Inhibition of fatty acid amide hydrolase reverses aberrant prefrontal gamma oscillations in the sub-chronic PCP model for schizophrenia
Language English Country Germany Media print-electronic
Document type Journal Article
Grant support
MH091130
NIH HHS - United States
MH091130
NIH HHS - United States
PubMed
38489023
DOI
10.1007/s00221-024-06801-2
PII: 10.1007/s00221-024-06801-2
Knihovny.cz E-resources
- Keywords
- CB1 receptors, Endocannabinoids, Hippocampus, Prefrontal cortex, URB597,
- MeSH
- Amidohydrolases * antagonists & inhibitors metabolism MeSH
- Excitatory Amino Acid Antagonists pharmacology administration & dosage MeSH
- Benzamides * pharmacology MeSH
- Endocannabinoids metabolism MeSH
- Phencyclidine * pharmacology MeSH
- Gamma Rhythm physiology drug effects MeSH
- Carbamates * pharmacology MeSH
- Rats MeSH
- Arachidonic Acids metabolism pharmacology MeSH
- Disease Models, Animal MeSH
- Piperidines * pharmacology MeSH
- Polyunsaturated Alkamides metabolism pharmacology MeSH
- Rats, Sprague-Dawley MeSH
- Prefrontal Cortex drug effects metabolism physiopathology MeSH
- Pyrazoles pharmacology MeSH
- Schizophrenia * physiopathology metabolism drug therapy MeSH
- Animals MeSH
- Check Tag
- Rats MeSH
- Male MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- AM 251 MeSH Browser
- Amidohydrolases * MeSH
- anandamide MeSH Browser
- Excitatory Amino Acid Antagonists MeSH
- Benzamides * MeSH
- cyclohexyl carbamic acid 3'-carbamoylbiphenyl-3-yl ester MeSH Browser
- Endocannabinoids MeSH
- fatty-acid amide hydrolase MeSH Browser
- Phencyclidine * MeSH
- Carbamates * MeSH
- Arachidonic Acids MeSH
- Piperidines * MeSH
- Polyunsaturated Alkamides MeSH
- Pyrazoles MeSH
Hypofunctioning of NMDA receptors, and the resulting shift in the balance between excitation and inhibition, is considered a key process in the pathophysiology of schizophrenia. One important manifestation of this phenomenon is changes in neural oscillations, those above 30 Hz (i.e., gamma-band oscillations), in particular. Although both preclinical and clinical studies observed increased gamma activity following acute administration of NMDA receptor antagonists, the relevance of this phenomenon has been recently questioned given the reduced gamma oscillations typically observed during sensory and cognitive tasks in schizophrenia. However, there is emerging, yet contradictory, evidence for increased spontaneous gamma-band activity (i.e., at rest or under baseline conditions). Here, we use the sub-chronic phencyclidine (PCP) rat model for schizophrenia, which has been argued to model the pathophysiology of schizophrenia more closely than acute NMDA antagonism, to investigate gamma oscillations (30-100 Hz) in the medial prefrontal cortex of anesthetized animals. While baseline gamma oscillations were not affected, oscillations induced by train stimulation of the posterior dorsal CA1 (pdCA1) field of the hippocampus were enhanced in PCP-treated animals (5 mg/kg, twice daily for 7 days, followed by a 7-day washout period). This effect was reversed by pharmacological enhancement of endocannabinoid levels via systemic administration of URB597 (0.3 mg/kg), an inhibitor of the catabolic enzyme of the endocannabinoid anandamide. Intriguingly, the pharmacological blockade of CB1 receptors by AM251 unmasked a reduced gamma oscillatory activity in PCP-treated animals. The findings are consistent with the observed effects of URB597 and AM251 on behavioral deficits reminiscent of the symptoms of schizophrenia and further validate the potential for cannabinoid-based drugs as a treatment for schizophrenia.
See more in PubMed
Aguilar DD, Giuffrida A, Lodge DJ (2016) THC and endocannabinoids differentially regulate neuronal activity in the prefrontal cortex and hippocampus in the subchronic PCP model of schizophrenia. J Psychopharmacol 30:169–181. https://doi.org/10.1177/0269881115612239 PubMed DOI
Ahnaou A, Huysmans H, Van de Casteele T, Drinkenburg WHIM (2017) Cortical high gamma network oscillations and connectivity: a translational index for antipsychotics to normalize aberrant neurophysiological activity. Transl Psychiatry 7:1285. https://doi.org/10.1038/s41398-017-0002-9 PubMed DOI PMC
Amat-Foraster M, Celada P, Richter U et al (2019) Modulation of thalamo-cortical activity by the NMDA receptor antagonists ketamine and phencyclidine in the awake freely-moving rat. Neuropharmacology 158:107745. https://doi.org/10.1016/j.neuropharm.2019.107745 PubMed DOI
Angel A, Gratton DA (1982) The effect of anaesthetic agents on cerebral cortical responses in the rat. Br J Pharmacol 76:541–549. https://doi.org/10.1111/j.1476-5381.1982.tb09252.x PubMed DOI PMC
Bianciardi B, Uhlhaas PJ (2021) Do NMDA-R antagonists re-create patterns of spontaneous gamma-band activity in schizophrenia? A systematic review and perspective. Neurosci Biobehav Rev 124:308–323. https://doi.org/10.1016/j.neubiorev.2021.02.005 PubMed DOI
Buzsáki G, Wang X-J (2012) Mechanisms of gamma oscillations. Annu Rev Neurosci 35:203–225. https://doi.org/10.1146/annurev-neuro-062111-150444 PubMed DOI PMC
Buzsáki G, Logothetis N, Singer W (2013) Scaling brain size, keeping timing: evolutionary preservation of brain rhythms. Neuron 80:751–764. https://doi.org/10.1016/j.neuron.2013.10.002 PubMed DOI PMC
Carlén M, Meletis K, Siegle JH et al (2012) A critical role for NMDA receptors in parvalbumin interneurons for gamma rhythm induction and behavior. Mol Psychiatry 17:537–548. https://doi.org/10.1038/mp.2011.31 PubMed DOI
Carling K (2000) Resistant outlier rules and the non-Gaussian case. Comput Stat Data Anal 33:249–258. https://doi.org/10.1016/S0167-9473(99)00057-2 DOI
Castañé A, Cano M, Ruiz-Avila L et al (2022) Dual 5-HT3 and 5-HT6 receptor antagonist FPPQ normalizes phencyclidine-induced disruption of brain oscillatory activity in rats. Int J Neuropsychopharmacol 25:425–431. https://doi.org/10.1093/ijnp/pyac003 PubMed DOI PMC
Dawson N, McDonald M, Higham DJ et al (2014a) Subanesthetic ketamine treatment promotes abnormal interactions between neural subsystems and alters the properties of functional brain networks. Neuropsychopharmacology 39:1786–1798. https://doi.org/10.1038/npp.2014.26 PubMed DOI PMC
Dawson N, Xiao X, McDonald M et al (2014b) Sustained NMDA receptor hypofunction induces compromised neural systems integration and schizophrenia-like alterations in functional brain networks. Cereb Cortex 24:452–464. https://doi.org/10.1093/cercor/bhs322 PubMed DOI
Delgado-Sallent C, Gener T, Nebot P et al (2023) Neural substrates of cognitive impairment in a NMDAR hypofunction mouse model of schizophrenia and partial rescue by risperidone. Front Cell Neurosci 17:1152248. https://doi.org/10.3389/fncel.2023.1152248 PubMed DOI PMC
Eggan SM, Lazarus MS, Stoyak SR et al (2012) Cortical glutamic acid decarboxylase 67 deficiency results in lower cannabinoid 1 receptor messenger RNA expression: implications for schizophrenia. Biol Psychiatry 71(2):114–119. https://doi.org/10.1016/j.biopsych.2011.09.014 PubMed DOI
Elsworth JD, Morrow BA, Hajszan T et al (2011) Phencyclidine-induced loss of asymmetric spine synapses in rodent prefrontal cortex is reversed by acute and chronic treatment with olanzapine. Neuropsychopharmacology 36:2054–2061. https://doi.org/10.1038/npp.2011.96 PubMed DOI PMC
Garani R, Watts JJ, Mizrahi R (2021) Endocannabinoid system in psychotic and mood disorders, a review of human studies. Prog Neuropsychopharmacol Biol Psychiatry 106:110096. https://doi.org/10.1016/j.pnpbp.2020.110096 PubMed DOI
Gonzalez-Burgos G, Cho RY, Lewis DA (2015) Alterations in cortical network oscillations and parvalbumin neurons in schizophrenia. Biol Psychiatry 77:1031–1040. https://doi.org/10.1016/j.biopsych.2015.03.010 PubMed DOI PMC
Guidali C, Viganò D, Petrosino S et al (2011) Cannabinoid CB1 receptor antagonism prevents neurochemical and behavioural deficits induced by chronic phencyclidine. Int J Neuropsychopharmacol 14(1):17–28. https://doi.org/10.1017/s1461145710000209 PubMed DOI
Hentges ST, Low MJ, Williams JT (2005) Differential regulation of synaptic inputs by constitutively released endocannabinoids and exogenous cannabinoids. J Neurosci 25:9746–9751. https://doi.org/10.1523/JNEUROSCI.2769-05.2005 PubMed DOI PMC
Hirano Y, Uhlhaas PJ (2021) Current findings and perspectives on aberrant neural oscillations in schizophrenia. Psychiatry Clin Neurosci 75:358–368. https://doi.org/10.1111/pcn.13300 PubMed DOI
Hirano Y, Oribe N, Kanba S et al (2015) Spontaneous gamma activity in schizophrenia. JAMA Psychiat 72:813–821. https://doi.org/10.1001/jamapsychiatry.2014.2642 DOI
Holderith N, Németh B, Papp OI et al (2011) Cannabinoids attenuate hippocampal γ oscillations by suppressing excitatory synaptic input onto CA3 pyramidal neurons and fast spiking basket cells. J Physiol 589:4921–4934. https://doi.org/10.1113/jphysiol.2011.216259 PubMed DOI PMC
Izaki Y, Nomura M, Akema T (2003) Evoked prefrontal gamma oscillation by hippocampal train stimulation in anesthetized rats. Neurosci Lett 343:53–56. https://doi.org/10.1016/s0304-3940(03)00331-8 PubMed DOI
Janz P, Bainier M, Marashli S et al (2022) Neurexin1α knockout rats display oscillatory abnormalities and sensory processing deficits back-translating key endophenotypes of psychiatric disorders. Transl Psychiatry 12:455. https://doi.org/10.1038/s41398-022-02224-1 PubMed DOI PMC
Javitt DC, Siegel SJ, Spencer KM et al (2020) A roadmap for development of neuro-oscillations as translational biomarkers for treatment development in neuropsychopharmacology. Neuropsychopharmacology 45:1411–1422. https://doi.org/10.1038/s41386-020-0697-9 PubMed DOI PMC
Jenkins BW, Buckhalter S, Perreault ML, Khokhar JY (2022) Cannabis vapor exposure alters neural circuit oscillatory activity in a neurodevelopmental model of schizophrenia: exploring the differential impact of cannabis constituents. Schizophr Bull Open 3:sgab052. https://doi.org/10.1093/schizbullopen/sgab052 PubMed DOI
Jentsch JD, Roth RH (1999) The neuropsychopharmacology of phencyclidine: from NMDA receptor hypofunction to the dopamine hypothesis of schizophrenia. Neuropsychopharmacology 20:201–225. https://doi.org/10.1016/S0893-133X(98)00060-8 PubMed DOI
Karson MA, Tang A, Milner TA, Alger BE (2009) Synaptic cross talk between perisomatic-targeting interneuron classes expressing cholecystokinin and parvalbumin in hippocampus. J Neurosci 29(13):4140–4154. https://doi.org/10.1523/jneurosci.5264-08.2009 PubMed DOI PMC
Kittelberger K, Hur EE, Sazegar S et al (2012) Comparison of the effects of acute and chronic administration of ketamine on hippocampal oscillations: relevance for the NMDA receptor hypofunction model of schizophrenia. Brain Struct Funct 217:395–409. https://doi.org/10.1007/s00429-011-0351-8 PubMed DOI
Kjaerby C, Hovelsø N, Dalby NO, Sotty F (2017) Phencyclidine administration during neurodevelopment alters network activity in prefrontal cortex and hippocampus in adult rats. J Neurophysiol 118:1002–1011. https://doi.org/10.1152/jn.00081.2017 PubMed DOI PMC
Kucewicz MT, Tricklebank MD, Bogacz R, Jones MW (2011) Dysfunctional prefrontal cortical network activity and interactions following cannabinoid receptor activation. J Neurosci 31:15560–15568. https://doi.org/10.1523/JNEUROSCI.2970-11.2011 PubMed DOI PMC
Liu L, Xu H, Wang J, et al (2020) Cell type-differential modulation of prefrontal cortical GABAergic interneurons on low gamma rhythm and social interaction. Sci Adv 6(30):eaay4073. https://pubmed.ncbi.nlm.nih.gov/?sort=date&term=Duan+SM&cauthor_id=32832654
Lodge DJ, Behrens MM, Grace AA (2009) A loss of parvalbumin-containing interneurons is associated with diminished oscillatory activity in an animal model of schizophrenia. J Neurosci 29:2344–2354. https://doi.org/10.1523/JNEUROSCI.5419-08.2009 PubMed DOI PMC
Lu H-C, Mackie K (2016) An introduction to the endogenous cannabinoid system. Biol Psychiatry 79:516–525. https://doi.org/10.1016/j.biopsych.2015.07.028 PubMed DOI
Morris BJ, Cochran SM, Pratt JA (2005) PCP: from pharmacology to modelling schizophrenia. Curr Opin Pharmacol 5:101–106. https://doi.org/10.1016/j.coph.2004.08.008 PubMed DOI
Nakamura JP, Schroeder A, Hudson M et al (2019) The maternal immune activation model uncovers a role for the Arx gene in GABAergic dysfunction in schizophrenia. Brain Behav Immun 81:161–171. https://doi.org/10.1016/j.bbi.2019.06.009 PubMed DOI
Paxinos G, Watson C (1998) The rat brain in stereotaxic coordinates, 4th edn. Academic Press, San Diego
Phillips KG, Uhlhaas PJ (2015) Neural oscillations as a translational tool in schizophrenia research: rationale, paradigms and challenges. J Psychopharmacol 29:155–168. https://doi.org/10.1177/0269881114562093 PubMed DOI
Redrobe JP, Elster L, Frederiksen K et al (2012) Negative modulation of GABAA α5 receptors by RO4938581 attenuates discrete sub-chronic and early postnatal phencyclidine (PCP)-induced cognitive deficits in rats. Psychopharmacology 221:451–468. https://doi.org/10.1007/s00213-011-2593-9 PubMed DOI
Schnakenberg Martin AM, O’Donnell BF, Millward JB et al (2017) Acute phencyclidine alters neural oscillations evoked by tones in the auditory cortex of rats. Neuropsychobiology 75:53–62. https://doi.org/10.1159/000480511 PubMed DOI
Seillier A (2021) The endocannabinoid system as a therapeutic target for schizophrenia: failures and potentials. Neurosci Lett 759:136064. https://doi.org/10.1016/j.neulet.2021.136064 PubMed DOI
Seillier A, Giuffrida A (2011) Inhibition of fatty acid amide hydrolase modulates anxiety-like behavior in PCP-treated rats. Pharmacol Biochem Behav 98(4):583–586. https://doi.org/10.1016/j.pbb.2011.03.010 PubMed DOI
Seillier A, Giuffrida A (2016) Disruption of social cognition in the sub-chronic PCP rat model of schizophrenia: possible involvement of the endocannabinoid system. Eur Neuropsychopharmacol 26(2):298–309. https://doi.org/10.1016/j.euroneuro.2015.12.009 PubMed DOI
Seillier A, Advani T, Cassano T et al (2010) Inhibition of fatty-acid amide hydrolase and CB1 receptor antagonism differentially affect behavioural responses in normal and PCP-treated rats. Int J Neuropsychopharmacol 13:373–386. https://doi.org/10.1017/S146114570999023X PubMed DOI
Seillier A, Martinez AA, Giuffrida A (2013) Phencyclidine-induced social withdrawal results from deficient stimulation of cannabinoid CB PubMed DOI PMC
Seillier A, Martinez AA, Giuffrida A (2020) Differential effects of Δ9-tetrahydrocannabinol dosing on correlates of schizophrenia in the sub-chronic PCP rat model. PLoS One 15(3):e0230238. https://doi.org/10.1371/journal.pone.0230238 PubMed DOI PMC
Sigurdsson T, Duvarci S (2016) Hippocampal-prefrontal interactions in cognition, behavior and psychiatric disease. Front Syst Neurosci 9:190. https://doi.org/10.3389/fnsys.2015.00190 PubMed DOI PMC
Speers LJ, Bilkey DK (2021) Disorganization of oscillatory activity in animal models of schizophrenia. Front Neural Circuits 15:741767. https://doi.org/10.3389/fncir.2021.741767 PubMed DOI PMC
Syed SA, Schnakenberg Martin AM, Cortes-Briones JA, Skosnik PD (2022) The relationship between cannabinoids and neural oscillations: how cannabis disrupts sensation, perception, and cognition. Clin EEG Neurosci. https://doi.org/10.1177/15500594221138280 PubMed DOI
Tukker JJ, Fuentealba P, Hartwich K et al (2007) Cell type-specific tuning of hippocampal interneuron firing during gamma oscillations in vivo. J Neurosci 27:8184–8189. https://doi.org/10.1523/JNEUROSCI.1685-07.2007 PubMed DOI PMC
Viganò D, Guidali C, Petrosino S et al (2009) Involvement of the endocannabinoid system in phencyclidine-induced cognitive deficits modelling schizophrenia. Int J Neuropsychopharmacol 12(5):599–614. https://doi.org/10.1017/s1461145708009371 PubMed DOI
Wilcox RR, Keselman HJ (2003) Repeated measures one-way ANOVA based on a modified one-step M-estimator. Br J Math Stat Psychol 56:15–25. https://doi.org/10.1348/000711003321645313 PubMed DOI
Xie H, Chung DY, Kura S et al (2020) Differential effects of anesthetics on resting state functional connectivity in the mouse. J Cereb Blood Flow Metab 40:875–884. https://doi.org/10.1177/0271678X19847123 PubMed DOI
Yizhar O, Fenno LE, Prigge M et al (2011) Neocortical excitation/inhibition balance in information processing and social dysfunction. Nature 477:171–178. https://doi.org/10.1038/nature10360 PubMed DOI PMC
Yoshida T, Uchigashima M, Yamasaki M et al (2011) Unique inhibitory synapse with particularly rich endocannabinoid signaling machinery on pyramidal neurons in basal amygdaloid nucleus. Proc Natl Acad Sci USA 108:3059–3064. https://doi.org/10.1073/pnas.1012875108 PubMed DOI PMC
Young AMJ, Stubbendorff C, Valencia M, Gerdjikov TV (2015) Disruption of medial prefrontal synchrony in the subchronic phencyclidine model of schizophrenia in rats. Neuroscience 287:157–163. https://doi.org/10.1016/j.neuroscience.2014.12.014 PubMed DOI