Antigen-independent, autonomous B cell receptor signaling drives activated B cell DLBCL
Language English Country United States Media print-electronic
Document type Journal Article
Grant support
10208
KWF Dutch Cancer Society
Agencia Nacional de Investigacion y Desarrollo
2016-72170683
Doctorado Becas Chile
AZV NV18-03-00117
Czech Health Research Council
PRIMUS/17/MED/9
Charles University in Prague
LX22NPO5102
National Institute for Cancer Research
European Union
PubMed
38512136
PubMed Central
PMC10959178
DOI
10.1084/jem.20230941
PII: 276647
Knihovny.cz E-resources
- MeSH
- B-Lymphocytes MeSH
- Leukemia, Lymphocytic, Chronic, B-Cell * MeSH
- Lymphoma, Large B-Cell, Diffuse * genetics MeSH
- Immunoglobulin M MeSH
- Mice MeSH
- Receptors, Antigen, B-Cell MeSH
- Animals MeSH
- Check Tag
- Mice MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Immunoglobulin M MeSH
- Receptors, Antigen, B-Cell MeSH
Diffuse large B cell lymphoma of activated B cell type (ABC-DLBCL), a major cell-of-origin DLBCL subtype, is characterized by chronic active B cell receptor (BCR) signaling and NF-κB activation, which can be explained by activating mutations of the BCR signaling cascade in a minority of cases. We demonstrate that autonomous BCR signaling, akin to its essential pathogenetic role in chronic lymphocytic leukemia (CLL), can explain chronic active BCR signaling in ABC-DLBCL. 13 of 18 tested DLBCL-derived BCR, including 12 cases selected for expression of IgM, induced spontaneous calcium flux and increased phosphorylation of the BCR signaling cascade in murine triple knockout pre-B cells without antigenic stimulation or external BCR crosslinking. Autonomous BCR signaling was associated with IgM isotype, dependent on somatic BCR mutations and individual HCDR3 sequences, and largely restricted to non-GCB DLBCL. Autonomous BCR signaling represents a novel immunological oncogenic driver mechanism in DLBCL originating from individual BCR sequences and adds a new dimension to currently proposed genetics- and transcriptomics-based DLBCL classifications.
BIOCEV 1st Faculty of Medicine Charles University Prague Czech Republic
Department of Hematology Leiden University Medical Center Leiden Netherlands
Department of Pathology Amsterdam University Medical Center Amsterdam Netherlands
Department of Pathology Leiden University Medical Center Leiden Netherlands
Institute of Immunology University of Ulm Ulm Germany
School of Medicine Universidad de Magallanes Punta Arenas Chile
See more in PubMed
Alaggio, R., Amador C., Anagnostopoulos I., Attygalle A.D., Araujo I.B.D., Berti E., Bhagat G., Borges A.M., Boyer D., Calaminici M., et al. . 2022. The 5th edition of the World Health Organization Classification of Haematolymphoid Tumours: Lymphoid Neoplasms. Leukemia. 36:1720–1748. 10.1038/s41375-022-01620-2 PubMed DOI PMC
Alizadeh, A.A., Eisen M.B., Davis R.E., Ma C., Lossos I.S., Rosenwald A., Boldrick J.C., Sabet H., Tran T., Yu X., et al. . 2000. Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling. Nature. 403:503–511. 10.1038/35000501 PubMed DOI
Allahyar, A., Pieterse M., Swennenhuis J., Los-de Vries G.T., Yilmaz M., Leguit R., Meijers R.W.J., van der Geize R., Vermaat J., Cleven A., et al. . 2021. Robust detection of translocations in lymphoma FFPE samples using targeted locus capture-based sequencing. Nat. Commun. 12:3361. 10.1038/s41467-021-23695-8 PubMed DOI PMC
Brault, L., Menter T., Obermann E.C., Knapp S., Thommen S., Schwaller J., and Tzankov A.. 2012. PIM kinases are progression markers and emerging therapeutic targets in diffuse large B-cell lymphoma. Br. J. Cancer. 107:491–500. 10.1038/bjc.2012.272 PubMed DOI PMC
Brochet, X., Lefranc M.P., and Giudicelli V.. 2008. IMGT/V-QUEST: The highly customized and integrated system for IG and TR standardized V-J and V-D-J sequence analysis. Nucleic Acids Res. 36:W503–W508. 10.1093/nar/gkn316 PubMed DOI PMC
Campo, E., Jaffe E.S., Cook J.R., Quintanilla-Martinez L., Swerdlow S.H., Anderson K.C., Brousset P., Cerroni L., de Leval L., Dirnhofer S., et al. . 2022. The international consensus classification of mature lymphoid neoplasms: A report from the clinical advisory committee. Blood. 140:1229–1253. 10.1182/blood.2022015851 PubMed DOI PMC
Chapuy, B., Stewart C., Dunford A.J., Kim J., Kamburov A., Redd R.A., Lawrence M.S., Roemer M.G.M., Li A.J., Ziepert M., et al. . 2018. Molecular subtypes of diffuse large B cell lymphoma are associated with distinct pathogenic mechanisms and outcomes. Nat. Med. 24:679–690. 10.1038/s41591-018-0016-8 PubMed DOI PMC
Davis, R.E., Brown K.D., Siebenlist U., and Staudt L.M.. 2001. Constitutive nuclear factor kappaB activity is required for survival of activated B cell-like diffuse large B cell lymphoma cells. J. Exp. Med. 194:1861–1874. 10.1084/jem.194.12.1861 PubMed DOI PMC
Davis, R.E., Ngo V.N., Lenz G., Tolar P., Young R.M., Romesser P.B., Kohlhammer H., Lamy L., Zhao H., Yang Y., et al. . 2010. Chronic active B-cell-receptor signalling in diffuse large B-cell lymphoma. Nature. 463:88–92. 10.1038/nature08638 PubMed DOI PMC
Dühren-von Minden, M., Übelhart R., Schneider D., Wossning T., Bach M.P., Buchner M., Hofmann D., Surova E., Follo M., Köhler F., et al. . 2012. Chronic lymphocytic leukaemia is driven by antigen-independent cell-autonomous signalling. Nature. 489:309–312. 10.1038/nature11309 PubMed DOI
Ewels, P., Magnusson M., Lundin S., and Käller M.. 2016. MultiQC: Summarize analysis results for multiple tools and samples in a single report. Bioinformatics. 32:3047–3048. 10.1093/bioinformatics/btw354 PubMed DOI PMC
Garcia, M., Juhos S., Larsson M., Olason P.I., Martin M., Eisfeldt J., DiLorenzo S., Sandgren J., Díaz De Ståhl T., Ewels P., et al. . 2020. Sarek: A portable workflow for whole-genome sequencing analysis of germline and somatic variants. F1000 Res. 9:63. 10.12688/f1000research.16665.2 PubMed DOI PMC
Hans, C.P., Weisenburger D.D., Greiner T.C., Gascoyne R.D., Delabie J., Ott G., Müller-Hermelink H.K., Campo E., Braziel R.M., Jaffe E.S., et al. . 2004. Confirmation of the molecular classification of diffuse large B-cell lymphoma by immunohistochemistry using a tissue microarray. Blood. 103:275–282. 10.1182/blood-2003-05-1545 PubMed DOI
Havranek, O., Xu J., Köhrer S., Wang Z., Becker L., Comer J.M., Henderson J., Ma W., Man Chun Ma J., Westin J.R., et al. . 2017. Tonic B-cell receptor signaling in diffuse large B-cell lymphoma. Blood. 130:995–1006. 10.1182/blood-2016-10-747303 PubMed DOI PMC
Howlader, N., Mariotto A.B., Besson C., Suneja G., Robien K., Younes N., and Engels E.A.. 2017. Cancer-specific mortality, cure fraction, and noncancer causes of death among diffuse large B-cell lymphoma patients in the immunochemotherapy era. Cancer. 123:3326–3334. 10.1002/cncr.30739 PubMed DOI
Kanehisa, M., Furumichi M., Sato Y., Kawashima M., and Ishiguro-Watanabe M.. 2023. KEGG for taxonomy-based analysis of pathways and genomes. Nucleic Acids Res. 51:D587–D592. 10.1093/nar/gkac963 PubMed DOI PMC
Kim, S., Scheffler K., Halpern A.L., Bekritsky M.A., Noh E., Källberg M., Chen X., Kim Y., Beyter D., Krusche P., and Saunders C.T.. 2018. Strelka2: Fast and accurate calling of germline and somatic variants. Nat. Methods. 15:591–594. 10.1038/s41592-018-0051-x PubMed DOI
Koning, M.T., Kielbasa S.M., Boersma V., Buermans H.P., van der Zeeuw S.A., van Bergen C.A., Cleven A.H., Kluin P.M., Griffioen M., and Navarrete M.A.. 2017. ARTISAN PCR: Rapid identification of full-length immunoglobulin rearrangements without primer binding bias. Br. J. Haematol. 178:983–986. 10.1111/bjh.14180 PubMed DOI
Kuo, H.P., Ezell S.A., Hsieh S., Schweighofer K.J., Cheung L.W., Wu S., Apatira M., Sirisawad M., Eckert K., Liang Y., et al. . 2016. The role of PIM1 in the ibrutinib-resistant ABC subtype of diffuse large B-cell lymphoma. Am. J. Cancer Res. 6:2489–2501. PubMed PMC
Lenz, G., Davis R.E., Ngo V.N., Lam L., George T.C., Wright G.W., Dave S.S., Zhao H., Xu W., Rosenwald A., et al. . 2008. Oncogenic CARD11 mutations in human diffuse large B cell lymphoma. Science. 319:1676–1679. 10.1126/science.1153629 PubMed DOI
Li, H., and Durbin R.. 2009. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics. 25:1754–1760. 10.1093/bioinformatics/btp324 PubMed DOI PMC
Maity, P.C., Bilal M., Koning M.T., Young M., van Bergen C.A.M., Renna V., Nicolò A., Datta M., Gentner-Göbel E., Barendse R.S., et al. . 2020. IGLV3-21*01 Is an inherited risk factor for CLL through the acquisition of a single-point mutation enabling autonomous BCR signaling. Proc. Natl. Acad. Sci. USA. 117:4320–4327. 10.1073/pnas.1913810117 PubMed DOI PMC
McKenna, A., Hanna M., Banks E., Sivachenko A., Cibulskis K., Kernytsky A., Garimella K., Altshuler D., Gabriel S., Daly M., and DePristo M.A.. 2010. The genome analysis toolkit: A MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 20:1297–1303. 10.1101/gr.107524.110 PubMed DOI PMC
McLaren, W., Pritchard B., Rios D., Chen Y., Flicek P., and Cunningham F.. 2010. Deriving the consequences of genomic variants with the Ensembl API and SNP effect predictor. Bioinformatics. 26:2069–2070. 10.1093/bioinformatics/btq330 PubMed DOI PMC
Meixlsperger, S., Köhler F., Wossning T., Reppel M., Müschen M., and Jumaa H.. 2007. Conventional light chains inhibit the autonomous signaling capacity of the B cell receptor. Immunity. 26:323–333. 10.1016/j.immuni.2007.01.012 PubMed DOI
Mendeville, M., Janssen J., Kim Y., van Dijk E., de Jong D., and Ylstra B.. 2022. A bioinformatics perspective on molecular classification of diffuse large B-cell lymphoma. Leukemia. 36:2177–2179. 10.1038/s41375-022-01670-6 PubMed DOI PMC
Minici, C., Gounari M., Übelhart R., Scarfò L., Dühren-von Minden M., Schneider D., Tasdogan A., Alkhatib A., Agathangelidis A., Ntoufa S., et al. . 2017. Distinct homotypic B-cell receptor interactions shape the outcome of chronic lymphocytic leukaemia. Nat. Commun. 8:15746. 10.1038/ncomms15746 PubMed DOI PMC
Naviaux, R.K., Costanzi E., Haas M., and Verma I.M.. 1996. The pCL vector system: Rapid production of helper-free, high-titer, recombinant retroviruses. J. Virol. 70:5701–5705. 10.1128/jvi.70.8.5701-5705.1996 PubMed DOI PMC
Ngo, V.N., Young R.M., Schmitz R., Jhavar S., Xiao W., Lim K.H., Kohlhammer H., Xu W., Yang Y., Zhao H., et al. . 2011. Oncogenically active MYD88 mutations in human lymphoma. Nature. 470:115–119. 10.1038/nature09671 PubMed DOI PMC
Phelan, J.D., Young R.M., Webster D.E., Roulland S., Wright G.W., Kasbekar M., Shaffer A.L. III, Ceribelli M., Wang J.Q., Schmitz R., et al. . 2018. A multiprotein supercomplex controlling oncogenic signalling in lymphoma. Nature. 560:387–391. 10.1038/s41586-018-0290-0 PubMed DOI PMC
Quinten, E., Sepúlveda-Yáñez J.H., Koning M.T., Eken J.A., Pfeifer D., Nteleah V., De Groen R.A.L., Saravia D.A., Knijnenburg J., Stuivenberg-Bleijswijk H.E., et al. . 2023. Autonomous B-cell receptor signaling and genetic aberrations in chronic lymphocytic leukemia-phenotype monoclonal B lymphocytosis in siblings of patients with chronic lymphocytic leukemia. Haematologica. 109:824–834. 10.3324/haematol.2022.282542 PubMed DOI PMC
Reddy, A., Zhang J., Davis N.S., Moffitt A.B., Love C.L., Waldrop A., Leppa S., Pasanen A., Meriranta L., Karjalainen-Lindsberg M.L., et al. . 2017. Genetic and functional drivers of diffuse large B Cell lymphoma. Cell. 171:481–494.e15. 10.1016/j.cell.2017.09.027 PubMed DOI PMC
Rosenwald, A., Wright G., Chan W.C., Connors J.M., Campo E., Fisher R.I., Gascoyne R.D., Muller-Hermelink H.K., Smeland E.B., Giltnane J.M., et al. . 2002. The use of molecular profiling to predict survival after chemotherapy for diffuse large-B-cell lymphoma. N. Engl. J. Med. 346:1937–1947. 10.1056/NEJMoa012914 PubMed DOI
Ruminy, P., Etancelin P., Couronné L., Parmentier F., Rainville V., Mareschal S., Bohers E., Burgot C., Cornic M., Bertrand P., et al. . 2011. The isotype of the BCR as a surrogate for the GCB and ABC molecular subtypes in diffuse large B-cell lymphoma. Leukemia. 25:681–688. 10.1038/leu.2010.302 PubMed DOI
Schmitz, R., Wright G.W., Huang D.W., Johnson C.A., Phelan J.D., Wang J.Q., Roulland S., Kasbekar M., Young R.M., Shaffer A.L., et al. . 2018. Genetics and pathogenesis of diffuse large B-cell lymphoma. N. Engl. J. Med. 378:1396–1407. 10.1056/NEJMoa1801445 PubMed DOI PMC
Scott, D.W., Wright G.W., Williams P.M., Lih C.J., Walsh W., Jaffe E.S., Rosenwald A., Campo E., Chan W.C., Connors J.M., et al. . 2014. Determining cell-of-origin subtypes of diffuse large B-cell lymphoma using gene expression in formalin-fixed paraffin-embedded tissue. Blood. 123:1214–1217. 10.1182/blood-2013-11-536433 PubMed DOI PMC
Storch, B., Meixlsperger S., and Jumaa H.. 2007. The Ig-alpha ITAM is required for efficient differentiation but not proliferation of pre-B cells. Eur. J. Immunol. 37:252–260. 10.1002/eji.200636667 PubMed DOI
Thurner, L., Hartmann S., Bewarder M., Fadle N., Regitz E., Schormann C., Quiroga N., Kemele M., Klapper W., Rosenwald A., et al. . 2021. Identification of the atypically modified autoantigen Ars2 as the target of B-cell receptors from activated B-cell-type diffuse large B-cell lymphoma. Haematologica. 106:2224–2232. 10.3324/haematol.2019.241653 PubMed DOI PMC
Wilson, W.H., Wright G.W., Huang D.W., Hodkinson B., Balasubramanian S., Fan Y., Vermeulen J., Shreeve M., and Staudt L.M.. 2021. Effect of ibrutinib with R-CHOP chemotherapy in genetic subtypes of DLBCL. Cancer Cell 39:1643–1653.e1643. 10.1016/j.ccell.2021.10.006 PubMed DOI PMC
Wilson, W.H., Young R.M., Schmitz R., Yang Y., Pittaluga S., Wright G., Lih C.J., Williams P.M., Shaffer A.L., Gerecitano J., et al. . 2015. Targeting B cell receptor signaling with ibrutinib in diffuse large B cell lymphoma. Nat. Med. 21:922–926. 10.1038/nm.3884 PubMed DOI PMC
Wright, G.W., Huang D.W., Phelan J.D., Coulibaly Z.A., Roulland S., Young R.M., Wang J.Q., Schmitz R., Morin R.D., Tang J., et al. . 2020. A probabilistic classification tool for genetic subtypes of diffuse large B cell lymphoma with therapeutic implications. Cancer Cell. 37:551–568.e14. 10.1016/j.ccell.2020.03.015 PubMed DOI PMC
Young, R.M., Wu T., Schmitz R., Dawood M., Xiao W., Phelan J.D., Xu W., Menard L., Meffre E., Chan W.C., et al. . 2015. Survival of human lymphoma cells requires B-cell receptor engagement by self-antigens. Proc. Natl. Acad. Sci. USA. 112:13447–13454. 10.1073/pnas.1514944112 PubMed DOI PMC