Impact of media supplements FGF2, LIF and IGF1 on the genome activity of porcine embryos produced in vitro
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
DS-FR-22-0003
Agentúra na Podporu Výskumu a Vývoja
CZ.02.1.01/0.0/0.0/15_003/0000460
Ministerstvo Školství, Mládeže a Tělovýchovy
VEGA 1/0167/20
Vedecká Grantová Agentúra MŠVVaŠ SR a SAV
039UKF-4/2021
Kultúrna a Edukacná Grantová Agentúra MŠVVaŠ SR
23-05108S
Grantová Agentura České Republiky
PubMed
38528099
PubMed Central
PMC10963758
DOI
10.1038/s41598-024-57865-7
PII: 10.1038/s41598-024-57865-7
Knihovny.cz E-zdroje
- MeSH
- blastocysta účinky léků metabolismus MeSH
- fertilizace in vitro MeSH
- fibroblastový růstový faktor 2 * farmakologie MeSH
- insulinu podobný růstový faktor I * farmakologie MeSH
- kultivační média * chemie farmakologie MeSH
- leukemický inhibiční faktor * farmakologie MeSH
- oocyty MeSH
- prasata embryologie genetika MeSH
- proteomika MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- fibroblastový růstový faktor 2 * MeSH
- insulinu podobný růstový faktor I * MeSH
- kultivační média * MeSH
- leukemický inhibiční faktor * MeSH
In this article, we focused on the impact of precisely chemically modified FLI maturation medium enriched with fibroblast growth factor 2 (FGF2), leukemia inhibitory factor (LIF), insulin-like growth factor 1 (IGF1), and polyvinyl alcohol (PVA) and its potential to improve the efficiency of in vitro production of porcine embryos. We hypothesized that enhancing the composition of the maturation medium could result in an elevated production of embryos in vitro and can affect EGA. FLI medium resulted in a significantly higher rate of oocyte blastocyst maturation and formation compared to the control DMEM medium. In addition, immunocytochemical labelling confirmed the detection of UBF in 4-cell FLI parthenogenic embryos, suggesting similarities with natural embryo development. Through RNAseq analysis, upregulated genes present in 4-cell FLI embryos were found to play key roles in important biological processes such as cell proliferation, cell differentiation, and transcriptional regulation. Based on our findings, we demonstrated the positive influence of FLI medium in the evaluation of in vitro embryo production, EGA detection, transcriptomic and proteomic profile, which was confirmed by the positive activation of the embryonal genome in the 4-cell stage of parthenogenetically activated embryos.
Constantine the Philosopher University in Nitra Nitra Slovakia
Department of Animal Production Faculty of Agriculture Cairo University Giza Egypt
Institute of Animal Physiology and Genetics Czech Academy of Sciences Liběchov Czech Republic
Zobrazit více v PubMed
Fowler KE, Mandawala AA, Griffin DK, Walling GA, Harvey SC. The production of pig preimplantation embryos in vitro: Current progress and future prospects. Reprod. Biol. 2018;18:203–211. doi: 10.1016/j.repbio.2018.07.001. PubMed DOI
Hryhorowicz M, et al. Application of genetically engineered pigs in biomedical research. Genes. 2020;11:670. doi: 10.3390/genes11060670. PubMed DOI PMC
Prather RS. Targeted genetic modification: Xenotransplantation and beyond. Clon. Stem Cells. 2007;9:17–20. doi: 10.1089/clo.2006.0085. PubMed DOI PMC
Dujíčková L, Makarevich AV, Olexiková L, Kubovičová E, Strejček F. Methodological approaches for vitrification of bovine oocytes. Zygote. 2021;29:1–11. doi: 10.1017/S0967199420000465. PubMed DOI
De Roo C, Tilleman K. In vitro maturation of oocytes retrieved from ovarian tissue: Outcomes from current approaches and future perspectives. J. Clin. Med. 2021;10:4680. doi: 10.3390/jcm10204680. PubMed DOI PMC
Currin L, et al. Optimizing swine in vitro embryo production with growth factor and antioxidant supplementation during oocyte maturation. Theriogenology. 2022;194:133–143. doi: 10.1016/j.theriogenology.2022.10.005. PubMed DOI
Kinterova V, Kanka J, Petruskova V, Toralova T. Inhibition of Skp1-Cullin-F-box complexes during bovine oocyte maturation and preimplantation development leads to delayed development of embryos. Biol. Reprod. 2019;100:896–906. doi: 10.1093/biolre/ioy254. PubMed DOI
Murin M, et al. Porcine oocytes matured in a chemically defined medium are transcriptionally active. Theriogenology. 2023;203:89–98. doi: 10.1016/j.theriogenology.2023.03.019. PubMed DOI
Chen PR, Redel BK, Kerns KC, Spate LD, Prather RS. Challenges and considerations during in vitro production of porcine embryos. Cells. 2021;10:2770. doi: 10.3390/cells10102770. PubMed DOI PMC
van der Weijden VA, et al. Transcriptome dynamics in early in vivo developing and in vitro produced porcine embryos. BMC Genom. 2021;22:139. doi: 10.1186/s12864-021-07430-7. PubMed DOI PMC
Bartkova A, et al. Characterization of porcine oocytes stained with Lissamine Green B and their developmental potential in vitro. Anim. Reprod. 2020;17:e20200533. doi: 10.1590/1984-3143-ar2020-0533. PubMed DOI PMC
Motta L, Chaves D, Bhat M. In vitro embryo production in the pig. Reprod. Biotechnol. Farm Anim. 2018;8:1–10.
Edwards RG, Bavister BD, Steptoe PC. Early stages of fertilization in vitro of human oocytes matured in vitro. Nature. 1969;221:632–635. doi: 10.1038/221632a0. PubMed DOI
Hatırnaz Ş, et al. Oocyte in vitro maturation: A sytematic review. TJOD. 2018;15:112–125. doi: 10.4274/tjod.23911. PubMed DOI PMC
Vuong LN, et al. Live births after oocyte in vitro maturation with a prematuration step in women with polycystic ovary syndrome. J. Assist. Reprod. Genet. 2020;37:347–357. doi: 10.1007/s10815-019-01677-6. PubMed DOI PMC
Nemcova L, et al. Importance of Supplementation during In Vitro Production of Livestock Animals. IntechOpen; 2023.
Yuan Y, et al. Quadrupling efficiency in production of genetically modified pigs through improved oocyte maturation. Proc. Natl. Acad. Sci. U SA. 2017;114:E5796–E5804. doi: 10.1073/pnas.1703998114. PubMed DOI PMC
Yuan Y, Krisher RL. In vitro maturation (IVM) of porcine oocytes. Methods Mol. Biol. 2012;825:183–198. doi: 10.1007/978-1-61779-436-0_14. PubMed DOI
Procházka R, et al. The role of MAPK3/1 and AKT in the acquisition of high meiotic and developmental competence of porcine oocytes cultured in vitro in FLI medium. IJMS. 2021;22:11148. doi: 10.3390/ijms222011148. PubMed DOI PMC
Che L, Lalonde A, Bordignon V. Chemical activation of parthenogenetic and nuclear transfer porcine oocytes using ionomycin and strontium chloride. Theriogenology. 2007;67:1297–1304. doi: 10.1016/j.theriogenology.2007.02.006. PubMed DOI
Hyttel P, et al. Nucleolar proteins and ultrastructure in preimplantation porcine embryos developed in vivo. Biol. Reprod. 2000;63:1848–1856. doi: 10.1095/biolreprod63.6.1848. PubMed DOI
Serrano Albal M, et al. Supplementation of porcine in vitro maturation medium with FGF2, LIF, and IGF1 enhances cytoplasmic maturation in prepubertal gilts oocytes and improves embryo quality. Zygote. 2022;30:801–808. doi: 10.1017/S0967199422000284. PubMed DOI
Stoecklein KS, Ortega MS, Spate LD, Murphy CN, Prather RS. Improved cryopreservation of in vitro produced bovine embryos using FGF2, LIF, and IGF1. PLoS ONE. 2021;16:e0243727. doi: 10.1371/journal.pone.0243727. PubMed DOI PMC
Tian H, et al. Enhancing the developmental competence of prepubertal lamb oocytes by supplementing the in vitro maturation medium with sericin and the fibroblast growth factor 2-leukemia inhibitory factor: Insulin-like growth factor 1 combination. Theriogenology. 2021;159:13–19. doi: 10.1016/j.theriogenology.2020.10.019. PubMed DOI
Roth Z, Hansen PJ. Disruption of nuclear maturation and rearrangement of cytoskeletal elements in bovine oocytes exposed to heat shock during maturation. Reproduction. 2005;129:235–244. doi: 10.1530/rep.1.00394. PubMed DOI
Gegenfurtner K, Flenkenthaler F, Fröhlich T, Wolf E, Arnold GJ. The impact of transcription inhibition during in vitro maturation on the proteome of bovine oocytes†. Biol. Reprod. 2020;103:1000–1011. doi: 10.1093/biolre/ioaa149. PubMed DOI
Verlhac M-H, Terret M-E. Oocyte maturation and development. F1000 Res. 2016;5:309. doi: 10.12688/f1000research.7892.1. PubMed DOI PMC
Terada Y, et al. Cytoskeletal dynamics during mammalian gametegenesis and fertilization: Implications for human reproduction. Reprod. Med. Biol. 2005;4:179–187. doi: 10.1111/j.1447-0578.2005.00103.x. PubMed DOI PMC
Gumus E, Bulut HE, Kaloglu C. Cytoskeletal changes in oocytes and early embryos during in vitro fertilization process in mice. Anat. Histol. Embryol. 2010;39:51–58. doi: 10.1111/j.1439-0264.2009.00982.x. PubMed DOI
Mao L, Lou H, Lou Y, Wang N, Jin F. Behaviour of cytoplasmic organelles and cytoskeleton during oocyte maturation. Reprod. Biomed. Online. 2014;28:284–299. doi: 10.1016/j.rbmo.2013.10.016. PubMed DOI
Østrup O, et al. RNA profiles of porcine embryos during genome activation reveal complex metabolic switch sensitive to in vitro conditions. PLoS ONE. 2013;8:e61547. doi: 10.1371/journal.pone.0061547. PubMed DOI PMC
Zhang C, et al. The dynamic changes of transcription factors during the development processes of human biparental and uniparental embryos. Front. Cell Dev. Biol. 2021;9:709498. doi: 10.3389/fcell.2021.709498. PubMed DOI PMC
Niakan KK, Eggan K. Analysis of human embryos from zygote to blastocyst reveals distinct gene expression patterns relative to the mouse. Dev. Biol. 2013;375:54–64. doi: 10.1016/j.ydbio.2012.12.008. PubMed DOI
Lamas-Toranzo I, et al. ZP4 confers structural properties to the zona pellucida essential for embryo development. Elife. 2019;8:e48904. doi: 10.7554/eLife.48904. PubMed DOI PMC
Wang R, et al. Loss of function mutations in RPL27 and RPS27 identified by whole-exome sequencing in Diamond-Blackfan anaemia. Br. J. Haematol. 2015;168:854–864. doi: 10.1111/bjh.13229. PubMed DOI
Qi C, et al. Biochemical and structural characterization of a novel ubiquitin-conjugating enzyme E2 from Agrocybe aegeria reveals Ube2w family-specific properties. Sci. Rep. 2015;5:16056. doi: 10.1038/srep16056. PubMed DOI PMC
May-Panloup P, Boguenet M, El Hachem H, Bouet P-E, Reynier P. Embryo and its mitochondria. Antioxidants. 2021;10:139. doi: 10.3390/antiox10020139. PubMed DOI PMC
Babayev E, Seli E. Oocyte mitochondrial function and reproduction. Curr. Opin. Obstet. Gynecol. 2015;27:175–181. doi: 10.1097/GCO.0000000000000164. PubMed DOI PMC
Mao X, et al. Genetic diversities of MT-ND3 and MT-ND4L genes are associated with high-altitude adaptation. Mitochondrial. DNA B. 2019;4:324–328. doi: 10.1080/23802359.2018.1544040. DOI
Ireland JJ, Murphee RL, Coulson PB. Accuracy of predicting stages of bovine estrous cycle by gross appearance of the corpus luteum. J. Dairy Sci. 1980;63:155–160. doi: 10.3168/jds.S0022-0302(80)82901-8. PubMed DOI
Yoshioka K, Suzuki C, Tanaka A, Anas IM-K, Iwamura S. Birth of piglets derived from porcine zygotes cultured in a chemically defined medium. Biol. Reprod. 2002;66:112–119. doi: 10.1095/biolreprod66.1.112. PubMed DOI
Lucas-Hahn A, et al. 122 a new maturation medium improves porcine embryo production in vitro. Reprod. Fertil. Dev. 2018;30:200–201. doi: 10.1071/RDv30n1Ab122. DOI
Laurincik J, Rath D, Niemann H. Differences in pronucleus formation and first cleavage following in vitro fertilization between pig oocytes matured in vivo and in vitro. J. Reprod. Fertil. 1994;102:277–284. doi: 10.1530/jrf.0.1020277. PubMed DOI
Wiśniewski JR, Zougman A, Nagaraj N, Mann M. Universal sample preparation method for proteome analysis. Nat. Methods. 2009;6:359–362. doi: 10.1038/nmeth.1322. PubMed DOI
Arrell VL, Day BN, Prather RS. The transition from maternal to zygotic control of development occurs during the 4-cell stage in the domestic pig, Sus Scrofa: Quantitative and qualitative aspects of protein synthesis1. Biol. Reprod. 1991;44:62–68. doi: 10.1095/biolreprod44.1.62. PubMed DOI
Cao S, et al. Specific gene-regulation networks during the pre-implantation development of the pig embryo as revealed by deep sequencing. BMC Genom. 2014;15:4. doi: 10.1186/1471-2164-15-4. PubMed DOI PMC
Edgar R, Domrachev M, Lash AE. Gene expression omnibus: NCBI gene expression and hybridization array data repository. Nucleic Acids Res. 2002;30:207–210. doi: 10.1093/nar/30.1.207. PubMed DOI PMC