Trends in the Incorporation of Antiseptics into Natural Polymer-Based Nanofibrous Mats
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic
Document type Journal Article, Review
PubMed
38475347
PubMed Central
PMC10935236
DOI
10.3390/polym16050664
PII: polym16050664
Knihovny.cz E-resources
- Keywords
- antiseptics, bandage, chitosan, electrospinning, hyaluronic acid, nanofibers, nanoparticles, wound healing,
- Publication type
- Journal Article MeSH
- Review MeSH
Nanofibrous materials represent a very promising form of advanced carrier systems that can be used industrially, especially in regenerative medicine as highly functional bandages, or advanced wound dressings. By incorporation of antimicrobial additives directly into the structure of the nanofiber carrier, the functionality of the layer is upgraded, depending on the final requirement-bactericidal, bacteriostatic, antiseptic, or a generally antimicrobial effect. Such highly functional nanofibrous layers can be prepared mostly by electrospinning technology from both synthetic and natural polymers. The presence of a natural polymer in the composition is very advantageous. Especially in medical applications where, due to the presence of the material close to the human body, the healing process is more efficient and without the occurrence of an unwanted inflammatory response. However, converting natural polymers into nanofibrous form, with a homogeneously distributed and stable additive, is a great challenge. Thus, a combination of natural and synthetic materials is often used. This review clearly summarizes the issue of the incorporation and effectiveness of different types of antimicrobial substances, such as nanoparticles, antibiotics, common antiseptics, or substances of natural origin, into electrospun nanofibrous layers made of mostly natural polymer materials. A section describing the problematic aspects of antimicrobial polymers is also included.
See more in PubMed
Heunis T.D.J., Dicks L.M.T. Nanofibers Offer Alternative Ways to the Treatment of Skin Infections. J. Biomed. Biotechnol. 2010;2010:510682. doi: 10.1155/2010/510682. PubMed DOI PMC
Liu M., Duan X.P., Li Y.M., Yang D.P., Long Y.Z. Electrospun nanofibers for wound healing. Mater. Sci. Eng. C. 2017;76:1413–1423. doi: 10.1016/j.msec.2017.03.034. PubMed DOI
Sylvester M.A., Amini F., Tan C.K. Electrospun nanofibers in wound healing. Mater. Today Proc. 2020;29:1–6. doi: 10.1016/j.matpr.2020.05.686. DOI
Bombin A.D.J., Dunne N.J., McCarthy H.O. Electrospinning of natural polymers for the production of nanofibres for wound healing applications. Mater. Sci. Eng. C Mater. Biol. Appl. 2020;114:110994. doi: 10.1016/j.msec.2020.110994. PubMed DOI
Hamdan N., Yamin A., Hamid S.A., Khodir W.K.W.A., Guarino V. Functionalized Antimicrobial Nanofibers: Design Criteria and Recent Advances. J. Funct. Biomater. 2021;12:59. doi: 10.3390/jfb12040059. PubMed DOI PMC
Bombin A.D.J., Dunne N., McCarthy H. A microRNA ‘cocktail’ by electrospun PVA/alginate/ciprofloxacin nanofibres: A genetic nanomedicine for impaired wound healing; Proceedings of the 31st Conference of the European Society for Biomaterials; Porto, Portugal. 5–9 September 2021.
Hajipour M.J., Fromm K.M., Ashkarran A.A., de Aberasturi D.J., de Larramendi I.R., Rojo T., Serpooshan V., Parak W.J., Mahmoudi M. Antibacterial properties of nanoparticles. Trends Biotechnol. 2012;30:499–511. doi: 10.1016/j.tibtech.2012.06.004. PubMed DOI
Murray C.J.L., Ikuta K.S., Sharara F., Swetschinski L., Aguilar G.R., Gray A., Han C., Bisignano C., Rao P., Wool E., et al. Global burden of bacterial antimicrobial resistance in 2019: A systematic analysis. Lancet. 2022;399:629–655. doi: 10.1016/S0140-6736(21)02724-0. PubMed DOI PMC
Knight G.M., E Glover R., McQuaid C.F., Olaru I.D., Gallandat K., Leclerc Q.J., Fuller N.M., Willcocks S.J., Hasan R., van Kleef E., et al. Antimicrobial resistance and COVID-19: Intersections and implications. eLife. 2021;10:e64139. doi: 10.7554/eLife.64139. PubMed DOI PMC
Kalwar K., Hu L., Li D., Shan D. AgNPs incorporated on deacetylated electrospun cellulose nanofibers and their effect on the antimicrobial activity. Polym. Adv. Technol. 2017;29:394–400. doi: 10.1002/pat.4127. DOI
Blantocas G.Q., Alaboodi A.S., Mekky A.-B.H. Synthesis of Chitosan—TiO2 Antimicrobial Composites via a 2-Step Process of Electrospinning and Plasma Sputtering. Arab. J. Sci. Eng. 2017;43:389–398. doi: 10.1007/s13369-017-2695-8. DOI
Ahmed R., Tariq M., Ali I., Asghar R., Khanam P.N., Augustine R., Hasan A. Novel electrospun chitosan/polyvinyl alcohol/zinc oxide nanofibrous mats with antibacterial and antioxidant properties for diabetic wound healing. Int. J. Biol. Macromol. 2018;120:385–393. doi: 10.1016/j.ijbiomac.2018.08.057. PubMed DOI
Maharjan B., Joshi M.K., Tiwari A.P., Park C.H., Kim C.S. In-situ synthesis of AgNPs in the natural/synthetic hybrid nanofibrous scaffolds: Fabrication, characterization and antimicrobial activities. J. Mech. Behav. Biomed. Mater. 2017;65:66–76. doi: 10.1016/j.jmbbm.2016.07.034. PubMed DOI
Nudelman R., Alhmoud H., Delalat B., Fleicher S., Fine E., Guliakhmedova T., Elnathan R., Nyska A., Voelcker N.H., Gozin M., et al. Jellyfish-Based Smart Wound Dressing Devices Containing In Situ Synthesized Antibacterial Nanoparticles. Adv. Funct. Mater. 2019;29:1902783. doi: 10.1002/adfm.201902783. DOI
Zhang C., Wang X., Fan S., Lan P., Cao C., Zhang Y. Silk fibroin/reduced graphene oxide composite mats with enhanced mechanical properties and conductivity for tissue engineering. Colloids Surf. B Biointerfaces. 2021;197:111444. doi: 10.1016/j.colsurfb.2020.111444. PubMed DOI
Kandasamy S., Narayanan V., Sumathi S. Zinc and manganese substituted hydroxyapatite/CMC/PVP electrospun composite for bone repair applications. Int. J. Biol. Macromol. 2020;145:1018–1030. doi: 10.1016/j.ijbiomac.2019.09.193. PubMed DOI
El-Aassar M.R., Ibrahim O.M., Fouda M.M.G., El-Beheri N.G., Agwa M.M. Wound healing of nanofiber comprising Polygalacturonic/Hyaluronic acid embedded silver nanoparticles: In-vitro and in-vivo studies. Carbohydr. Polym. 2020;238:116175. doi: 10.1016/j.carbpol.2020.116175. PubMed DOI
El-Aassar M.R., El-Beheri N.G., Agwa M.M., Eltaher H.M., Alseqely M., Sadik W.S., El-Khordagui L. Antibiotic-free combinational hyaluronic acid blend nanofibers for wound healing enhancement. Int. J. Biol. Macromol. 2021;167:1552–1563. doi: 10.1016/j.ijbiomac.2020.11.109. PubMed DOI
Eghbalifam N., Shojaosadati S.A., Hashemi-Najafabadi S., Khorasani A.C. Synthesis and characterization of antimicrobial wound dressing material based on silver nanoparticles loaded gum Arabic nanofibers. Int. J. Biol. Macromol. 2020;155:119–130. doi: 10.1016/j.ijbiomac.2020.03.194. PubMed DOI
Hasannasab M., Nourmohammadi J., Dehghan M.M., Ghaee A. Immobilization of bromelain and ZnO nanoparticles on silk fibroin nanofibers as an antibacterial and anti-inflammatory burn dressing. Int. J. Pharm. 2021;610:121227. doi: 10.1016/j.ijpharm.2021.121227. PubMed DOI
Lu H.-T., Huang G.-Y., Chang W.-J., Lu T.-W., Huang T.-W., Ho M.-H., Mi F.-L. Modification of chitosan nanofibers with CuS and fucoidan for antibacterial and bone tissue engineering applications. Carbohydr. Polym. 2022;281:119035. doi: 10.1016/j.carbpol.2021.119035. PubMed DOI
Haider K., Ullah A., Sarwar M.N., Saito Y., Sun L., Park S., Kim I.S. Lignin-mediated in-situ synthesis of CuO nanoparticles on cellulose nanofibers: A potential wound dressing material. Int. J. Biol. Macromol. 2021;173:315–326. doi: 10.1016/j.ijbiomac.2021.01.050. PubMed DOI
Shi Q., Vitchuli N., Nowak J., Caldwell J.M., Breidt F., Bourham M., Zhang X., McCord M. Durable antibacterial Ag/polyacrylonitrile (Ag/PAN) hybrid nanofibers prepared by atmospheric plasma treatment and electrospinning. Eur. Polym. J. 2011;47:1402–1409. doi: 10.1016/j.eurpolymj.2011.04.002. DOI
Rodríguez-Tobías H., Morales G., Grande D. Comprehensive review on electrospinning techniques as versatile approaches toward antimicrobial biopolymeric composite fibers. Mater. Sci. Eng. C. 2019;101:306–322. doi: 10.1016/j.msec.2019.03.099. PubMed DOI
Rather A.H., Khan R.S., Wani T.U., Rafiq M., Jadhav A.H., Srinivasappa P.M., Abdal-Hay A., Sultan P., Rather S.-U., Macossay J., et al. Polyurethane and cellulose acetate micro-nanofibers containing rosemary essential oil, and decorated with silver nanoparticles for wound healing application. Int. J. Biol. Macromol. 2023;226:690–705. doi: 10.1016/j.ijbiomac.2022.12.048. PubMed DOI
Alexander J.W. History of the Medical Use of Silver. Surg. Infect. 2009;10:289–292. doi: 10.1089/sur.2008.9941. PubMed DOI
Sim W., Barnard R.T., Blaskovich M.A.T., Ziora Z.M. Antimicrobial silver in medicinal and consumer applications: A patent review of the past decade (2007–2017) Antibiotics. 2018;7:93. doi: 10.3390/antibiotics7040093. PubMed DOI PMC
Bruna T., Maldonado-Bravo F., Jara P., Caro N. Silver Nanoparticles and Their Antibacterial Applications. Int. J. Mol. Sci. 2021;22:7202. doi: 10.3390/ijms22137202. PubMed DOI PMC
Yin I.X., Zhang J., Zhao I.S., Mei M.L., Li Q., Chu C.H. The Antibacterial Mechanism of Silver Nanoparticles and Its Application in Dentistry. Int. J. Nanomed. 2020;ume 15:2555–2562. doi: 10.2147/IJN.S246764. PubMed DOI PMC
Azizi-Lalabadi M., Garavand F., Jafari S.M. Incorporation of silver nanoparticles into active antimicrobial nanocomposites: Release behavior, analyzing techniques, applications and safety issues. Adv. Colloid Interface Sci. 2021;293:102440. doi: 10.1016/j.cis.2021.102440. PubMed DOI
Jane Cypriyana P.J., Saigeetha S., Lavanya Agnes Angalene J., Samrot A.V., Suresh Kumar S., Ponniah P., Chakravarthi S. Overview on toxicity of nanoparticles, it’s mechanism, models used in toxicity studies and disposal methods—A review. Biocatal. Agric. Biotechnol. 2021;36:102117. doi: 10.1016/j.bcab.2021.102117. DOI
Ferdous Z., Nemmar A. Health Impact of Silver Nanoparticles: A Review of the Biodistribution and Toxicity Following Various Routes of Exposure. Int. J. Mol. Sci. 2020;21:2375. doi: 10.3390/ijms21072375. PubMed DOI PMC
Jatoi A.W., Kim I.S., Ni Q.Q. A comparative study on synthesis of AgNPs on cellulose nanofibers by thermal treatment and DMF for antibacterial activities. Mater. Sci. Eng. C. 2019;98:1179–1195. doi: 10.1016/j.msec.2019.01.017. PubMed DOI
Moon J.Y., Lee J., Hwang T.I., Park C.H., Kim C.S. A multifunctional, one-step gas foaming strategy for antimicrobial silver nanoparticle-decorated 3D cellulose nanofiber scaffolds. Carbohydr. Polym. 2021;273:118603. doi: 10.1016/j.carbpol.2021.118603. PubMed DOI
Sofi H.S., Akram T., Shabir N., Vasita R., Jadhav A.H., Sheikh F.A. Regenerated cellulose nanofibers from cellulose acetate: Incorporating hydroxyapatite (HAp) and silver (Ag) nanoparticles (NPs), as a scaffold for tissue engineering applications. Mater. Sci. Eng. C. 2020;118:111547. doi: 10.1016/j.msec.2020.111547. PubMed DOI
Chen J., Huang Z., Zhang H., Zhang Z., Wang D., Xia D., Yang C., Dong M. Three-dimensional layered nanofiber sponge with in situ grown silver- metal organic framework for enhancing wound healing. Chem. Eng. J. 2022;443:136234. doi: 10.1016/j.cej.2022.136234. DOI
Fereydouni N., Zangouei M., Darroudi M., Hosseinpour M., Gholoobi A. Antibacterial activity of chitosan-polyethylene oxide nanofibers containing silver nanoparticles against aerobic and anaerobic bacteria. J. Mol. Struct. 2023;1274:134304. doi: 10.1016/j.molstruc.2022.134304. DOI
Jatoi A.W., Kim I.S., Ni Q.-Q. Cellulose acetate nanofibers embedded with AgNPs anchored TiO2 nanoparticles for long term excellent antibacterial applications. Carbohydr. Polym. 2019;207:640–649. doi: 10.1016/j.carbpol.2018.12.029. PubMed DOI
Li C., Liu Z., Liu S., Tiwari S.K., Thummavichai K., Ola O., Ma Z., Zhang S., Wang N., Zhu Y. Antibacterial properties and drug release study of cellulose acetate nanofibers containing ear-like Ag-NPs and Dimethyloxallyl Glycine/beta-cyclodextrin. Appl. Surf. Sci. 2022;590:153132. doi: 10.1016/j.apsusc.2022.153132. DOI
Srivastava C.M., Purwar R., Gupta A.P. Enhanced potential of biomimetic, silver nanoparticles functionalized Antheraea mylitta (tasar) silk fibroin nanofibrous mats for skin tissue engineering. Int. J. Biol. Macromol. 2019;130:437–453. doi: 10.1016/j.ijbiomac.2018.12.255. PubMed DOI
Yang J., Wang K., Yu D.-G., Yang Y., Bligh S.W.A., Williams G.R. Electrospun Janus nanofibers loaded with a drug and inorganic nanoparticles as an effective antibacterial wound dressing. Mater. Sci. Eng. C. 2020;111:110805. doi: 10.1016/j.msec.2020.110805. PubMed DOI
Cotton G.C., Lagesse N.R., Parke L.S., Meledandri C.J. Comprehensive Nanoscience and Nanotechnology. Academic Press; Cambridge, MA, USA: 2019. Antibacterial Nanoparticles; pp. 65–82.
Jiang J., Pi J., Cai J. The Advancing of Zinc Oxide Nanoparticles for Biomedical Applications. Bioinorg. Chem. Appl. 2018;2018:1062562. doi: 10.1155/2018/1062562. PubMed DOI PMC
Siddiqi K.S., Rahman A.U., Tajuddin N., Husen A. Properties of Zinc Oxide Nanoparticles and Their Activity Against Microbes. Nanoscale Res. Lett. 2018;13:141. doi: 10.1186/s11671-018-2532-3. PubMed DOI PMC
Ranjbar-Mohammadi M., Shakoori P., Arab-Bafrani Z. Design and characterization of keratin/PVA-PLA nanofibers containing hybrids of nanofibrillated chitosan/ZnO nanoparticles. Int. J. Biol. Macromol. 2021;187:554–565. doi: 10.1016/j.ijbiomac.2021.07.160. PubMed DOI
Hadisi Z., Farokhi M., Bakhsheshi-Rad H.R., Jahanshahi M., Hasanpour S., Pagan E., Dolatshahi-Pirouz A., Zhang Y.S., Kundu S.C., Akbari M. Hyaluronic Acid (HA)-Based Silk Fibroin/Zinc Oxide Core–Shell Electrospun Dressing for Burn Wound Management. Macromol. Biosci. 2020;20:e1900328. doi: 10.1002/mabi.201900328. PubMed DOI
Rezaei A., Katoueizadeh E., Zebarjad S.M. Investigating of the influence of zinc oxide nanoparticles morphology on the properties of electrospun polyvinyl alcohol/chitosan (PVA/CS) nanofibers. J. Drug Deliv. Sci. Technol. 2023;86:104712. doi: 10.1016/j.jddst.2023.104712. DOI
Sadeghi M., Rahimnejad M., Adeli H., Feizi F. Matrix–Drug Interactions for the Development of pH-Sensitive Alginate-Based Nanofibers as an Advanced Wound Dressing. J. Polym. Environ. 2023;31:1242–1256. doi: 10.1007/s10924-022-02671-3. DOI
Jafari A., Amirsadeghi A., Hassanajili S., Azarpira N. Bioactive antibacterial bilayer PCL/gelatin nanofibrous scaffold promotes full-thickness wound healing. Int. J. Pharm. 2020;583:119413. doi: 10.1016/j.ijpharm.2020.119413. PubMed DOI
Chen Y., Lu W., Guo Y., Zhu Y., Song Y. Electrospun Gelatin Fibers Surface Loaded ZnO Particles as a Potential Biodegradable Antibacterial Wound Dressing. Nanomaterials. 2019;9:525. doi: 10.3390/nano9040525. PubMed DOI PMC
Harandi F.N., Khorasani A.C., Shojaosadati S.A., Hashemi-Najafabadi S. Living Lactobacillus–ZnO nanoparticles hybrids as antimicrobial and antibiofilm coatings for wound dressing application. Mater. Sci. Eng. C. 2021;130:112457. doi: 10.1016/j.msec.2021.112457. PubMed DOI
Jaberifard F., Ramezani S., Ghorbani M., Arsalani N., Moghadam F.M. Investigation of wound healing efficiency of multifunctional eudragit/soy protein isolate electrospun nanofiber incorporated with ZnO loaded halloysite nanotubes and allantoin. Int. J. Pharm. 2023;630:122434. doi: 10.1016/j.ijpharm.2022.122434. PubMed DOI
Makvandi P., Wang C.Y., Zare E.N., Borzacchiello A., Niu L.N., Tay F.R. Metal-Based Nanomaterials in Biomedical Applications: Antimicrobial Activity and Cytotoxicity Aspects. Adv. Funct. Mater. 2020;30:1910021. doi: 10.1002/adfm.201910021. DOI
Raffi M., Mehrwan S., Bhatti T.M., Akhter J.I., Hameed A., Yawar W., ul Hasan M.M. Investigations into the antibacterial behavior of copper nanoparticles against Escherichia coli. Ann. Microbiol. 2010;60:75–80. doi: 10.1007/s13213-010-0015-6. DOI
Usman M.S., El Zowalaty M.E., Shameli K., Zainuddin N., Salama M., Ibrahim N.A. Synthesis, characterization, and antimicrobial properties of copper nanoparticles. Int. J. Nanomed. 2013;8:4467–4479. doi: 10.2147/ijn.s50837. PubMed DOI PMC
Kiadeh S.Z.H., Ghaee A., Farokhi M., Nourmohammadi J., Bahi A., Ko F.K. Electrospun pectin/modified copper-based metal–organic framework (MOF) nanofibers as a drug delivery system. Int. J. Biol. Macromol. 2021;173:351–365. doi: 10.1016/j.ijbiomac.2021.01.058. PubMed DOI
Harandi F.N., Khorasani A.C., Shojaosadati S.A., Hashemi-Najafabadi S. Surface modification of electrospun wound dressing material by Fe2O3 nanoparticles incorporating Lactobacillus strains for enhanced antimicrobial and antibiofilm activity. Surf. Interfaces. 2022;28:101592. doi: 10.1016/j.surfin.2021.101592. DOI
Baranowska-Wójcik E., Szwajgier D., Oleszczuk P., Winiarska-Mieczan A. Effects of Titanium Dioxide Nanoparticles Exposure on Human Health—A Review. Biol. Trace Elem. Res. 2020;193:118–129. doi: 10.1007/s12011-019-01706-6. PubMed DOI PMC
Waghmode M.S., Gunjal A.B., Mulla J.A., Patil N.N., Nawani N.N. Studies on the titanium dioxide nanoparticles: Biosynthesis, applications and remediation. SN Appl. Sci. 2019;1:310. doi: 10.1007/s42452-019-0337-3. DOI
Amjadi S., Almasi H., Ghorbani M., Ramazani S. Preparation and characterization of TiO2NPs and betanin loaded zein/sodium alginate nanofibers. Food Packag. Shelf Life. 2020;24:100504. doi: 10.1016/j.fpsl.2020.100504. DOI
Shahverdi F., Barati A., Salehi E., Arjomandzadegan M. Biaxial electrospun nanofibers based on chitosan-poly (vinyl alcohol) and poly (ε-caprolactone) modified with CeAlO3 nanoparticles as potential wound dressing materials. Int. J. Biol. Macromol. 2022;221:736–750. doi: 10.1016/j.ijbiomac.2022.09.061. PubMed DOI
Al-Dhahebi A.M., Gopinath S.C.B., Saheed M.S.M. Graphene impregnated electrospun nanofiber sensing materials: A comprehensive overview on bridging laboratory set-up to industry. Nano Converg. 2020;7:27. doi: 10.1186/s40580-020-00237-4. PubMed DOI PMC
Shang L., Qi Y., Lu H., Pei H., Li Y., Qu L., Wu Z., Zhang W. Graphene and Graphene Oxide for Tissue Engineering and Regeneration. In: Cui W., Zhao X., editors. Theranostic Bionanomaterials. Elsevier; Amsterdam, The Netherlands: 2019. pp. 165–185.
Kumar P., Huo P., Zhang R., Liu B. Antibacterial Properties of Graphene-Based Nanomaterials. Nanomaterials. 2019;9:737. doi: 10.3390/nano9050737. PubMed DOI PMC
Mohammed H., Kumar A., Bekyarova E., Al-Hadeethi Y., Zhang X., Chen M., Ansari M.S., Cochis A., Rimondini L. Antimicrobial mechanisms and effectiveness of graphene and graphene-functionalized biomaterials. A scope review. Front. Bioeng. Biotechnol. 2020;8:465–486. doi: 10.3389/fbioe.2020.00465. PubMed DOI PMC
Zhang C., Wang X., Liu A., Pan C., Ding H., Ye W. Reduced graphene oxide/titanium dioxide hybrid nanofiller-reinforced electrospun silk fibroin scaffolds for tissue engineering. Mater. Lett. 2021;291:129563. doi: 10.1016/j.matlet.2021.129563. DOI
Wang S.-D., Ma Q., Wang K., Chen H.-W. Improving Antibacterial Activity and Biocompatibility of Bioinspired Electrospinning Silk Fibroin Nanofibers Modified by Graphene Oxide. ACS Omega. 2018;3:406–413. doi: 10.1021/acsomega.7b01210. PubMed DOI PMC
Dong J., Cheng Z., Tan S., Zhu Q. Clay nanoparticles as pharmaceutical carriers in drug delivery systems. Expert Opin. Drug Deliv. 2021;18:695–714. doi: 10.1080/17425247.2021.1862792. PubMed DOI
Fatahi Y., Sanjabi M., Rakhshani A., Motasadizadeh H., Darbasizadeh B., Bahadorikhalili S., Farhadnejad H. Levofloxacin-halloysite nanohybrid-loaded fibers based on poly (ethylene oxide) and sodium alginate: Fabrication, characterization, and antibacterial property. J. Drug Deliv. Sci. Technol. 2021;64:102598. doi: 10.1016/j.jddst.2021.102598. DOI
Zou Y., Zhang C., Wang P., Zhang Y., Zhang H. Electrospun chitosan/polycaprolactone nanofibers containing chlorogenic acid-loaded halloysite nanotube for active food packaging. Carbohydr. Polym. 2020;247:116711. doi: 10.1016/j.carbpol.2020.116711. PubMed DOI
Elsayed M.T., Hassan A.A., Abdelaal S.A., Taher M.M., Ahmed M.K., Shoueir K.R. Morphological, antibacterial, and cell attachment of cellulose acetate nanofibers containing modified hydroxyapatite for wound healing utilizations. J. Mater. Res. Technol. 2020;9:13927–13936. doi: 10.1016/j.jmrt.2020.09.094. DOI
Ramírez-Agudelo R., Scheuermann K., Gala-García A., Monteiro A.P.F., Pinzón-García A.D., Cortés M.E., Sinisterra R.D. Hybrid nanofibers based on poly-caprolactone/gelatin/hydroxyapatite nanoparticles-loaded Doxycycline: Effective anti-tumoral and antibacterial activity. Mater. Sci. Eng. C. 2018;83:25–34. doi: 10.1016/j.msec.2017.08.012. PubMed DOI
Wang J., Cai N., Chan V., Zeng H., Shi H., Xue Y., Yu F. Antimicrobial hydroxyapatite reinforced-polyelectrolyte complex nanofibers with long-term controlled release activity for potential wound dressing application. Colloids Surf. A Physicochem. Eng. Asp. 2021;624:126722. doi: 10.1016/j.colsurfa.2021.126722. DOI
Wang J., Planz V., Vukosavljevic B., Windbergs M. Multifunctional electrospun nanofibers for wound application—Novel insights into the control of drug release and antimicrobial activity. Eur. J. Pharm. Biopharm. 2018;129:175–183. doi: 10.1016/j.ejpb.2018.05.035. PubMed DOI
Lucera A., Costa C., Conte A., Del Nobile M.A. Food applications of natural antimicrobial compounds. Front. Microbiol. 2012;3:287. doi: 10.3389/fmicb.2012.00287. PubMed DOI PMC
Hayashi M.A., Bizerra F.C., Da Silva P.I. Antimicrobial compounds from natural sources. Front. Microbiol. 2013;4:195. doi: 10.3389/fmicb.2013.00195. PubMed DOI PMC
Arshad M.S., Batool S.A. Natural Antimicrobials, their Sources and Food Safety. Food Addit. 2017;87:87–102. doi: 10.5772/intechopen.70197. DOI
Yudovin-Farber I., Golenser J., Beyth N., Weiss E.I., Domb A.J. Quaternary Ammonium Polyethyleneimine: Antibacterial Activity. J. Nanomater. 2010;2010:1–11. doi: 10.1155/2010/826343. DOI
Russell A.D. Mechanisms of antimicrobial action of antiseptics and disinfectants: An increasingly important area of investigation. J. Antimicrob. Chemother. 2002;49:597–599. doi: 10.1093/jac/49.4.597. PubMed DOI
Zupančič Š. Core-shell nanofibers as drug delivery systems. Acta Pharm. 2019;69:131–153. doi: 10.2478/acph-2019-0014. PubMed DOI
Castellano M., Dodero A., Scarfi S., Mirata S., Pozzolini M., Tassara E., Sionkowska A., Adamiak K., Alloisio M., Vicini S. Chitosan–Collagen Electrospun Nanofibers Loaded with Curcumin as Wound-Healing Patches. Polymers. 2023;15:2931. doi: 10.3390/polym15132931. PubMed DOI PMC
Sharifi S., Khosroshahi A.Z., Dizaj S.M., Rezaei Y. Preparation, Physicochemical Assessment and the Antimicrobial Action of Hydroxyapatite–Gelatin/Curcumin Nanofibrous Composites as a Dental Biomaterial. Biomimetics. 2022;7:4. doi: 10.3390/biomimetics7010004. PubMed DOI PMC
Hashemi S.-S., Mohammadi A.A., Rajabi S.-S., Sanati P., Rafati A., Kian M., Zarei Z. Preparation and evaluation of a polycaprolactone/chitosan/propolis fibrous nanocomposite scaffold as a tissue engineering skin substitute. BioImpacts. 2023;13:275–287. doi: 10.34172/bi.2023.26317. PubMed DOI PMC
Fahimirad S., Satei P., Ganji A., Abtahi H. Wound healing capability of the double-layer Polycaprolactone/Polyvinyl alcohol-Chitosan lactate electrospun nanofiber incorporating Echinacea purpurea extract. J. Drug Deliv. Sci. Technol. 2023;87:104734. doi: 10.1016/j.jddst.2023.104734. DOI
Kassem L.M., El-Deen A.G., Zaki A.H., El-Dek S.I. Electrospun manuka honey@PVP nanofibers enclosing chitosan-titanate for highly effective wound healing. Cellulose. 2023;30:6487–6505. doi: 10.1007/s10570-023-05267-9. DOI
Ribeiro A.S., Costa S.M., Ferreira D.P., Calhelha R.C., Barros L., Stojković D., Soković M., Ferreira I.C., Fangueiro R. Chitosan/nanocellulose electrospun fibers with enhanced antibacterial and antifungal activity for wound dressing applications. React. Funct. Polym. 2021;159:104808. doi: 10.1016/j.reactfunctpolym.2020.104808. DOI
Kuntzler S.G., Costa J.A.V., de Morais M.G. Development of electrospun nanofibers containing chitosan/PEO blend and phenolic compounds with antibacterial activity. Int. J. Biol. Macromol. 2018;117:800–806. doi: 10.1016/j.ijbiomac.2018.05.224. PubMed DOI
Snetkov P., Morozkina S., Olekhnovich R., Vu T.H.N., Tyanutova M., Uspenskaya M. Curcumin/Usnic Acid-Loaded Electrospun Nanofibers Based on Hyaluronic Acid. Materials. 2020;13:3476. doi: 10.3390/ma13163476. PubMed DOI PMC
Ionescu O.M., Mignon A., Iacob A.T., Simionescu N., Confederat L.G., Tuchilus C., Profire L. New Hyaluronic Acid/Polyethylene Oxide-Based Electrospun Nanofibers: Design, Characterization and In Vitro Biological Evaluation. Polymers. 2021;13:1291. doi: 10.3390/polym13081291. PubMed DOI PMC
Ionescu O.M., Iacob A.-T., Mignon A., Van Vlierberghe S., Baican M., Danu M., Ibănescu C., Simionescu N., Profire L. Design, preparation and in vitro characterization of biomimetic and bioactive chitosan/polyethylene oxide based nanofibers as wound dressings. Int. J. Biol. Macromol. 2021;193:996–1008. doi: 10.1016/j.ijbiomac.2021.10.166. PubMed DOI
Râpă M., Gaidau C., Mititelu-Tartau L., Berechet M.-D., Berbecaru A.C., Rosca I., Chiriac A.P., Matei E., Predescu A.-M., Predescu C. Bioactive Collagen Hydrolysate-Chitosan/Essential Oil Electrospun Nanofibers Designed for Medical Wound Dressings. Pharmaceutics. 2021;13:1939. doi: 10.3390/pharmaceutics13111939. PubMed DOI PMC
Zare M.R., Khorram M., Barzegar S., Asadian F., Zareshahrabadi Z., Saharkhiz M.J., Ahadian S., Zomorodian K. Antimicrobial core–shell electrospun nanofibers containing Ajwain essential oil for accelerating infected wound healing. Int. J. Pharm. 2021;603:120698. doi: 10.1016/j.ijpharm.2021.120698. PubMed DOI
Ulag S., Ilhan E., Demirhan R., Sahin A., Yilmaz B.K., Aksu B., Sengor M., Ficai D., Titu A.M., Ficai A., et al. Propolis-Based Nanofiber Patches to Repair Corneal Microbial Keratitis. Molecules. 2021;26:2577. doi: 10.3390/molecules26092577. PubMed DOI PMC
Anand S., Rajinikanth P.S., Arya D.K., Pandey P., Gupta R.K., Sankhwar R., Chidambaram K. Multifunctional Biomimetic Nanofibrous Scaffold Loaded with Asiaticoside for Rapid Diabetic Wound Healing. Pharmaceutics. 2022;14:273. doi: 10.3390/pharmaceutics14020273. PubMed DOI PMC
Muthulakshmi L., Prabakaran S., Ramalingam V., Rajulu A.V., Rajan M., Ramakrishna S., Luo H. Sodium alginate nanofibers loaded Terminalia catappa scaffold regulates intrinsic apoptosis signaling in skin melanoma cancer. Process. Biochem. 2022;118:92–102. doi: 10.1016/j.procbio.2022.04.004. DOI
dos Santos A.E.A., dos Santos F.V., Freitas K.M., Pimenta L.P.S., Andrade L.d.O., Marinho T.A., de Avelar G.F., da Silva A.B., Ferreira R.V. Cellulose acetate nanofibers loaded with crude annatto extract: Preparation, characterization, and in vivo evaluation for potential wound healing applications. Mater. Sci. Eng. C. 2021;118:111322. doi: 10.1016/j.msec.2020.111322. PubMed DOI
Silva N.H., Garrido-Pascual P., Moreirinha C., Almeida A., Palomares T., Alonso-Varona A., Vilela C., Freire C.S. Multifunctional nanofibrous patches composed of nanocellulose and lysozyme nanofibers for cutaneous wound healing. Int. J. Biol. Macromol. 2020;165:1198–1210. doi: 10.1016/j.ijbiomac.2020.09.249. PubMed DOI
Almasian A., Najafi F., Eftekhari M., Ardekani M.R.S., Sharifzadeh M., Khanavi M. Polyurethane/carboxymethylcellulose nanofibers containing Malva sylvestris extract for healing diabetic wounds: Preparation, characterization, in vitro and in vivo studies. Mater. Sci. Eng. C. 2020;114:111039. doi: 10.1016/j.msec.2020.111039. PubMed DOI
Yang Q., Xie Z., Hu J., Liu Y. Hyaluronic acid nanofiber mats loaded with antimicrobial peptide towards wound dressing applications. Mater. Sci. Eng. C. 2021;128:112319. doi: 10.1016/j.msec.2021.112319. PubMed DOI
Urbanek O., Wysocka A., Nakielski P., Pierini F., Jagielska E., Sabała I. Staphylococcus aureus Specific Electrospun Wound Dressings: Influence of Immobilization Technique on Antibacterial Efficiency of Novel Enzybiotic. Pharmaceutics. 2021;13:711. doi: 10.3390/pharmaceutics13050711. PubMed DOI PMC
Hashemi S.-S., Saadatjo Z., Mahmoudi R., Delaviz H., Bardania H., Rajabi S.-S., Rafati A., Zarshenas M.M., Barmak M.J. Preparation and evaluation of polycaprolactone/chitosan/Jaft biocompatible nanofibers as a burn wound dressing. Burns. 2022;48:1690–1705. doi: 10.1016/j.burns.2021.12.009. PubMed DOI
Mishra P., Gupta P., Srivastava A.K., Poluri K.M., Prasad R. Eucalyptol/ β-cyclodextrin inclusion complex loaded gellan/PVA nanofibers as antifungal drug delivery system. Int. J. Pharm. 2021;609:121163. doi: 10.1016/j.ijpharm.2021.121163. PubMed DOI
Kamaruzzaman N.F., Tan L.P., Hamdan R.H., Choong S.S., Wong W.K., Gibson A.J., Chivu A., Pina M.D.F. Antimicrobial Polymers: The Potential Replacement of Existing Antibiotics? Int. J. Mol. Sci. 2019;20:2747. doi: 10.3390/ijms20112747. PubMed DOI PMC
Muñoz-Bonilla A., Echeverria C., Sonseca Á., Arrieta M.P., Fernández-García M. Bio-Based Polymers with Antimicrobial Properties towards Sustainable Development. Materials. 2019;12:641. doi: 10.3390/ma12040641. PubMed DOI PMC
Sayed S., Jardine M.A. UZUN, Lokman a Ashutosh TIWARI. Advanced Functional Materials. Scrivener Publishing; Beverly, MA, USA: 2015. Antimicrobial Biopolymers; pp. 493–533.
Tao F., Cheng Y., Shi X., Zheng H., Du Y., Xiang W., Deng H. Applications of chitin and chitosan nanofibers in bone regenerative engineering. Carbohydr. Polym. 2020;230:115658. doi: 10.1016/j.carbpol.2019.115658. PubMed DOI
Jøraholmen M.W., Bhargava A., Julin K., Johannessen M., Škalko-Basnet N. The Antimicrobial Properties of Chitosan Can Be Tailored by Formulation. Mar. Drugs. 2020;18:96. doi: 10.3390/md18020096. PubMed DOI PMC
Azuma K., Ifuku S., Osaki T., Okamoto Y., Minami S. Preparation and Biomedical Applications of Chitin and Chitosan Nanofibers. J. Biomed. Nanotechnol. 2014;10:2891–2920. doi: 10.1166/jbn.2014.1882. PubMed DOI
Valachová K., El Meligy M.A., Šoltés L. Hyaluronic acid and chitosan-based electrospun wound dressings: Problems and solutions. Int. J. Biol. Macromol. 2022;206:74–91. doi: 10.1016/j.ijbiomac.2022.02.117. PubMed DOI
Ohkawa K., Cha D., Kim H., Nishida A., Yamamoto H. Electrospinning of Chitosan. Macromol. Rapid Commun. 2004;25:1600–1605. doi: 10.1002/marc.200400253. DOI
Cremar L., Gutierrez J., Martinez J., Materon L.A., Gilkerson R., Xu F., Lozano K. Development of antimicrobial chitosan based nanofiber dressings for wound healing applications. Nanomed. J. 2018;5:6–14. doi: 10.22038/nmj.2018.05.002. DOI
Boda S.K., Fischer N.G., Ye Z., Aparicio C. Dual Oral Tissue Adhesive Nanofiber Membranes for pH-Responsive Delivery of Antimicrobial Peptides. Biomacromolecules. 2020;21:4945–4961. doi: 10.1021/acs.biomac.0c01163. PubMed DOI PMC
Salazar-Brann S.A., Patiño-Herrera R., Navarrete-Damián J., Louvier-Hernández J.F. Electrospinning of chitosan from different acid solutions. AIMS Bioeng. 2021;8:112–129. doi: 10.3934/bioeng.2021011. DOI
Anisiei A., Rosca I., Sandu A.-I., Bele A., Cheng X., Marin L. Imination of Microporous Chitosan Fibers—A Route to Biomaterials with “On Demand” Antimicrobial Activity and Biodegradation for Wound Dressings. Pharmaceutics. 2022;14:117. doi: 10.3390/pharmaceutics14010117. PubMed DOI PMC
Lemma S.M., Bossard F., Rinaudo M. Preparation of Pure and Stable Chitosan Nanofibers by Electrospinning in the Presence of Poly(ethylene oxide) Int. J. Mol. Sci. 2016;17:1790. doi: 10.3390/ijms17111790. PubMed DOI PMC
Abid S., Hussain T., Nazir A., Zahir A., Ramakrishna S., Hameed M., Khenoussi N. Enhanced antibacterial activity of PEO-chitosan nanofibers with potential application in burn infection management. Int. J. Biol. Macromol. 2019;135:1222–1236. doi: 10.1016/j.ijbiomac.2019.06.022. PubMed DOI
Ge Y., Tang J., Fu H., Fu Y., Wu Y. Characteristics, Controlled-release and Antimicrobial Properties of Tea Tree Oil Liposomes-incorporated Chitosan-based Electrospun Nanofiber Mats. Fibers Polym. 2019;20:698–708. doi: 10.1007/s12221-019-1092-1. DOI
Yu L., Dou S., Ma J., Gong Q., Zhang M., Zhang X., Li M., Zhang W. An Antimicrobial Peptide-Loaded Chitosan/Polyethylene Oxide Nanofibrous Membrane Fabricated by Electrospinning Technology. Front. Mater. 2021;8:650223. doi: 10.3389/fmats.2021.650223. DOI
Kalalinia F., Taherzadeh Z., Jirofti N., Amiri N., Foroghinia N., Beheshti M., Bazzaz B.S.F., Hashemi M., Shahroodi A., Pishavar E., et al. Evaluation of wound healing efficiency of vancomycin-loaded electrospun chitosan/poly ethylene oxide nanofibers in full thickness wound model of rat. Int. J. Biol. Macromol. 2021;177:100–110. doi: 10.1016/j.ijbiomac.2021.01.209. PubMed DOI
Bayat S., Amiri N., Pishavar E., Kalalinia F., Movaffagh J., Hashemi M. Bromelain-loaded chitosan nanofibers prepared by electrospinning method for burn wound healing in animal models. Life Sci. 2019;229:57–66. doi: 10.1016/j.lfs.2019.05.028. PubMed DOI
Lungu R., Anisiei A., Rosca I., Sandu A.-I., Ailincai D., Marin L. Double functionalization of chitosan based nanofibers towards biomaterials for wound healing. React. Funct. Polym. 2021;167:105028. doi: 10.1016/j.reactfunctpolym.2021.105028. DOI
Naeimi A., Payandeh M., Ghara A.R., Ghadi F.E. In vivo evaluation of the wound healing properties of bio-nanofiber chitosan/ polyvinyl alcohol incorporating honey and Nepeta dschuparensis. Carbohydr. Polym. 2020;240:116315. doi: 10.1016/j.carbpol.2020.116315. PubMed DOI
Ghasemian Lemraski E., Jahangirian H., Dashti M., Khajehali E., Sharafinia M.S., Rafiee-Moghaddam R., Webster T.J. Antimicrobial Double-Layer Wound Dressing Based on Chitosan/Polyvinyl Alcohol/Copper: In vitro and in vivo Assessment. Int. J. Nanomed. 2021;16:223–235. doi: 10.2147/IJN.S266692. PubMed DOI PMC
Pandey V.K., Upadhyay S.N., Niranjan K., Mishra P.K. Antimicrobial biodegradable chitosan-based composite Nano-layers for food packaging. Int. J. Biol. Macromol. 2020;157:212–219. doi: 10.1016/j.ijbiomac.2020.04.149. PubMed DOI
Raza Z.A., Naeem A.R., Shafi R., Abid S. Chitosan-incorporated poly(hydroxybutyrate) porous electrospun scaffold for potential biomedical applications. Polym. Bull. 2023;81:1691–1705. doi: 10.1007/s00289-023-04795-5. DOI
Ghazalian M., Afshar S., Rostami A., Rashedi S., Bahrami S.H. Fabrication and characterization of chitosan-polycaprolactone core-shell nanofibers containing tetracycline hydrochloride. Colloids Surf. A Physicochem. Eng. Asp. 2022;636:128163. doi: 10.1016/j.colsurfa.2021.128163. DOI
Zhou L., Cai L., Ruan H., Zhang L., Wang J., Jiang H., Wu Y., Feng S., Chen J. Electrospun chitosan oligosaccharide/polycaprolactone nanofibers loaded with wound-healing compounds of Rutin and Quercetin as antibacterial dressings. Int. J. Biol. Macromol. 2021;183:1145–1154. doi: 10.1016/j.ijbiomac.2021.05.031. PubMed DOI
Shabunin A.S., Yudin V.E., Dobrovolskaya I.P., Zinovyev E.V., Zubov V., Ivan’kova E.M., Morganti P. Composite Wound Dressing Based on Chitin/Chitosan Nanofibers: Processing and Biomedical Applications. Cosmetics. 2019;6:16. doi: 10.3390/cosmetics6010016. DOI
Ali I.H., Ouf A., Elshishiny F., Taskin M.B., Song J., Dong M., Chen M., Siam R., Mamdouh W. Antimicrobial and Wound-Healing Activities of Graphene-Reinforced Electrospun Chitosan/Gelatin Nanofibrous Nanocomposite Scaffolds. ACS Omega. 2022;7:1838–1850. doi: 10.1021/acsomega.1c05095. PubMed DOI PMC
Li X., Jiang F., Duan Y., Li Q., Qu Y., Zhao S., Yue X., Huang C., Zhang C., Pan X. Chitosan electrospun nanofibers derived from Periplaneta americana residue for promoting infected wound healing. Int. J. Biol. Macromol. 2023;229:654–667. doi: 10.1016/j.ijbiomac.2022.12.272. PubMed DOI
Al-Musawi S., Albukhaty S., Al-Karagoly H., Sulaiman G.M., Alwahibi M.S., Dewir Y.H., Soliman D.A., Rizwana H. Antibacterial Activity of Honey/Chitosan Nanofibers Loaded with Capsaicin and Gold Nanoparticles for Wound Dressing. Molecules. 2020;25:4770. doi: 10.3390/molecules25204770. PubMed DOI PMC
Amariei G., Kokol V., Boltes K., Letón P., Rosal R. Incorporation of antimicrobial peptides on electrospun nanofibres for biomedical applications. RSC Adv. 2018;8:28013–28023. doi: 10.1039/C8RA03861A. PubMed DOI PMC
Amariei G., Kokol V., Vivod V., Boltes K., Letón P., Rosal R. Biocompatible antimicrobial electrospun nanofibers functionalized with ε-poly-l-lysine. Int. J. Pharm. 2018;553:141–148. doi: 10.1016/j.ijpharm.2018.10.037. PubMed DOI
Lin L., Gu Y., Cui H. Novel electrospun gelatin-glycerin-ε-Poly-lysine nanofibers for controlling Listeria monocytogenes on beef. Food Packag. Shelf Life. 2018;18:21–30. doi: 10.1016/j.fpsl.2018.08.004. DOI
Lin L., Zhu Y., Cui H. Electrospun thyme essential oil/gelatin nanofibers for active packaging against Campylobacter jejuni in chicken. LWT. 2018;97:711–718. doi: 10.1016/j.lwt.2018.08.015. DOI
Mayandi V., Choong A.C.W., Dhand C., Lim F.P., Aung T.T., Sriram H., Dwivedi N., Periayah M.H., Sridhar S., Fazil M.H.U.T., et al. Multifunctional Antimicrobial Nanofiber Dressings Containing ε-Polylysine for the Eradication of Bacterial Bioburden and Promotion of Wound Healing in Critically Colonized Wounds. ACS Appl. Mater. Interfaces. 2020;12:15989–16005. doi: 10.1021/acsami.9b21683. PubMed DOI
Wang D., Sun J., Li J., Sun Z., Liu F., Du L., Wang D. Preparation and characterization of gelatin/zein nanofiber films loaded with perillaldehyde, thymol, or ε-polylysine and evaluation of their effects on the preservation of chilled chicken breast. Food Chem. 2022;373:131439. doi: 10.1016/j.foodchem.2021.131439. PubMed DOI
Grimaudo M.A., Concheiro A., Alvarez-Lorenzo C. Crosslinked Hyaluronan Electrospun Nanofibers for Ferulic Acid Ocular Delivery. Pharmaceutics. 2020;12:274. doi: 10.3390/pharmaceutics12030274. PubMed DOI PMC
Lan X., Liu Y., Wang Y., Tian F., Miao X., Wang H., Tang Y. Coaxial electrospun PVA/PCL nanofibers with dual release of tea polyphenols and ε-poly (L-lysine) as antioxidant and antibacterial wound dressing materials. Int. J. Pharm. 2021;601:120525. doi: 10.1016/j.ijpharm.2021.120525. PubMed DOI
Han Y., Shi C., Cui F., Chen Q., Tao Y., Li Y. Solution properties and electrospinning of polyacrylamide and ε-polylysine complexes. Polymer. 2020;204:122806. doi: 10.1016/j.polymer.2020.122806. DOI
Lin L., Xue L., Duraiarasan S., Haiying C. Preparation of ε-polylysine/chitosan nanofibers for food packaging against Salmonella on chicken. Food Packag. Shelf Life. 2018;17:134–141. doi: 10.1016/j.fpsl.2018.06.013. DOI
Yang Q., Cui S., Song X., Hu J., Zhou Y., Liu Y. An antimicrobial peptide-immobilized nanofiber mat with superior performances than the commercial silver-containing dressing. Mater. Sci. Eng. C. 2021;119:111608. doi: 10.1016/j.msec.2020.111608. PubMed DOI
He Y., Jin Y., Wang X., Yao S., Li Y., Wu Q., Ma G., Cui F., Liu H. An Antimicrobial Peptide-Loaded Gelatin/Chitosan Nanofibrous Membrane Fabricated by Sequential Layer-by-Layer Electrospinning and Electrospraying Techniques. Nanomaterials. 2018;8:327. doi: 10.3390/nano8050327. PubMed DOI PMC
Khosravimelal S., Chizari M., Farhadihosseinabadi B., Moghaddam M.M., Gholipourmalekabadi M. Fabrication and characterization of an antibacterial chitosan/silk fibroin electrospun nanofiber loaded with a cationic peptide for wound-dressing application. J. Mater. Sci. Mater. Med. 2021;32:114. doi: 10.1007/s10856-021-06542-6. PubMed DOI PMC
Afshar A., Yuca E., Wisdom C., Alenezi H., Ahmed J., Tamerler C., Edirisinghe M. Next-generation Antimicrobial Peptides (AMPs) incorporated nanofibre wound dressings. Med. Devices Sens. 2021;4:e10144. doi: 10.1002/mds3.10144. DOI
Chaiarwut S., Ekabutr P., Chuysinuan P., Chanamuangkon T., Supaphol P. Surface immobilization of PCL electrospun nanofibers with pexiganan for wound dressing. J. Polym. Res. 2021;28:344. doi: 10.1007/s10965-021-02669-w. DOI
Su Y., Wang H., Mishra B., Narayana J.L., Jiang J., Reilly D.A., Hollins R.R., Carlson M.A., Wang G., Xie J. Nanofiber Dressings Topically Delivering Molecularly Engineered Human Cathelicidin Peptides for the Treatment of Biofilms in Chronic Wounds. Mol. Pharm. 2019;16:2011–2020. doi: 10.1021/acs.molpharmaceut.8b01345. PubMed DOI
Hajikhani M., Emam-Djomeh Z., Askari G. Fabrication and characterization of mucoadhesive bioplastic patch via coaxial polylactic acid (PLA) based electrospun nanofibers with antimicrobial and wound healing application. Int. J. Biol. Macromol. 2021;172:143–153. doi: 10.1016/j.ijbiomac.2021.01.051. PubMed DOI
He S., Jiang L., Liu J., Zhang J., Shao W. Electrospun PVA/gelatin based nanofiber membranes with synergistic antibacterial performance. Colloids Surf. A Physicochem. Eng. Asp. 2022;637:128196. doi: 10.1016/j.colsurfa.2021.128196. DOI
Bardoňová L., Kotzianová A., Skuhrovcová K., Židek O., Bártová T., Kulhánek J., Hanová T., Kutláková K.M., Vágnerová H., Krpatová V., et al. Antimicrobial nanofibrous mats with controllable drug release produced from hydrophobized hyaluronan. Carbohydr. Polym. 2021;267:118225. doi: 10.1016/j.carbpol.2021.118225. PubMed DOI
Bardoňová L., Kotzianová A., Skuhrovcová K., Židek O., Vágnerová H., Kulhánek J., Hanová T., Knor M., Starigazdová J., Kutláková K.M., et al. Effects of emulsion, dispersion, and blend electrospinning on hyaluronic acid nanofibers with incorporated antiseptics. Int. J. Biol. Macromol. 2022;194:726–735. doi: 10.1016/j.ijbiomac.2021.11.118. PubMed DOI
Suner S.C., Yildirim Y., Yurt F., Ozel D., Oral A., Ozturk I. Antibiotic loaded electrospun poly (lactic acid) nanofiber mats for drug delivery system. J. Drug Deliv. Sci. Technol. 2022;71:103263. doi: 10.1016/j.jddst.2022.103263. DOI
Friuli V., Pisani S., Conti B., Bruni G., Maggi L. Tablet Formulations of Polymeric Electrospun Fibers for the Controlled Release of Drugs with pH-Dependent Solubility. Polymers. 2022;14:2127. doi: 10.3390/polym14102127. PubMed DOI PMC
Turan C.U., Guvenilir Y. Electrospun poly(ω-pentadecalactone-co-ε-caprolactone)/gelatin/chitosan ternary nanofibers with antibacterial activity for treatment of skin infections. Eur. J. Pharm. Sci. 2022;170:106113. doi: 10.1016/j.ejps.2021.106113. PubMed DOI
De Silva R.T., Dissanayake R.K., Mantilaka M.M.M.G.P.G., Wijesinghe W.P.S.L., Kaleel S.S., Premachandra T.N., Weerasinghe L., Amaratunga G.A.J., de Silva K.M.N. Drug-Loaded Halloysite Nanotube-Reinforced Electrospun Alginate-Based Nanofibrous Scaffolds with Sustained Antimicrobial Protection. ACS Appl. Mater. Interfaces. 2018;10:33913–33922. doi: 10.1021/acsami.8b11013. PubMed DOI
Khalek M.A.A., Gaber S.A.A., El-Domany R.A., El-Kemary M.A. Photoactive electrospun cellulose acetate/polyethylene oxide/methylene blue and trilayered cellulose acetate/polyethylene oxide/silk fibroin/ciprofloxacin nanofibers for chronic wound healing. Int. J. Biol. Macromol. 2021;193:1752–1766. doi: 10.1016/j.ijbiomac.2021.11.012. PubMed DOI
İnal M., Mülazımoğlu G. Production and characterization of bactericidal wound dressing material based on gelatin nanofiber. Int. J. Biol. Macromol. 2019;137:392–404. doi: 10.1016/j.ijbiomac.2019.06.119. PubMed DOI
Elsherbiny D.A., Abdelgawad A.M., El-Naggar M.E., Hemdan B.A., Ghazanfari S., Jockenhövel S., Rojas O.J. Bioactive tri-component nanofibers from cellulose acetate/lignin//N-vanillidene-phenylthiazole copper-(II) complex for potential diaper dermatitis control. Int. J. Biol. Macromol. 2022;205:703–718. doi: 10.1016/j.ijbiomac.2022.02.192. PubMed DOI
Anand S., Pandey P., Begum M.Y., Chidambaram K., Arya D.K., Gupta R.K., Sankhwar R., Jaiswal S., Thakur S., Rajinikanth P.S. Electrospun Biomimetic Multifunctional Nanofibers Loaded with Ferulic Acid for Enhanced Antimicrobial and Wound-Healing Activities in STZ-Induced Diabetic Rats. Pharmaceuticals. 2022;15:302. doi: 10.3390/ph15030302. PubMed DOI PMC
Jeckson T.A., Neo Y.P., Sisinthy S.P., Foo J.B., Choudhury H., Gorain B. Formulation and characterisation of deferoxamine nanofiber as potential wound dressing for the treatment of diabetic foot ulcer. J. Drug Deliv. Sci. Technol. 2021;66:102751. doi: 10.1016/j.jddst.2021.102751. DOI
Wu J.-Y., Wang C.-Y., Chen K.-H., Lai Y.-R., Chiu C.-Y., Lee H.-C., Chang Y.-K. Electrospinning of Quaternized Chitosan-Poly(vinyl alcohol) Composite Nanofiber Membrane: Processing Optimization and Antibacterial Efficacy. Membranes. 2022;12:332. doi: 10.3390/membranes12030332. PubMed DOI PMC
Ouerghemmi S., Degoutin S., Maton M., Tabary N., Cazaux F., Neut C., Blanchemain N., Martel B. Core-Sheath Electrospun Nanofibers Based on Chitosan and Cyclodextrin Polymer for the Prolonged Release of Triclosan. Polymers. 2022;14:1955. doi: 10.3390/polym14101955. PubMed DOI PMC
Cestari M., Caldas B.S., Fonseca D.P., Balbinot R.B., Lazarin-Bidóia D., Otsuka I., Nakamura C.V., Borsali R., Muniz E.C. Silk fibroin nanofibers containing chondroitin sulfate and silver sulfadiazine for wound healing treatment. J. Drug Deliv. Sci. Technol. 2022;70:103221. doi: 10.1016/j.jddst.2022.103221. DOI
Chinatangkul N., Limmatvapirat C., Nunthanid J., Luangtana-Anan M., Sriamornsak P., Limmatvapirat S. Design and characterization of monolaurin loaded electrospun shellac nanofibers with antimicrobial activity. Asian J. Pharm. Sci. 2018;13:459–471. doi: 10.1016/j.ajps.2017.12.006. PubMed DOI PMC