Prenatal exposure to polycyclic aromatic hydrocarbons and growth parameters
Jazyk angličtina Země Polsko Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
CZ.02.1.01/0.0/0.0/16_019/0
Environment - Czech Republic
02.1.01/0.0/0.0/16_019/0 000798
Environment - Czech Republic
PubMed
38505966
DOI
10.32725/jab.2024.004
Knihovny.cz E-zdroje
- Klíčová slova
- Birth length, Birth weight, Growth parameters, Head circumference, Monohydroxylated PAH metabolites, Placenta weight, Polycyclic aromatic hydrocarbons,
- MeSH
- dítě MeSH
- lidé MeSH
- matky MeSH
- novorozenec MeSH
- placenta MeSH
- polycyklické aromatické uhlovodíky * MeSH
- porodní hmotnost MeSH
- těhotenství MeSH
- zpožděný efekt prenatální expozice * epidemiologie MeSH
- Check Tag
- dítě MeSH
- lidé MeSH
- novorozenec MeSH
- těhotenství MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- polycyklické aromatické uhlovodíky * MeSH
BACKGROUND AND OBJECTIVES: It has long been known that airborne polycyclic aromatic hydrocarbons (PAHs) can negatively affect pregnancy and birth outcomes, such as birth weight, fetal development, and placental growth factors. However, similar studies yield divergent results. Our goal was to estimate the amount of monohydroxylated PAH (OH-PAH) metabolites in the urine of pregnant women/mothers and their newborns in relation to birth outcomes, such as placenta weight, Apgar 5', and the growth parameters of children up to the age of two. METHODS: Two cohorts of children born in 2013 and 2014 during the summer and winter seasons in the Czech Republic in the cities Karviná (N = 144) and České Budějovice (N = 198), which differ significantly in the level of air pollution, were studied. PAH exposure was assessed by the concentration of benzo[a]pyrene (B[a]P) in the air and the concentration of 11 OH-PAH metabolites in the urine of newborns and mothers. Growth parameters and birth outcomes were obtained from medical questionnaires after birth and from pediatric questionnaires during the following 24 months of the child's life. RESULTS: Concentrations of B[a]P were significantly higher in Karviná (p < 0.001). OH-PAH metabolites were significantly higher in the mothers' as well as in the newborns' urine in Karviná and during the winter season. Neonatal length was shorter in newborns in Karviná (p < 0.001), but this difference evened out during the next 3 to 24 months. Compared to České Budějovice, newborns in Karviná showed significantly lower weight gain between birth and three months after delivery. The OH-PAH metabolites in mothers' or newborns' urine did not affect birth weight. The presence of seven OH-PAH (top 25% of values of concentrations higher than the median) metabolites in the newborns' urine is associated with decreased length of newborn. Nine OH-PAH metabolites decreased placenta weight, which was the most significant, while seven OH-PAH metabolites decreased Apgar 5'. CONCLUSION: We have shown a possible connection between higher concentration of OH-PAH metabolites in newborns' urine and decreased length, head circumference, placenta weight, and Apgar 5', but not birth weight.
Hospital Ceske Budejovice Ceske Budejovice Czech Republic
Institute of Experimental Medicine of the CAS Prague Czech Republic
L Pasteur University Hospital Department of Medical Genetics Kosice Slovak Republic
Zobrazit více v PubMed
Abdel-Shafy HI, Mansour MSM (2016). A review on polycyclic aromatic hydrocarbons: Source, environmental impact, effect on human health and remediation. Egypt J Pet 25: 107-123. DOI: 10.1016/j.ejpe.2015.03.011. DOI
Air Quality in Europe - 2018 Report (2018). European Environment Agency. [online] [cit. 2024-12-01]. Available from: https://www.eea.europa.eu/publications/air-quality-in-europe-2018
Al-Saleh I, Alsabbahen A, Shinwari N, Billedo G, Mashhout A, Al-Sarraj Y, et al. (2013). Polycyclic aromatic hydrocarbons (PAHs) as determinants of various anthropometric measures of birth outcome. Sci Total Environ 444: 565-578. DOI: 10.1016/j.scitotenv.2012.12.021. PubMed DOI
Ambroz A, Vlkova V, Rossner P, Jr., Rossnerova A, Svecova V, Milcova A, et al. (2016). Impact of air pollution on oxidative DNA damage and lipid peroxidation in mothers and their newborns. Int J Hyg Environ Health 219(6): 545-556. DOI: 10.1016/j.ijheh.2016.05.010. PubMed DOI
Binková B, Šrám RJ (2004). The genotoxic effect of carcinogenic PAHs, their artificial and environmental mixtures (EOM), on human diploid lung fibroblasts. Mutat Res 547(1-2): 109-121. DOI: 10.1016/j.mrfmmm.2003.12.006. PubMed DOI
Binková B, Veselý D, Veselá D, Jelínek R, Šrám RJ (1999). Genotoxicity and embryotoxicity of urban air particulate matter collected during winter and summer period in two different districts of the Czech Republic. Mutat Res 440(1): 45-58. DOI: 10.1016/s1383-5718(99)00011-x. PubMed DOI
Chaddha V, Viero S, Huppertz B, Kingdom J (2004). Developmental biology of the placenta and the origin of placenta insufficiency. Semin Fetal Neonatal Med 9(5): 357-369. DOI: 10.1016/j.siny.2004.03.006. PubMed DOI
CHMI - Czech Hydrometeorological Institute (2013). Grafická ročenka 2013. [online] [cit. 2024-12-01]. Available from: https://www.chmi.cz/files/portal/docs/uoco/isko/grafroc/13groc/gr13cz/Obsah_CZ.html
CHMI - Czech Hydrometeorological Institute (2014a). Informace o kvalitě ovzduší. [online] [cit. 2023-09-01]. Available from: https://www.chmi.cz/files/portal/docs/uoco/historicka_data/OpenIsko_data/index.html
CHMI - Czech Hydrometeorological Institute (2014b). Grafická ročenka 2014. [online] [cit. 2024-12-01]. Available from: https://www.chmi.cz/files/portal/docs/uoco/isko/grafroc/14groc/gr14cz/Obsah_CZ.html
CHMI - Czech Hydrometeorological Institute (2018). Průměrné koncentrace za roky 2013-2017. [online] [cit. 2024-12-01]. Available from: https://www.chmi.cz/files/portal/docs/uoco/isko/ozko/17petileti/png/index_CZ.html
Choi H, Jedrychowski W, Spengler J, Camman DE, Whyatt RM, Rauh V, et al. (2006). International studies of prenatal exposure to polycyclic aromatic hydrocarbons and fetal growth. Environ Health Perspect 114(11): 1744-1750. DOI: 10.1289/ehp.8982. PubMed DOI
Choi H, Wang L, Lin X, Spengler JD, Perera FP (2012). Fetal window of vulnerability to airborne polycyclic aromatic hydrocarbons on proportional intrauterine growth restriction. PloS One 7(4): e35464. DOI: 10.1371/journal.pone.0035464. PubMed DOI
Dejmek J, Solanský I, Benes I, Lenícek J, Srám RJ (2000). The impact of polycyclic aromatic hydrocarbons and fine particles on pregnancy outcome. Environ Health Perspect 108(12): 1159-1164. DOI: 10.1289/ehp.001081159. PubMed DOI
Detmar J, Rennie MY, Whiteley, KJ, Qu D, Taniuchi Y, Shang X, et al. (2008). Fetal growth restriction triggered by polycyclic aromatic hydrocarbons is associated with altered placental vasculature and AhR-dependent change in cell death. Am J Physiol Endocrinol Metab 205(2): E519-530. DOI: 10.1152/ajpendo.90436.2008. PubMed DOI
Directive 201/2012 Sb. of the Parliament of the Czech Republic from 13th June 2012 on the Air Quality protection (2012). [online] [cit. 2024-12-01]. Available from: https://www.zakonyprolidi.cz/print/cs/2012-201/zneni-20240101.htm (Czech).
Directive 2008/50/EC of the European Parliament and of the Council of 21 May 2008 on Ambient Air Quality and Cleaner air for Europe (2008). [online] [cit. 2024-12-01]. Available from: http://eur-lex.europa.eu/legal-content/CS/TXT/PDF/?uri=CELEX:32008L0050&from=EN (Czech).
IARC - International Agency for Research on Cancer (2012). Chemical Agents and Related Occupations, Vol. 100F, A review of human carcinogens. IARC Monographs on the Evaluation of Carcinogenic Risks to Humans. World Health Organization, Lyon, France. [online] [cit. 2023-01-22]. Available from: https://publications.iarc.fr/Book-And-Report-Series/Iarc-Monographs-On-The-Identification-Of-Carcinogenic-Hazards-To-Humans/Chemical-Agents-And-Related-Occupations-2012
Jedrychowski WA, Majewska R, Spengler JD, Camann D, Roen EL, Perera FP (2017). Prenatal exposure to fine particles and polycyclic aromatic hydrocarbons and birth outcomes: a two-pollutant approach. Int Arch Occup Environ Health 90(3): 255-264. DOI: 10.1007/s00420-016-1192-9. PubMed DOI
Lhotka R, Pokorná P, Zíková N (2019). Long-Term Trends in PAH Concentrations and Sources at Rural Background Site in Central Europe. Atmosphere 10: 687. DOI: 10.3390/atmos10110687. DOI
Milani S, Bossi A, Bertino E, di Battista E, Coscia A, Aicardi G, et al. (2005). Differences in size at birth are determined by differences in growth velocity during early prenatal life. Pediatr Res 57(2): 205-210. DOI: 10.1203/01.PDR.0000148452.98518.D5. PubMed DOI
Neufeld J, Pelletier DL, Haas J (1999). The timing hypothesis and body proportionality of the intra-uterine growth retarded infants. Am J Human Biol 11(5): 638-646. DOI: 10.1002/(SICI)1520-6300(199909/10)11:53.0.CO;2-Q. DOI
Perera FP, Whyatt RM, Jedrychowski W, Rauh V, Manchester D, Santella RM, Ottman R (1998). Recent developments in molecular epidemiology: A study of the effects of environmental polycyclic aromatic hydrocarbons on birth outcomes in Poland. Am J Epidemiol 147(3): 309-314. DOI: 10.1093/oxfordjournals.aje.a009451. PubMed DOI
Polanska K, Dettbarn G, Jurewicz J, Sobala W, Magnus P, Seidel A, Hanke W (2014). Effect of prenatal polycyclic aromatic exposure on birth outcomes: the Polish mother and child cohort study. Biomed Res Int 2014: 408939. DOI: 10.1155/2014/408939. PubMed DOI
Polańska K, Hanke W, Sobala W, Brzeźnicki S, Ligocka D (2010). Exposure to polycyclic aromatic hydrocarbons and newborn biometric indicators. Int J Occup Med Environ Health 23(4): 339-346. DOI: 10.2478/v10001-010-0028-1. PubMed DOI
Russell AG, Brunekreef B (2009). A focus on particulate matter and health. Environ Sci Technol 43(13): 4620-4625. DOI: 10.1021/es9005459. PubMed DOI
Smith GC (1999). First trimester origins of fetal growth impairment. Semin Perinatol 28(1): 41-50. DOI: 10.1053/j.semperi.2003.10.012. PubMed DOI
Topinka J, Rossner P, Jr., Milcova A, Schmuczerova J, Svecova V, Sram RJ (2011). DNA adducts and oxidative DNA damage induced by organic extracts from PM2.5 in an acellular assay. Toxicol. Lett. 202(3): 186-192. DOI: 10.1016/j.toxlet.2011.02.005. PubMed DOI
Topinka J, Schwarz LR, Wiebel, FJ, Černá M, Wolff T (2000). Genotoxicity of urban air pollutants in the Czech Republic. Part II. DNA adduct formation in mammalian cells by extractable organic matter. Mutat Res 469(1): 83-93. DOI: 10.1016/s1383-5718(00)00061-9. PubMed DOI
Urbancova K, Lankova D, Rossner P, Rossnerova A, Svecova V, Tomaniova, M, et al. (2016). Evaluation of 11 polycyclic aromatic hydrocarbon metabolites in urine of Czech mothers and newborns. Sci Total Environ S0048-9697(16)32353-1. DOI: 10.1016/j.scitotenv.2016.10.165. PubMed DOI
WHO (2010). Guidelines for indoor air quality: selected pollutants. World Health Organization Regional Office for Europe, Copenhagen, Denmark, 454 p. [online] [cit. 2023-01-22]. Available from: https://www.who.int/publications/i/item/9789289002134
Yang L, Shang L, Wang S, Yang W, Huang L, Gi C, et al. (2020). The association between prenatal exposure to polycyclic aromatic hydrocarbons and birth weight: A meta-analysis. PloS One 15(8): e 0236708. DOI: 10.1371/journal.pone.0236708. PubMed DOI
Yang P, Gong YJ, Cao WC, Wang RX, Wang X, Liu C, et al. (2018). Prenatal urinary polycyclic aromatic hydrocarbon metabolites, global DNA methylation in cord blood, and birth outcomes: A cohort study in China. Environ Pollut 234: 396-405. DOI: 10.1016/j.envpol.2017.11.082. PubMed DOI