Engineering 2D Material Exciton Line Shape with Graphene/h-BN Encapsulation
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
- Klíčová slova
- electron energy-loss spectroscopy, excitons, transition metal dichalcogenides, two-dimensional materials, van der Waals heterostructure,
- Publikační typ
- časopisecké články MeSH
Control over the optical properties of atomically thin two-dimensional (2D) layers, including those of transition metal dichalcogenides (TMDs), is needed for future optoelectronic applications. Here, the near-field coupling between TMDs and graphene/graphite is used to engineer the exciton line shape and charge state. Fano-like asymmetric spectral features are produced in WS2, MoSe2, and WSe2 van der Waals heterostructures combined with graphene, graphite, or jointly with hexagonal boron nitride (h-BN) as supporting or encapsulating layers. Furthermore, trion emission is suppressed in h-BN encapsulated WSe2/graphene with a neutral exciton red shift (44 meV) and binding energy reduction (30 meV). The response of these systems to electron beam and light probes is well-described in terms of 2D optical conductivities of the involved materials. Beyond fundamental insights into the interaction of TMD excitons with structured environments, this study opens an unexplored avenue toward shaping the spectral profile of narrow optical modes for application in nanophotonic devices.
Central European Institute of Technology Brno University of Technology Brno 612 00 Czech Republic
Department of Materials Imperial College London London SW7 2AZ U K
Department of Physics Bar Ilan University Ramat Gan 5290002 Israel
Indian Institute of Science Education and Research Dr Homi Bhabha Road 411008 Pune India
Institute of Physical Engineering Brno University of Technology Brno 616 69 Czech Republic
Institute of Physics and Center for Nanotechnology University of Münster 48149 Münster Germany
Université Côte d'Azur CNRS CRHEA 06560 Valbonne Sophia Antipolis France
Université Paris Saclay CNRS Institut des Sciences Moléculaires d'Orsay 91405 Orsay France
Université Paris Saclay CNRS Laboratoire de Physique des Solides 91405 Orsay France
Citace poskytuje Crossref.org