Imiquimod nanocrystal-loaded dissolving microneedles prepared by DLP printing
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
PubMed
38472727
PubMed Central
PMC11614970
DOI
10.1007/s13346-024-01567-0
PII: 10.1007/s13346-024-01567-0
Knihovny.cz E-zdroje
- Klíčová slova
- 3D printing, Dermal delivery, Imiquimod, Microneedles, Nanocrystals,
- MeSH
- 3D tisk * MeSH
- aplikace kožní MeSH
- imichimod * chemie aplikace a dávkování MeSH
- jehly * MeSH
- kožní absorpce MeSH
- kůže metabolismus MeSH
- lékové transportní systémy přístrojové vybavení MeSH
- mikroinjekce přístrojové vybavení MeSH
- nanočástice * chemie aplikace a dávkování MeSH
- polyethylenglykoly chemie aplikace a dávkování MeSH
- povidon chemie MeSH
- rozpustnost * MeSH
- uvolňování léčiv MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- imichimod * MeSH
- poly(ethylene glycol)diacrylate MeSH Prohlížeč
- polyethylenglykoly MeSH
- povidon MeSH
The utilization of 3D printing- digital light processing (DLP) technique, for the direct fabrication of microneedles encounters the problem of drug solubility in printing resin, especially if it is predominantly composed of water. The possible solution how to ensure ideal belonging of drug and water-based printing resin is its pre-formulation in nanosuspension such as nanocrystals. This study investigates the feasibility of this approach on a resin containing nanocrystals of imiquimod (IMQ), an active used in (pre)cancerous skin conditions, well known for its problematic solubility and bioavailability. The resin blend of polyethylene glycol diacrylate and N-vinylpyrrolidone, and lithium phenyl-2,4,6-trimethylbenzoylphosphinate as a photoinitiator, was used, mixed with IMQ nanocrystals in water. The final microneedle-patches had 36 cylindrical microneedles arranged in a square grid, measuring approximately 600 μm in height and 500 μm in diameter. They contained 5wt% IMQ, which is equivalent to a commercially available cream. The homogeneity of IMQ distribution in the matrix was higher for nanocrystals compared to usual crystalline form. The release of IMQ from the patches was determined ex vivo in natural skin and revealed a 48% increase in efficacy for nanocrystal formulations compared to the crystalline form of IMQ.
Zobrazit více v PubMed
Peng K, Vora LK, Domínguez-Robles J, Naser YA, Li M, Larrañeta E, et al. Hydrogel-forming microneedles for rapid and efficient skin deposition of controlled release tip-implants. Mater Sci Eng C. 2021;127:112226. 10.1016/j.msec.2021.112226. PubMed
Zhao Z, Chen Y, Shi Y, Microneedles. A potential strategy in transdermal delivery and application in the management of psoriasis. RSC Adv. 2020;10:14040–9. 10.1039/D0RA00735H. PubMed PMC
Mathew E, Pitzanti G, Gomes dos Santos AL, Lamprou DA. Optimization of printing parameters for digital light processing 3d printing of hollow microneedle arrays. Pharmaceutics. 2021;13:1837. 10.3390/pharmaceutics13111837. PubMed PMC
Dabbagh SR, Sarabi MR, Rahbarghazi R, Sokullu E, Yetisen AK, Tasoglu S. 3D-printed microneedles in biomedical applications. iScience. 2021;24:102012. 10.1016/j.isci.2020.102012. PubMed PMC
Economidou SN, Lamprou DA, Douroumis D. 3D printing applications for transdermal drug delivery. Int J Pharm. 2018;544. 10.1016/j.ijpharm.2018.01.031.:415– 24. PubMed
Ahn D, Stevens LM, Zhou K, Page ZA. Rapid High-Resolution visible light 3D Printing. ACS Cent Sci. 2020;6:1555–63. 10.1021/acscentsci.0c00929. PubMed PMC
Wang J, Goyanes A, Gaisford S, Basit AW. Stereolithographic (SLA) 3D printing of oral modified-release dosage forms. Int J Pharm. 2016;503:207–12. 10.1016/j.ijpharm.2016.03.016. PubMed
Johnson AR, Caudill CL, Tumbleston JR, Bloomquist CJ, Moga KA, Ermoshkin A, et al. Single-step fabrication of computationally designed microneedles by continuous liquid interface production. PLoS ONE. 2016;11:e0162518. 10.1371/journal.pone.0162518. PubMed PMC
Keirouz A, Mustafa YL, Turner JG, Lay E, Jungwirth U, Marken F, et al. Conductive polymer-coated 3D printed microneedles: Biocompatible platforms for minimally invasive Biosensing interfaces. Small. 2023;19:2206301. 10.1002/smll.202206301. PubMed
Lim SH, Kathuria H, Amir MHB, Zhang X, Duong HT, Ho PC-L, et al. High resolution photopolymer for 3D printing of personalised microneedle for transdermal delivery of anti-wrinkle small peptide. J Control Release. 2021;329:907–18. 10.1016/j.jconrel.2020.10.021. PubMed
Ghezzi M, Pescina S, Delledonne A, Ferraboschi I, Sissa C, Terenziani F, et al. Improvement of Imiquimod Solubilization and skin Retention via TPGS micelles: exploiting the Co-solubilizing Effect of Oleic Acid. Pharmaceutics. 2021;13:1476. 10.3390/pharmaceutics13091476. PubMed PMC
Gazzi RP, Frank LA, Onzi G, Pohlmann AR, Guterres SS. New pectin-based hydrogel containing imiquimod-loaded polymeric nanocapsules for melanoma treatment. Drug Deliv Transl Res. 2020;10:1829–40. 10.1007/s13346-020-00805-5. PubMed
Dias MF, Figueiredo BCPd, Teixeira-Neto J, Guerra MCA, Fialho SL, Silva Cunha A. In vivo evaluation of antitumoral and antiangiogenic effect of imiquimod-loaded polymeric nanoparticles. Biomed Pharmacother. 2018;103:1107–14. 10.1016/j.biopha.2018.04.079. PubMed
Argenziano M, Haimhoffer A, Bastiancich C, Jicsinszky L, Caldera F, Trotta F, et al. In Vitro enhanced skin permeation and Retention of Imiquimod loaded in β-Cyclodextrin Nanosponge Hydrogel. Pharmaceutics. 2019;11:138. 10.3390/pharmaceutics11030138. PubMed PMC
Stein P, Gogoll K, Tenzer S, Schild H, Stevanovic S, Langguth P, et al. Efficacy of Imiquimod-based Transcutaneous Immunization using a Nano-dispersed Emulsion Gel Formulation. PLoS ONE. 2014;9:e102664. 10.1371/journal.pone.0102664. PubMed PMC
Petrová E, Chvíla S, Balouch M, Štěpánek F, Zbytovská J. Nanoformulations for dermal delivery of Imiquimod: the race of soft against hard. Int J Pharm. 2023;648:123577. 10.1016/j.ijpharm.2023.123577. PubMed
Kalvodová A, Dvořáková K, Petrová E, Michniak-Kohn BB, Zbytovská J. The Contest of nanoparticles: searching for the most effective topical delivery of corticosteroids. Pharmaceutics. 2023;15:513. 10.3390/pharmaceutics15020513. PubMed PMC
Larrañeta E, Moore J, Vicente-Pérez EM, González-Vázquez P, Lutton R, Woolfson AD, et al. A proposed model membrane and test method for microneedle insertion studies. Int J Pharm. 2014;472:65–73. 10.1016/j.ijpharm.2014.05.042. PubMed PMC
Lambers H, Piessens S, Bloem A, Pronk H, Finkel P. Natural skin surface pH is on average below 5, which is beneficial for its resident flora. Int J Cosmet Sci. 2006;28:359–70. 10.1111/j.1467-2494.2006.00344.x. PubMed
Braun-Falco O, Korting HC. [Normal pH value of human skin]. Hautarzt. 1986;37:126–9. 10.1016/j.isci.2020.102012. PubMed
Dash S, Murthy PN, Nath L, Chowdhury P. Kinetic modeling on drug release from controlled drug delivery systems. Acta Pol Pharm. 2010;67:217–23. PubMed
Papadopoulou V, Kosmidis K, Vlachou M, Macheras P. On the use of the Weibull function for the discernment of drug release mechanisms. Int J Pharm. 2006;309:44–50. 10.1016/j.ijpharm.2005.10.044. PubMed
Balireddi V, Tirukkovalluri SR, Murthy Tatikonda K, Surikutchi BT, Mitra P. Development and validation of stability indicating UPLC–PDA/MS for the determination of imiquimod and its eight related substances: application to topical cream. J Chromatogr Sci. 2019;57:249–57. 10.1093/chromsci/bmy108. PubMed
White TJ, Liechty WB, Guymon CA. The influence of N-vinyl pyrrolidone on polymerization kinetics and thermo-mechanical properties of crosslinked acrylate polymers. J. Polym. Sci., Part A: Polym. Chem. 2007;45:4062-73. 10.1002/pola.22173.
He L, Lin D, Wang Y, Xiao Y, Che J. Electroactive SWNT/PEGDA hybrid hydrogel coating for bio-electrode interface. Colloids Surf B Biointerfaces. 2011;87:273–9. 10.1016/j.colsurfb.2011.05.028. PubMed
Marimuthu E, Rathinam B, Murugesan V. Facile and green route polymerization of N-vinyl pyrrolidone under ultrasound-aided dual-site phase transfer catalytic conditions. Colloid Polym Sci. 2022;300:641–54. 10.1007/s00396-022-04979-x.
Fares MM, Assaf SM, Abul-Haija YM. Pectin grafted poly (N‐vinylpyrrolidone): optimization and in vitro controllable theophylline drug release. J Appl Polym Sci. 2010;117:1945–54. 10.1002/app.32172.
Donnelly RF, Majithiya R, Singh TRR, Morrow DIJ, Garland MJ, Demir YK, et al. Design, optimization and characterisation of polymeric microneedle arrays prepared by a Novel laser-based micromoulding technique. Pharm Res. 2011;28:41–57. 10.1007/s11095-010-0169-8. PubMed PMC
Lee CY, Teymour F, Camastral H, Tirelli N, Hubbell JA, Elbert DL, et al. Characterization of the network structure of PEG diacrylate hydrogels formed in the presence of N-vinyl pyrrolidone. Macromol Reac Eng. 2014;8:314–28. 10.1002/mren.201300166.
Jiménez-Sánchez G, Pavot V, Chane-Haong C, Handké N, Terrat C, Gigmes D, et al. Preparation and in vitro evaluation of imiquimod loaded polylactide-based micelles as potential vaccine adjuvants. Pharm Res. 2015;32:311–20. 10.1007/s11095-014-1465-5. PubMed
El-Arini SK, Leuenberger H. Dissolution properties of praziquantel–PVP systems. Pharm Acta Helv. 1998;73:89–94. 10.1016/S0031-6865(97)00051-4. PubMed
Katzhendler I, Hoffman A, Goldberger A, Friedman M. Modeling of Drug Release from Erodible tablets. J Pharm Sci. 1997;86:110–5. 10.1021/js9600538. PubMed
Trucillo P, Drug Carriers. A review on the most used Mathematical models for Drug Release. Processes. 2022;10:1094. 10.3390/pr10061094.
Sabri AH, Cater Z, Gurnani P, Ogilvie J, Segal J, Scurr DJ, et al. Intradermal delivery of imiquimod using polymeric microneedles for basal cell carcinoma. Int J Pharm. 2020;589:119808. 10.1016/j.ijpharm.2020.119808. PubMed