The cryo-EM structure of ASK1 reveals an asymmetric architecture allosterically modulated by TRX1
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
19-00121S
Grantová Agentura České Republiky
1160120
Grantová Agentura, Univerzita Karlova
LM2023042
Ministerstvo Školství, Mládeže a Tělovýchovy
CZ.02.1.01/0.0/0.0/18_046/0015974
European Regional Development Fund
67985823
Czech Academy of Sciences
PubMed
38536085
PubMed Central
PMC10972558
DOI
10.7554/elife.95199
PII: 95199
Knihovny.cz E-zdroje
- Klíčová slova
- ASK1, MAP3K, MAPK signaling, biochemistry, chemical biology, human, molecular biophysics, protein kinase, structural biology, thioredoxin,
- MeSH
- apoptóza MeSH
- biofyzika MeSH
- elektronová kryomikroskopie MeSH
- MAP kinasa-kinasa-kinasa 5 * MeSH
- thioredoxiny * MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- MAP kinasa-kinasa-kinasa 5 * MeSH
- thioredoxiny * MeSH
Apoptosis signal-regulating kinase 1 (ASK1) is a crucial stress sensor, directing cells toward apoptosis, differentiation, and senescence via the p38 and JNK signaling pathways. ASK1 dysregulation has been associated with cancer and inflammatory, cardiovascular, and neurodegenerative diseases, among others. However, our limited knowledge of the underlying structural mechanism of ASK1 regulation hampers our ability to target this member of the MAP3K protein family towards developing therapeutic interventions for these disorders. Nevertheless, as a multidomain Ser/Thr protein kinase, ASK1 is regulated by a complex mechanism involving dimerization and interactions with several other proteins, including thioredoxin 1 (TRX1). Thus, the present study aims at structurally characterizing ASK1 and its complex with TRX1 using several biophysical techniques. As shown by cryo-EM analysis, in a state close to its active form, ASK1 is a compact and asymmetric dimer, which enables extensive interdomain and interchain interactions. These interactions stabilize the active conformation of the ASK1 kinase domain. In turn, TRX1 functions as a negative allosteric effector of ASK1, modifying the structure of the TRX1-binding domain and changing its interaction with the tetratricopeptide repeats domain. Consequently, TRX1 reduces access to the activation segment of the kinase domain. Overall, our findings not only clarify the role of ASK1 dimerization and inter-domain contacts but also provide key mechanistic insights into its regulation, thereby highlighting the potential of ASK1 protein-protein interactions as targets for anti-inflammatory therapy.
doi: 10.1101/2023.12.20.572539 PubMed
Před aktualizacídoi: 10.7554/eLife.95199.1 PubMed
Zobrazit více v PubMed
Adams PD, Afonine PV, Baskaran K, Berman HM, Berrisford J, Bricogne G, Brown DG, Burley SK, Chen M, Feng Z, Flensburg C, Gutmanas A, Hoch JC, Ikegawa Y, Kengaku Y, Krissinel E, Kurisu G, Liang Y, Liebschner D, Mak L, Markley JL, Moriarty NW, Murshudov GN, Noble M, Peisach E, Persikova I, Poon BK, Sobolev OV, Ulrich EL, Velankar S, Vonrhein C, Westbrook J, Wojdyr M, Yokochi M, Young JY. Announcing mandatory submission of PDBx/mmCIF format files for crystallographic depositions to the Protein Data Bank (PDB) Acta Crystallographica. Section D, Structural Biology. 2019;75:451–454. doi: 10.1107/S2059798319004522. PubMed DOI PMC
Budas GR, Boehm M, Kojonazarov B, Viswanathan G, Tian X, Veeroju S, Novoyatleva T, Grimminger F, Hinojosa-Kirschenbaum F, Ghofrani HA, Weissmann N, Seeger W, Liles JT, Schermuly RT. ASK1 inhibition halts disease progression in preclinical models of pulmonary arterial hypertension. American Journal of Respiratory and Critical Care Medicine. 2018;197:373–385. doi: 10.1164/rccm.201703-0502OC. PubMed DOI
Bühler S, Laufer SA. p38 MAPK inhibitors: a patent review (2012 - 2013) Expert Opinion on Therapeutic Patents. 2014;24:535–554. doi: 10.1517/13543776.2014.894977. PubMed DOI
Bunkoczi G, Salah E, Filippakopoulos P, Fedorov O, Müller S, Sobott F, Parker SA, Zhang H, Min W, Turk BE, Knapp S. Structural and functional characterization of the human protein kinase ASK1. Structure. 2007;15:1215–1226. doi: 10.1016/j.str.2007.08.011. PubMed DOI PMC
Chang HY, Nishitoh H, Yang X, Ichijo H, Baltimore D. Activation of apoptosis signal-regulating kinase 1 (ASK1) by the adapter protein Daxx. Science. 1998;281:1860–1863. doi: 10.1126/science.281.5384.1860. PubMed DOI
Chu N, Viennet T, Bae H, Salguero A, Boeszoermenyi A, Arthanari H, Cole PA. The structural determinants of PH domain-mediated regulation of Akt revealed by segmental labeling. eLife. 2020;9:e59151. doi: 10.7554/eLife.59151. PubMed DOI PMC
Cuevas BD, Abell AN, Johnson GL. Role of mitogen-activated protein kinase kinase kinases in signal integration. Oncogene. 2007;26:3159–3171. doi: 10.1038/sj.onc.1210409. PubMed DOI
Emsley P, Cowtan K. Coot: Model-building tools for molecular graphics. Acta Crystallographica. Section D, Biological Crystallography. 2004;60:2126–2132. doi: 10.1107/S0907444904019158. PubMed DOI
Federspiel JD, Codreanu SG, Palubinsky AM, Winland AJ, Betanzos CM, McLaughlin B, Liebler DC. Assembly dynamics and stoichiometry of the apoptosis signal-regulating Kinase (ASK) signalosome in response to electrophile stress. Molecular & Cellular Proteomics. 2016;15:1947–1961. doi: 10.1074/mcp.M115.057364. PubMed DOI PMC
Forman-Kay JD, Clore GM, Stahl SJ, Gronenborn AM. 1H and 15N resonance assignments and secondary structure of the human thioredoxin C62A, C69A, C73A mutant. Journal of Biomolecular NMR. 1992;2:431–445. doi: 10.1007/BF02192807. PubMed DOI
Fujino G, Noguchi T, Matsuzawa A, Yamauchi S, Saitoh M, Takeda K, Ichijo H. Thioredoxin and TRAF family proteins regulate reactive oxygen species-dependent activation of ASK1 through reciprocal modulation of the N-terminal homophilic interaction of ASK1. Molecular and Cellular Biology. 2007;27:8152–8163. doi: 10.1128/MCB.00227-07. PubMed DOI PMC
Goldman EH, Chen L, Fu H. Activation of apoptosis signal-regulating kinase 1 by reactive oxygen species through dephosphorylation at serine 967 and 14-3-3 dissociation. The Journal of Biological Chemistry. 2004;279:10442–10449. doi: 10.1074/jbc.M311129200. PubMed DOI
Gotoh Y, Cooper JA. Reactive oxygen species- and dimerization-induced activation of apoptosis signal-regulating kinase 1 in tumor necrosis factor-alpha signal transduction. The Journal of Biological Chemistry. 1998;273:17477–17482. doi: 10.1074/jbc.273.28.17477. PubMed DOI
Haling JR, Sudhamsu J, Yen I, Sideris S, Sandoval W, Phung W, Bravo BJ, Giannetti AM, Peck A, Masselot A, Morales T, Smith D, Brandhuber BJ, Hymowitz SG, Malek S. Structure of the BRAF-MEK complex reveals a kinase activity independent role for BRAF in MAPK signaling. Cancer Cell. 2014;26:402–413. doi: 10.1016/j.ccr.2014.07.007. PubMed DOI
Harrison RA, Engen JR. Conformational insight into multi-protein signaling assemblies by hydrogen–deuterium exchange mass spectrometry. Current Opinion in Structural Biology. 2016;41:187–193. doi: 10.1016/j.sbi.2016.08.003. PubMed DOI PMC
Holmgren A, Söderberg BO, Eklund H, Brändén CI. Three-dimensional structure of Escherichia coli thioredoxin-S2 to 2.8 A resolution. PNAS. 1975;72:2305–2309. doi: 10.1073/pnas.72.6.2305. PubMed DOI PMC
Ichijo H, Nishida E, Irie K, ten Dijke P, Saitoh M, Moriguchi T, Takagi M, Matsumoto K, Miyazono K, Gotoh Y. Induction of apoptosis by ASK1, a mammalian MAPKKK that activates SAPK/JNK and p38 signaling pathways. Science. 1997;275:90–94. doi: 10.1126/science.275.5296.90. PubMed DOI
Ijaz A, Tejada T, Catanuto P, Xia X, Elliot SJ, Lenz O, Jauregui A, Saenz MO, Molano RD, Pileggi A, Ricordi C, Fornoni A. Inhibition of C-jun N-terminal kinase improves insulin sensitivity but worsens albuminuria in experimental diabetes. Kidney International. 2009;75:381–388. doi: 10.1038/ki.2008.559. PubMed DOI
Johnson LN, Noble MEM, Owen DJ. Active and inactive protein kinases: structural basis for regulation. Cell. 1996;85:149–158. doi: 10.1016/s0092-8674(00)81092-2. PubMed DOI
Jung H, Seong HA, Ha H. Murine protein serine/threonine kinase 38 activates apoptosis signal-regulating kinase 1 via Thr 838 phosphorylation. The Journal of Biological Chemistry. 2008;283:34541–34553. doi: 10.1074/jbc.M807219200. PubMed DOI PMC
Kaji T, Yoshida S, Kawai K, Fuchigami Y, Watanabe W, Kubodera H, Kishimoto T. ASK3, a novel member of the apoptosis signal-regulating kinase family, is essential for stress-induced cell death in HeLa cells. Biochemical and Biophysical Research Communications. 2010;395:213–218. doi: 10.1016/j.bbrc.2010.03.164. PubMed DOI
Katome T, Namekata K, Guo X, Semba K, Kittaka D, Kawamura K, Kimura A, Harada C, Ichijo H, Mitamura Y, Harada T. Inhibition of ASK1-p38 pathway prevents neural cell death following optic nerve injury. Cell Death and Differentiation. 2013;20:270–280. doi: 10.1038/cdd.2012.122. PubMed DOI PMC
Kosek D, Kylarova S, Psenakova K, Rezabkova L, Herman P, Vecer J, Obsilova V, Obsil T. Biophysical and structural characterization of the thioredoxin-binding domain of protein kinase ASK1 and its interaction with reduced thioredoxin. The Journal of Biological Chemistry. 2014;289:24463–24474. doi: 10.1074/jbc.M114.583807. PubMed DOI PMC
Kylarova S, Kosek D, Petrvalska O, Psenakova K, Man P, Vecer J, Herman P, Obsilova V, Obsil T. Cysteine residues mediate high-affinity binding of thioredoxin to ASK1. The FEBS Journal. 2016;283:3821–3838. doi: 10.1111/febs.13893. PubMed DOI
Laue TM, Shah BD, Ridgeway TM, Pelletier SL. In: Analytical Ultracentrifugation in Biochemistry and Polymer Science. Harding S, Rowe A, Horton J, editors. Cambridge: Royal Society of Chemistry; 1992. Computer-aided interpretation of Analytical sedimentation data for proteins; pp. 90–125.
Liu H, Nishitoh H, Ichijo H, Kyriakis JM. Activation of apoptosis signal-regulating kinase 1 (ASK1) by tumor necrosis factor receptor-associated factor 2 requires prior dissociation of the ASK1 inhibitor thioredoxin. Molecular and Cellular Biology. 2000;20:2198–2208. doi: 10.1128/MCB.20.6.2198-2208.2000. PubMed DOI PMC
Liu Y, Min W. Thioredoxin promotes ASK1 ubiquitination and degradation to inhibit ASK1-mediated apoptosis in a redox activity-independent manner. Circulation Research. 2002;90:1259–1266. doi: 10.1161/01.res.0000022160.64355.62. PubMed DOI
Ma L, Wei J, Wan J, Wang W, Wang L, Yuan Y, Yang Z, Liu X, Ming L. Low glucose and metformin-induced apoptosis of human ovarian cancer cells is connected to ASK1 via mitochondrial and endoplasmic reticulum stress-associated pathways. Journal of Experimental & Clinical Cancer Research. 2019;38:77. doi: 10.1186/s13046-019-1090-6. PubMed DOI PMC
Meijles DN, Cull JJ, Markou T, Cooper STE, Haines ZHR, Fuller SJ, O’Gara P, Sheppard MN, Harding SE, Sugden PH, Clerk A. Redox regulation of cardiac ASK1 (Apoptosis signal-regulating kinase 1) controls p38-MAPK. Hypertension. 2020;76:1208. doi: 10.1161/HYPERTENSIONAHA.119.14556. PubMed DOI PMC
Morita K, Saitoh M, Tobiume K, Matsuura H, Enomoto S, Nishitoh H, Ichijo H. Negative feedback regulation of ASK1 by protein phosphatase 5 (PP5) in response to oxidative stress. The EMBO Journal. 2001;20:6028–6036. doi: 10.1093/emboj/20.21.6028. PubMed DOI PMC
Nadeau PJ, Charette SJ, Toledano MB, Landry J. Disulfide Bond-mediated multimerization of Ask1 and its reduction by thioredoxin-1 regulate H(2)O(2)-induced c-Jun NH(2)-terminal kinase activation and apoptosis. Molecular Biology of the Cell. 2007;18:3903–3913. doi: 10.1091/mbc.e07-05-0491. PubMed DOI PMC
Nadeau PJ, Charette SJ, Landry J. REDOX reaction at ASK1-Cys250 is essential for activation of JNK and induction of apoptosis. Molecular Biology of the Cell. 2009;20:3628–3637. doi: 10.1091/mbc.e09-03-0211. PubMed DOI PMC
Noguchi T, Takeda K, Matsuzawa A, Saegusa K, Nakano H, Gohda J, Inoue J-I, Ichijo H. Recruitment of tumor necrosis factor receptor-associated factor family proteins to apoptosis signal-regulating kinase 1 signalosome is essential for oxidative stress-induced cell death. The Journal of Biological Chemistry. 2005;280:37033–37040. doi: 10.1074/jbc.M506771200. PubMed DOI
Ogier JM, Nayagam BA, Lockhart PJ. ASK1 inhibition: a therapeutic strategy with multi-system benefits. Journal of Molecular Medicine. 2020;98:335–348. doi: 10.1007/s00109-020-01878-y. PubMed DOI PMC
Okazaki T. ASK family in infection and inflammatory disease. Advances in Biological Regulation. 2017;66:37–45. doi: 10.1016/j.jbior.2017.10.001. PubMed DOI
Ortega A, Amorós D, García de la Torre J. Prediction of hydrodynamic and other solution properties of rigid proteins from atomic- and residue-level models. Biophysical Journal. 2011;101:892–898. doi: 10.1016/j.bpj.2011.06.046. PubMed DOI PMC
Perez-Riba A, Synakewicz M, Itzhaki LS. Folding cooperativity and allosteric function in the tandem-repeat protein class. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences. 2018;373:20170188. doi: 10.1098/rstb.2017.0188. PubMed DOI PMC
Perez-Riba A, Itzhaki LS. The tetratricopeptide-repeat motif is a versatile platform that enables diverse modes of molecular recognition. Current Opinion in Structural Biology. 2019;54:43–49. doi: 10.1016/j.sbi.2018.12.004. PubMed DOI
Peti W, Page R. Molecular basis of MAP kinase regulation. Protein Science. 2013;22:1698–1710. doi: 10.1002/pro.2374. PubMed DOI PMC
Petrvalska O, Kosek D, Kukacka Z, Tosner Z, Man P, Vecer J, Herman P, Obsilova V, Obsil T. Structural Insight into the 14-3-3 Protein-dependent inhibition of protein kinase ASK1 (apoptosis signal-regulating kinase 1) The Journal of Biological Chemistry. 2016;291:20753–20765. doi: 10.1074/jbc.M116.724310. PubMed DOI PMC
Pettersen EF, Goddard TD, Huang CC, Meng EC, Couch GS, Croll TI, Morris JH, Ferrin TE. UCSF ChimeraX: Structure visualization for researchers, educators, and developers. Protein Science. 2021;30:70–82. doi: 10.1002/pro.3943. PubMed DOI PMC
Psenakova K, Hexnerova R, Srb P, Obsilova V, Veverka V, Obsil T. The redox-active site of thioredoxin is directly involved in apoptosis signal-regulating kinase 1 binding that is modulated by oxidative stress. The FEBS Journal. 2020;287:1626–1644. doi: 10.1111/febs.15101. PubMed DOI
Punjani A, Rubinstein JL, Fleet DJ, Brubaker MA. cryoSPARC: algorithms for rapid unsupervised cryo-EM structure determination. Nature Methods. 2017;14:290–296. doi: 10.1038/nmeth.4169. PubMed DOI
Saitoh M, Nishitoh H, Fujii M, Takeda K, Tobiume K, Sawada Y, Kawabata M, Miyazono K, Ichijo H. Mammalian thioredoxin is a direct inhibitor of apoptosis signal-regulating kinase (ASK) 1. The EMBO Journal. 1998;17:2596–2606. doi: 10.1093/emboj/17.9.2596. PubMed DOI PMC
Sawada Y, Nakamura K, Doi K, Takeda K, Tobiume K, Saitoh M, Morita K, Komuro I, De Vos K, Sheetz M, Ichijo H. Rap1 is involved in cell stretching modulation of p38 but not ERK or JNK MAP kinase. Journal of Cell Science. 2001;114:1221–1227. doi: 10.1242/jcs.114.6.1221. PubMed DOI
Schuck P. Size-distribution analysis of macromolecules by sedimentation velocity ultracentrifugation and lamm equation modeling. Biophysical Journal. 2000;78:1606–1619. doi: 10.1016/S0006-3495(00)76713-0. PubMed DOI PMC
Song JJ, Lee YJ. Differential role of glutaredoxin and thioredoxin in metabolic oxidative stress-induced activation of apoptosis signal-regulating kinase 1. The Biochemical Journal. 2003;373:845–853. doi: 10.1042/BJ20030275. PubMed DOI PMC
Subramanian RR, Zhang H, Wang H, Ichijo H, Miyashita T, Fu H. Interaction of apoptosis signal-regulating kinase 1 with isoforms of 14-3-3 proteins. Experimental Cell Research. 2004;294:581–591. doi: 10.1016/j.yexcr.2003.12.009. PubMed DOI
Tobiume K, Saitoh M, Ichijo H. Activation of apoptosis signal-regulating kinase 1 by the stress-induced activating phosphorylation of pre-formed oligomer. Journal of Cellular Physiology. 2002;191:95–104. doi: 10.1002/jcp.10080. PubMed DOI
Trevelyan SJ, Brewster JL, Burgess AE, Crowther JM, Cadell AL, Parker BL, Croucher DR, Dobson RCJ, Murphy JM, Mace PD. Structure-based mechanism of preferential complex formation by apoptosis signal-regulating kinases. Science Signaling. 2020;13:eaay6318. doi: 10.1126/scisignal.aay6318. PubMed DOI
Wales TE, Engen JR. Hydrogen exchange mass spectrometry for the analysis of protein dynamics. Mass Spectrometry Reviews. 2006;25:158–170. doi: 10.1002/mas.20064. PubMed DOI
Weichsel A, Gasdaska JR, Powis G, Montfort WR. Crystal structures of reduced, oxidized, and mutated human thioredoxins: evidence for a regulatory homodimer. Structure. 1996;4:735–751. doi: 10.1016/S0969-2126(96)00079-2. PubMed DOI
Weijman JF, Kumar A, Jamieson SA, King CM, Caradoc-Davies TT, Ledgerwood EC, Murphy JM, Mace PD. Structural basis of autoregulatory scaffolding by apoptosis signal-regulating kinase 1. PNAS. 2017;114:E2096–E2105. doi: 10.1073/pnas.1620813114. PubMed DOI PMC
Widmann C, Gibson S, Jarpe MB, Johnson GL. Mitogen-activated protein kinase: conservation of a three-kinase module from yeast to human. Physiological Reviews. 1999;79:143–180. doi: 10.1152/physrev.1999.79.1.143. PubMed DOI
Williams CJ, Headd JJ, Moriarty NW, Prisant MG, Videau LL, Deis LN, Verma V, Keedy DA, Hintze BJ, Chen VB, Jain S, Lewis SM, Arendall WB, Snoeyink J, Adams PD, Lovell SC, Richardson JS, Richardson DC. MolProbity: More and better reference data for improved all‐atom structure validation. Protein Science. 2018;27:293–315. doi: 10.1002/pro.3330. PubMed DOI PMC
Zhang L, Chen J, Fu H. Suppression of apoptosis signal-regulating kinase 1-induced cell death by 14-3-3 proteins. PNAS. 1999;96:8511–8515. doi: 10.1073/pnas.96.15.8511. PubMed DOI PMC
Zhang M, Liu H, Gao Y, Zhu Z, Chen Z, Zheng P, Xue L, Li J, Teng M, Niu L. Structural insights into the association of Hif1 with histones H2A-H2B Dimer and H3-H4 tetramer. Structure. 2016;24:1810–1820. doi: 10.1016/j.str.2016.08.001. PubMed DOI
Zhang Q, Wu X, Zhang H, Wu Q, Fu M, Hua L, Zhu X, Guo Y, Zhang L, You Q, Wang L. Protein phosphatase 5-recruiting chimeras for accelerating apoptosis-signal-regulated kinase 1 dephosphorylation with antiproliferative activity. Journal of the American Chemical Society. 2023;145:1118–1128. doi: 10.1021/jacs.2c10759. PubMed DOI