcu I, Esen AM, Kaya D, Turkmen M, Karakaya O, Saglam M, Melek M, Çelik A, Kilit C, Onrat E, Kirma C. Do mobile phones pose a potential risk to autonomic modulation of the heart? Pacing Clin Electrophysiol. 2011;34:1511–1514. doi: 10.1111/j.1540-8159.2011.03162.x. PubMed DOI

Balikci K, Cem Ozcan I, Turgut-Balik D, Balik HH. A survey study on some neurological symptoms and sensations experienced by long term users of mobile phones. Pathol Biol (Paris) 2005;53:30–34. doi: 10.1016/j.patbio.2003.12.002. PubMed DOI

Taheri M, Mortazavi SMJ, Moradi M, Mansouri S, Hatam GR, Nouri F. Evaluation of the effect of radiofrequency radiation emitted from wi-fi router and mobile phone simulator on the antibacterial susceptibility of pathogenic Bacteria Listeria monocytogenes and Escherichia coli. Dose-Response: An Int J. 2017;15:1–8. doi: 10.1177/1559325816688527. PubMed DOI PMC

Rajendra Acharya U, Paul Joseph K, Kannathal N, Lim CM, Suri JS. Heart rate variability: a review. Med Biol Eng Comput. 2006;44:1031–1051. doi: 10.1007/s11517-006-0119-0. PubMed DOI

Acharya RU, Lim C, Joseph P. Heart rate variability analysis using correlation dimension and detrended fluctuation analysis. ITBM-RBM. 2002;23:333–339. doi: 10.1016/S1297-9562(02)90002-1. DOI

Joseph P, Acharya UR, Poo Ch, Chee J, Lim Ch, Iyengar S, Wei H. Effect of reflexological stimulation on heart rate variability. ITBM-RBM. 2004;25:40–45. doi: 10.1016/j.rbmret.2004.02.002. DOI

Ahamed TVI, Karthick NG, Joseph PK. Effect of mobile phone radiation on heart rate variability. Computers in Biology and Medicine. 2008;38:709–712. doi: 10.1016/j.compbiomed.2008.03.004. PubMed DOI

Levy MN, Schwartz PJ. Vagal control of the heart: experimental basis and clinical implications. Future. Armonk. 1994

Tonhajzerova I, Ondrejka I, Javorka K, Turianikova Z, Farsky I, Javorka M. Cardiac autonomic regulation is impaired in girls with major depression. Prog Neuropsychopharmacol Biol Psychiatry. 2010;34:613–8. doi: 10.1016/j.pnpbp.2010.02.023. PubMed DOI

Visnovcova Z, Mestanik M, Gala M, Mestanikova A, Tonhajzerova I. The complexity of electrodermal activity is altered in mental cognitive stressors. Comput Biol Med. 2016;79:123–129. doi: 10.1016/j.compbiomed.2016.10.014. PubMed DOI

Thorat KD, Shelke V. Effects of mobile phone radiation on heart rate variation in healthy volunteers. Res J Pharmaceut. Biol Chem Sci. 2013;4:840–845.

Laborde S, Mosley E, Thayer JF. Heart rate variability and cardiac vagal tone in psychophysiological research - recommendations for experiment planning, data analysis, and data reporting. Front Psychol. 2017;8:213. doi: 10.3389/fpsyg.2017.00213. PubMed DOI PMC

Misek J, Belyaev I, Jakusova V, Tonhajzerova I, Barabas J, Jakus J. Heart rate variability affected by radiofrequency electromagnetic field in adolescent students. Bioelectromagnetics. 2018;39:277–288. doi: 10.1002/bem.22115. PubMed DOI

Wallace J, Andrianome S, Ghosn R, Blanchard ES, Telliez F, Selmaoui B. Heart rate variability in healthy young adults exposed to global system for mobile communication (GSM) 900-MHz radiofrequency signal from mobile phones. Environ Res. 2020;191:110097. doi: 10.1016/j.envres.2020.110097. PubMed DOI

Ramshur JT. Design, evaluation, and application of heart rate variability analysis software (HRVAS) The University of Memphis; 2010. DOI

Camm A. Heart rate variability: standards of measurement, physiological interpretation and clinical use. Tasks force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology, 1996. Circulation. 93:1043–1065. PubMed

Javorka K, Čalkovská A, Danko J, Dókuš K, Funiak S, Gwozdziewicz M, et al. Heart rate variability (in Slovak) Martin: Osveta; 2008. p. 204p.

Bujnakova I, Ondrejka I, Mestanik M, Visnovcova Z, Mestanikova A, Hrtanek I, Fleskova D, Calkovska A, Tonhajzerova I. Autism spectrum disorder is associated with autonomic underarousal. Physiol Res. 2016;65(Suppl 5):S673–S682. doi: 10.33549/physiolres.933528. PubMed DOI

Navrátil L, Rosina J. Medicínská biofyzika. (in Czech) Praha: Grada; 2005. p. 524s.

Hampton RCh. The fundamentals of Wi-Fi Antennas. Technical Article. 2015

Yang Ming, Sun Yufa, Li Fan. A Compact Wideband Printed Antenna for 4G/5G/WLAN Wireless Applications. Int J Antennas Propagation. 2019;2019:3209840. doi: 10.1155/2019/3209840. DOI

Dasdag S, Akdag MZ. The link between radiofrequencies emitted from wireless technologies and oxidative stress. J Chem Neuroanatomy. 2016;75:85–93. doi: 10.1016/j.jchemneu.2015.09.001. PubMed DOI

Veternik M, Tonhajzerova I, Misek J, Jakusova V, Hudeckova H, Jakus J. The impact of sound exposure on heart rate variability in adolescent students. Physiol Res. 2018;67:695–702. doi: 10.33549/physiolres.933882. PubMed DOI

Oliver F, Acharya UR, Krishnan SM, Min LC. Analysis of cardiovascular signals using spatial filling index and time-frequency domain. Biomed Online J USA. 2004;3:30. doi: 10.1186/1475-925X-3-30. PubMed DOI PMC

Guzzetti S, Borroni E, Garbelli PE, Ceriani E, Della Bella P, Montano N, Cogliati C, Somers VK, Malliani A, Porta A. Symbolic dynamics of heart rate variability. A probe to investigate cardiac autonomic modulation Circulation. 2005;112:465–470. doi: 10.1161/CIRCULATIONAHA.104.518449. PubMed DOI

Brosschot JF, Verkuil B, Thayer JF. Generalized unsafety theory of stress: unsafe environments and conditions, and the default stress response. Int J Environ Res Public Health. 2018;15:464. doi: 10.3390/ijerph15030464. PubMed DOI PMC

Porta A, Guzzeti S, Furlan R, Gnecchi-Ruscone T, Montano N, Malliani A. Complexity and nonlinearity in short-term heart rate variability: comparison of methods based on local nonlinear prediction. Trans Biomed Eng. 2007;54:94–106. doi: 10.1109/TBME.2006.883789. PubMed DOI

Slavikova M, Sekaninova N, Bona O, Visnovcova Z, Tonhajzerova I. Biofeedback - A promising non-pharmacological tool of stress - related disorders. Acta Medica Martiniana. 2020;20:1–8. doi: 10.2478/acm-2020-0001. DOI

Voss A, Schulz S, Schroeder R, Baumert M, Caminal P. Methods derived from nonlinear dynamics for analysing heart rate variability. Philos Trans A Math Phys Eng Sci. 2009;367:277–96. doi: 10.1098/rsta.2008.0232. PubMed DOI

Porta A, Gnecchi-Ruscone T, Tobaldini E, Guzzetti S, Furlan R, Malliani A, Montano N. Symbolic analysis of short-term heart period variability during graded head-up tilt. Computers in Cardiology. 2006;33:109–112.

Mann K, Röschke J, Connemann B, Beta H. No effects of pulsed high-frequency electromagnetic fields on heart rate variability during human sleep. Neuropsychobiology. 1998;38:251–256. doi: 10.1159/000026549. PubMed DOI

Mohamed FA, Ahmed AA, El-Kafoury BMA, Lasheen NN. Study of the cardiovascular effects of exposure to electromagnetic field. Life Sci J. 2011;8:260–275.

Visnovcova Z, Mestanik M, Javorka M, Mokra D, Gala M, Jurko A, Calkovska A, Tonhajzerova I. Complexity and time asymmetry of heart rate variability are altered in acute mental stress. Physiol Meas. 2014;35:1319–1334. doi: 10.1088/0967-3334/35/7/1319. PubMed DOI

Gmitrov J. Static magnetic field effect on the arterial baroreflex-mediated control of microcirculation: implications for cardiovascular effects due to environmental magnetic fields. Radiat Environ Biophys. 2007;46:281–290. doi: 10.1007/s00411-007-0115-2. PubMed DOI

Salah MB, Abdelmelek H, Abderraba M. Effects of olive leave extract on metabolic disorders and oxidative stress induced by 2.45 GHz WIFI signals. Environ Toxicol Pharmacol. 2013;36:826–834. doi: 10.1016/j.etap.2013.07.013. PubMed DOI

Thayer JF, Lane RD. A model of neurovisceral integration in emotion regulation and dysregulation. J Affect Disord. 2000;61:201–216. doi: 10.1016/S0165-0327(00)00338-4. PubMed DOI

Wehrwein EA, Orer HS, Barman SM. Overview of the Anatomy, Physiology, and Pharmacology of the Autonomic Nervous System. Compr Physiol. 2016;6:1239–1278. doi: 10.1002/cphy.c150037. PubMed DOI

Tonhajzerová I. et al. 978-80-8187-009-5Psychofyziológia: Od stresovej odpovede po Biofeedback. Martin. 2016:164s.

Misek J, Veterník M, Tonhajzerova I, Jakusova V, Janousek L, Jakus J. Radiofrequency electromagnetic field affects heart rate variability in rabbits. Physiol Res. 2020;69:633–643. doi: 10.33549/physiolres.934425. PubMed DOI PMC

Benarroch EE. The central autonomic network: functional organization, dysfunction, and perspective. Mayo Clin Proc. 1993;68:988–1001. doi: 10.1016/S0025-6196(12)62272-1. PubMed DOI

Tonhajzerová I. 978-80-89544-92-9 EAN 9788089544929Psychophysiology: Respiratory sinus arrhythmia in the context of the polyvagal theory. (in Slovak) Martin. 2015;79s

Porges SW. The polyvagal perspective. Biol Psychol. 2007;74:116–143. doi: 10.1016/j.biopsycho.2006.06.009. PubMed DOI PMC

Tonhajzerova I, Ondrejka I, Ferencova N, Bujnakova I, Grendar M, Olexova LB, Hrtanek I, Visnovcova Z. Alternations in the Cardiovascular Autonomic Regulation and Growth Factors in Autism. Physiol Res. 2021;70:551–561. doi: 10.33549/physiolres.934662. PubMed DOI PMC

Shaffer F, Ginsberg JP. An overview of heart rate variability metrics and norms. Front Public Health. 2017;5:258. doi: 10.3389/fpubh.2017.00258. PubMed DOI PMC

Mestanik M, Mestanikova A, Langer P, Grendar M, Jurko A, Sekaninova N, Visnovcova N, Tonhajzerova I. Respiratory sinus arrhythmia - testing the method of choice for evaluation of cardiovagal regulation. Respir Physiol Neurobiol. 2019;259:86–92. doi: 10.1016/j.resp.2018.08.002. PubMed DOI

Young Benton. Heart-rate variability: a biomarker to study the influence of nutrition on physiological and psychological health? Behav Pharmacol. 2018;29(Spec issue 2–3):140–151. doi: 10.1097/FBP.0000000000000383. PubMed DOI PMC

Porta A, Tobaldini E, Guzzetti S, Furlan R, Montano N. Gnecchi-Ruscone TAssessment of cardiac autonomic modulation during graded head-up tilt by symbolic analysis of heart rate variability. Am J Physiol Heart Circ Physiol. 2007;293:H702–H708. doi: 10.1152/ajpheart.00006.2007. PubMed DOI

Silva L, Geraldini VR, De Olivera BP, Silva CAA, Porta A, Fazan R. Comparison between spectral analysis and symbolic dynamics for heart rate variability analysis in the rat. Sci Rep. 2017;7:1–8. doi: 10.1038/s41598-017-08888-w. PubMed DOI PMC

Catai AM, Pastre CM, Godoy MF, Silva ED, Takahashi ACM, Vanderlei LCM. Heart rate variability: are you using it properly? Standardisation checklist of procedures. Braz J Phys Ther. 2020;24:91–102. doi: 10.1016/j.bjpt.2019.02.006. PubMed DOI PMC

Moura-Tonello SCG, Carvalho VO, Godoy MF, Porta A, Leal ÂMO, Bocchi EA, Catai AM. Evaluation of cardiac autonomic modulation using symbolic dynamics after cardiac transplantation. Braz J Cardiovasc Surg. 2019;34:572–580. doi: 10.21470/1678-9741-2019-0236. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...