Impact of media supplements FGF2, LIF and IGF1 on the genome activity of porcine embryos produced in vitro

. 2024 Mar 25 ; 14 (1) : 7081. [epub] 20240325

Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid38528099

Grantová podpora
DS-FR-22-0003 Agentúra na Podporu Výskumu a Vývoja
CZ.02.1.01/0.0/0.0/15_003/0000460 Ministerstvo Školství, Mládeže a Tělovýchovy
VEGA 1/0167/20 Vedecká Grantová Agentúra MŠVVaŠ SR a SAV
039UKF-4/2021 Kultúrna a Edukacná Grantová Agentúra MŠVVaŠ SR
23-05108S Grantová Agentura České Republiky

Odkazy

PubMed 38528099
PubMed Central PMC10963758
DOI 10.1038/s41598-024-57865-7
PII: 10.1038/s41598-024-57865-7
Knihovny.cz E-zdroje

In this article, we focused on the impact of precisely chemically modified FLI maturation medium enriched with fibroblast growth factor 2 (FGF2), leukemia inhibitory factor (LIF), insulin-like growth factor 1 (IGF1), and polyvinyl alcohol (PVA) and its potential to improve the efficiency of in vitro production of porcine embryos. We hypothesized that enhancing the composition of the maturation medium could result in an elevated production of embryos in vitro and can affect EGA. FLI medium resulted in a significantly higher rate of oocyte blastocyst maturation and formation compared to the control DMEM medium. In addition, immunocytochemical labelling confirmed the detection of UBF in 4-cell FLI parthenogenic embryos, suggesting similarities with natural embryo development. Through RNAseq analysis, upregulated genes present in 4-cell FLI embryos were found to play key roles in important biological processes such as cell proliferation, cell differentiation, and transcriptional regulation. Based on our findings, we demonstrated the positive influence of FLI medium in the evaluation of in vitro embryo production, EGA detection, transcriptomic and proteomic profile, which was confirmed by the positive activation of the embryonal genome in the 4-cell stage of parthenogenetically activated embryos.

Zobrazit více v PubMed

Fowler KE, Mandawala AA, Griffin DK, Walling GA, Harvey SC. The production of pig preimplantation embryos in vitro: Current progress and future prospects. Reprod. Biol. 2018;18:203–211. doi: 10.1016/j.repbio.2018.07.001. PubMed DOI

Hryhorowicz M, et al. Application of genetically engineered pigs in biomedical research. Genes. 2020;11:670. doi: 10.3390/genes11060670. PubMed DOI PMC

Prather RS. Targeted genetic modification: Xenotransplantation and beyond. Clon. Stem Cells. 2007;9:17–20. doi: 10.1089/clo.2006.0085. PubMed DOI PMC

Dujíčková L, Makarevich AV, Olexiková L, Kubovičová E, Strejček F. Methodological approaches for vitrification of bovine oocytes. Zygote. 2021;29:1–11. doi: 10.1017/S0967199420000465. PubMed DOI

De Roo C, Tilleman K. In vitro maturation of oocytes retrieved from ovarian tissue: Outcomes from current approaches and future perspectives. J. Clin. Med. 2021;10:4680. doi: 10.3390/jcm10204680. PubMed DOI PMC

Currin L, et al. Optimizing swine in vitro embryo production with growth factor and antioxidant supplementation during oocyte maturation. Theriogenology. 2022;194:133–143. doi: 10.1016/j.theriogenology.2022.10.005. PubMed DOI

Kinterova V, Kanka J, Petruskova V, Toralova T. Inhibition of Skp1-Cullin-F-box complexes during bovine oocyte maturation and preimplantation development leads to delayed development of embryos. Biol. Reprod. 2019;100:896–906. doi: 10.1093/biolre/ioy254. PubMed DOI

Murin M, et al. Porcine oocytes matured in a chemically defined medium are transcriptionally active. Theriogenology. 2023;203:89–98. doi: 10.1016/j.theriogenology.2023.03.019. PubMed DOI

Chen PR, Redel BK, Kerns KC, Spate LD, Prather RS. Challenges and considerations during in vitro production of porcine embryos. Cells. 2021;10:2770. doi: 10.3390/cells10102770. PubMed DOI PMC

van der Weijden VA, et al. Transcriptome dynamics in early in vivo developing and in vitro produced porcine embryos. BMC Genom. 2021;22:139. doi: 10.1186/s12864-021-07430-7. PubMed DOI PMC

Bartkova A, et al. Characterization of porcine oocytes stained with Lissamine Green B and their developmental potential in vitro. Anim. Reprod. 2020;17:e20200533. doi: 10.1590/1984-3143-ar2020-0533. PubMed DOI PMC

Motta L, Chaves D, Bhat M. In vitro embryo production in the pig. Reprod. Biotechnol. Farm Anim. 2018;8:1–10.

Edwards RG, Bavister BD, Steptoe PC. Early stages of fertilization in vitro of human oocytes matured in vitro. Nature. 1969;221:632–635. doi: 10.1038/221632a0. PubMed DOI

Hatırnaz Ş, et al. Oocyte in vitro maturation: A sytematic review. TJOD. 2018;15:112–125. doi: 10.4274/tjod.23911. PubMed DOI PMC

Vuong LN, et al. Live births after oocyte in vitro maturation with a prematuration step in women with polycystic ovary syndrome. J. Assist. Reprod. Genet. 2020;37:347–357. doi: 10.1007/s10815-019-01677-6. PubMed DOI PMC

Nemcova L, et al. Importance of Supplementation during In Vitro Production of Livestock Animals. IntechOpen; 2023.

Yuan Y, et al. Quadrupling efficiency in production of genetically modified pigs through improved oocyte maturation. Proc. Natl. Acad. Sci. U SA. 2017;114:E5796–E5804. doi: 10.1073/pnas.1703998114. PubMed DOI PMC

Yuan Y, Krisher RL. In vitro maturation (IVM) of porcine oocytes. Methods Mol. Biol. 2012;825:183–198. doi: 10.1007/978-1-61779-436-0_14. PubMed DOI

Procházka R, et al. The role of MAPK3/1 and AKT in the acquisition of high meiotic and developmental competence of porcine oocytes cultured in vitro in FLI medium. IJMS. 2021;22:11148. doi: 10.3390/ijms222011148. PubMed DOI PMC

Che L, Lalonde A, Bordignon V. Chemical activation of parthenogenetic and nuclear transfer porcine oocytes using ionomycin and strontium chloride. Theriogenology. 2007;67:1297–1304. doi: 10.1016/j.theriogenology.2007.02.006. PubMed DOI

Hyttel P, et al. Nucleolar proteins and ultrastructure in preimplantation porcine embryos developed in vivo. Biol. Reprod. 2000;63:1848–1856. doi: 10.1095/biolreprod63.6.1848. PubMed DOI

Serrano Albal M, et al. Supplementation of porcine in vitro maturation medium with FGF2, LIF, and IGF1 enhances cytoplasmic maturation in prepubertal gilts oocytes and improves embryo quality. Zygote. 2022;30:801–808. doi: 10.1017/S0967199422000284. PubMed DOI

Stoecklein KS, Ortega MS, Spate LD, Murphy CN, Prather RS. Improved cryopreservation of in vitro produced bovine embryos using FGF2, LIF, and IGF1. PLoS ONE. 2021;16:e0243727. doi: 10.1371/journal.pone.0243727. PubMed DOI PMC

Tian H, et al. Enhancing the developmental competence of prepubertal lamb oocytes by supplementing the in vitro maturation medium with sericin and the fibroblast growth factor 2-leukemia inhibitory factor: Insulin-like growth factor 1 combination. Theriogenology. 2021;159:13–19. doi: 10.1016/j.theriogenology.2020.10.019. PubMed DOI

Roth Z, Hansen PJ. Disruption of nuclear maturation and rearrangement of cytoskeletal elements in bovine oocytes exposed to heat shock during maturation. Reproduction. 2005;129:235–244. doi: 10.1530/rep.1.00394. PubMed DOI

Gegenfurtner K, Flenkenthaler F, Fröhlich T, Wolf E, Arnold GJ. The impact of transcription inhibition during in vitro maturation on the proteome of bovine oocytes†. Biol. Reprod. 2020;103:1000–1011. doi: 10.1093/biolre/ioaa149. PubMed DOI

Verlhac M-H, Terret M-E. Oocyte maturation and development. F1000 Res. 2016;5:309. doi: 10.12688/f1000research.7892.1. PubMed DOI PMC

Terada Y, et al. Cytoskeletal dynamics during mammalian gametegenesis and fertilization: Implications for human reproduction. Reprod. Med. Biol. 2005;4:179–187. doi: 10.1111/j.1447-0578.2005.00103.x. PubMed DOI PMC

Gumus E, Bulut HE, Kaloglu C. Cytoskeletal changes in oocytes and early embryos during in vitro fertilization process in mice. Anat. Histol. Embryol. 2010;39:51–58. doi: 10.1111/j.1439-0264.2009.00982.x. PubMed DOI

Mao L, Lou H, Lou Y, Wang N, Jin F. Behaviour of cytoplasmic organelles and cytoskeleton during oocyte maturation. Reprod. Biomed. Online. 2014;28:284–299. doi: 10.1016/j.rbmo.2013.10.016. PubMed DOI

Østrup O, et al. RNA profiles of porcine embryos during genome activation reveal complex metabolic switch sensitive to in vitro conditions. PLoS ONE. 2013;8:e61547. doi: 10.1371/journal.pone.0061547. PubMed DOI PMC

Zhang C, et al. The dynamic changes of transcription factors during the development processes of human biparental and uniparental embryos. Front. Cell Dev. Biol. 2021;9:709498. doi: 10.3389/fcell.2021.709498. PubMed DOI PMC

Niakan KK, Eggan K. Analysis of human embryos from zygote to blastocyst reveals distinct gene expression patterns relative to the mouse. Dev. Biol. 2013;375:54–64. doi: 10.1016/j.ydbio.2012.12.008. PubMed DOI

Lamas-Toranzo I, et al. ZP4 confers structural properties to the zona pellucida essential for embryo development. Elife. 2019;8:e48904. doi: 10.7554/eLife.48904. PubMed DOI PMC

Wang R, et al. Loss of function mutations in RPL27 and RPS27 identified by whole-exome sequencing in Diamond-Blackfan anaemia. Br. J. Haematol. 2015;168:854–864. doi: 10.1111/bjh.13229. PubMed DOI

Qi C, et al. Biochemical and structural characterization of a novel ubiquitin-conjugating enzyme E2 from Agrocybe aegeria reveals Ube2w family-specific properties. Sci. Rep. 2015;5:16056. doi: 10.1038/srep16056. PubMed DOI PMC

May-Panloup P, Boguenet M, El Hachem H, Bouet P-E, Reynier P. Embryo and its mitochondria. Antioxidants. 2021;10:139. doi: 10.3390/antiox10020139. PubMed DOI PMC

Babayev E, Seli E. Oocyte mitochondrial function and reproduction. Curr. Opin. Obstet. Gynecol. 2015;27:175–181. doi: 10.1097/GCO.0000000000000164. PubMed DOI PMC

Mao X, et al. Genetic diversities of MT-ND3 and MT-ND4L genes are associated with high-altitude adaptation. Mitochondrial. DNA B. 2019;4:324–328. doi: 10.1080/23802359.2018.1544040. DOI

Ireland JJ, Murphee RL, Coulson PB. Accuracy of predicting stages of bovine estrous cycle by gross appearance of the corpus luteum. J. Dairy Sci. 1980;63:155–160. doi: 10.3168/jds.S0022-0302(80)82901-8. PubMed DOI

Yoshioka K, Suzuki C, Tanaka A, Anas IM-K, Iwamura S. Birth of piglets derived from porcine zygotes cultured in a chemically defined medium. Biol. Reprod. 2002;66:112–119. doi: 10.1095/biolreprod66.1.112. PubMed DOI

Lucas-Hahn A, et al. 122 a new maturation medium improves porcine embryo production in vitro. Reprod. Fertil. Dev. 2018;30:200–201. doi: 10.1071/RDv30n1Ab122. DOI

Laurincik J, Rath D, Niemann H. Differences in pronucleus formation and first cleavage following in vitro fertilization between pig oocytes matured in vivo and in vitro. J. Reprod. Fertil. 1994;102:277–284. doi: 10.1530/jrf.0.1020277. PubMed DOI

Wiśniewski JR, Zougman A, Nagaraj N, Mann M. Universal sample preparation method for proteome analysis. Nat. Methods. 2009;6:359–362. doi: 10.1038/nmeth.1322. PubMed DOI

Arrell VL, Day BN, Prather RS. The transition from maternal to zygotic control of development occurs during the 4-cell stage in the domestic pig, Sus Scrofa: Quantitative and qualitative aspects of protein synthesis1. Biol. Reprod. 1991;44:62–68. doi: 10.1095/biolreprod44.1.62. PubMed DOI

Cao S, et al. Specific gene-regulation networks during the pre-implantation development of the pig embryo as revealed by deep sequencing. BMC Genom. 2014;15:4. doi: 10.1186/1471-2164-15-4. PubMed DOI PMC

Edgar R, Domrachev M, Lash AE. Gene expression omnibus: NCBI gene expression and hybridization array data repository. Nucleic Acids Res. 2002;30:207–210. doi: 10.1093/nar/30.1.207. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...