Dibenzocyclooctadiene Lignans from Schisandra chinensis with Anti-Inflammatory Effects
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
38542438
PubMed Central
PMC10971102
DOI
10.3390/ijms25063465
PII: ijms25063465
Knihovny.cz E-zdroje
- Klíčová slova
- Schisandra chinensis, anti-inflammatory, antioxidant, dibenzocyclooctadiene, gap junction, lignan,
- MeSH
- antiflogistika farmakologie MeSH
- cyklooktany farmakologie MeSH
- lignany * farmakologie MeSH
- polycyklické sloučeniny * MeSH
- Schisandra * MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- antiflogistika MeSH
- cyklooktany MeSH
- dibenzocyclooctadiene lignan MeSH Prohlížeč
- dibenzocyclooctadiene MeSH Prohlížeč
- lignany * MeSH
- polycyklické sloučeniny * MeSH
- schizandrin B MeSH Prohlížeč
Schisandra chinensis (Schisandraceae) is a medicinal plant widely used in traditional Chinese medicine. Under the name Wu Wei Zi, it is used to treat many diseases, especially as a stimulant, adaptogen, and hepatoprotective. Dibenzocyclooctadiene lignans are the main compounds responsible for the effect of S. chinensis. As a part of ongoing studies to identify and evaluate anti-inflammatory natural compounds, we isolated a series of dibenzocyclooctadiene lignans and evaluated their biological activity. Furthermore, we isolated new sesquiterpene 7,7-dimethyl-11-methylidenespiro[5.5]undec-2-ene-3-carboxylic acid. Selected dibenzocyclooctadiene lignans were tested to assess their anti-inflammatory potential in LPS-stimulated monocytes by monitoring their anti-NF-κB activity, antioxidant activity in CAA assay, and their effect on gap junction intercellular communication in WB-ras cells. Some S. chinensis lignans showed antioxidant activity in CAA mode and affected the gap junction intercellular communication. The anti-inflammatory activity was proven for (-)-gomisin N, (+)-γ-schisandrin, rubrisandrin A, and (-)-gomisin J.
Department of Molecular Pharmacy Faculty of Pharmacy Masaryk University 61200 Brno Czech Republic
Department of Natural Drugs Faculty of Pharmacy Masaryk University 61200 Brno Czech Republic
Department of Pharmaceutical and Pharmacological Sciences University of Padova 35131 Padua Italy
Recetox Faculty of Science Masaryk University 62500 Brno Czech Republic
Zobrazit více v PubMed
Wong M. La Médicine Chinoise par les Plantes. 1st ed. Volume 274 Éditions Tchou; Paris, France: 1976. (Le Corps a Vivre Series).
Panossian A., Wikman G. Pharmacology of Schisandra chinensis Bail.: An overview of Russian research and uses in medicine. J. Ethnopharmacol. 2008;118:183–212. doi: 10.1016/j.jep.2008.04.020. PubMed DOI
Sun W., Shahrajabian M.H., Cheng Q. Schisandra chinensis, Five Flavor Berry, Traditional Chinese Medicine and Super Fruit from North Eastern China. Pharmacogn. Commun. 2021;11:13–21. doi: 10.5530/pc.2021.1.4. DOI
Hancke J.L., Burgos R.A., Ahumada F. Schisandra chinensis (Turcz.) Baill. Fitoterapia. 1999;70:451–471. doi: 10.1016/S0367-326X(99)00102-1. DOI
Szopa A., Ekiert R., Ekiert H. Current knowledge of Schisandra chinensis (Turcz.) Baill. (Chinese magnolia vine) as medicinal plant species a review on the bioactive components, pharmacological properties, analytical and biotechnical studies. Phytochem. Rev. 2017;16:195–218. doi: 10.1007/s11101-016-9470-4. PubMed DOI PMC
Van der Valk J.M.A., Leon C.J., Nesbitt M. Microscopic authentication of Chinese materia medica (CMM). A UK market study of seeds and fruits. J. Herb. Med. 2017;173:40–51. doi: 10.1016/j.hermed.2017.03.007. DOI
Slanina J. Biological and pharmacological activity of lignans. Chem. Listy. 2000;94:111–116.
Opletal L., Sovová H., Bártlová M. Dibenzo[a, c]cyclooctadiene lignans of the genus Schisandra: Importance, isolation and determination. J. Chromatogr. B. 2004;812:357–371. doi: 10.1016/S1570-0232(04)00646-4. PubMed DOI
Kopustinskiene D.M., Bernatoniene J. Antioxidant effects of Schisandra chinensis fruits and their active constituents. Antioxidants. 2021;10:620. doi: 10.3390/antiox10040620. PubMed DOI PMC
Sowndhararajan K., Kim T., Kim H., Kim S. Evaluation of proximate composition, bioactive lignans and volatile composition of Schisandra chinensis fruits from Inje and Mungyeong, Republic of Korea. J. Appl. Pharm. Sci. 2016;6:001–008. doi: 10.7324/JAPS.2016.601101. DOI
Zhou Y., Men L., Sun Y., Wei M., Fan X. Pharmacodynamic effects and molecular mechanisms of lignans from Schisandra chinensis Turcz. (Baill.), a current review. Eur. J. Pharmacol. 2021;892:173796. doi: 10.1016/j.ejphar.2020.173796. PubMed DOI
Young I.S., Woodside J.V. Antioxidants in health and disease. J. Clin. Pathol. 2001;54:176–186. doi: 10.1136/jcp.54.3.176. PubMed DOI PMC
Pizzino G., Irrera N., Cucinotta M., Pallio G., Mannino F., Arcoraci V., Squadrito F., Altavilla D., Bitto A. Oxidative stress: Harms and benefits for human health. Oxid. Med. Cell. Longev. 2017;2017:8416763. doi: 10.1155/2017/8416763. PubMed DOI PMC
Liu Z., Ren Z., Zhang J., Chuang C.C., Kandaswamy E., Zhou T., Zuo L. Role of ROS and nutritional antioxidants in human diseases. Front. Physiol. 2018;9:477. doi: 10.3389/fphys.2018.00477. PubMed DOI PMC
Black H.S. A synopsis of the associations of oxidative stress, ROS, and antioxidants with diabetes mellitus. Antioxidants. 2022;11:2003. doi: 10.3390/antiox11102003. PubMed DOI PMC
Choi Y.W., Takamatsu S., Khan S.I., Srinivas P.V., Ferreira D., Zhao J., Khan I.A. Schisandrene, a dibenzocyclooctadiene lignan from Schisandra chinensis: Structure- antioxidant activity relationships of dibenzocyclooctadiene lignans. J. Nat. Prod. 2006;69:356–359. doi: 10.1021/np0503707. PubMed DOI
Liu H., Liu G.T. Antioxidant activity of dibenzocyclooctadiene lignans isolated from Schisandraceae. Planta Med. 1992;58:311–313. doi: 10.1055/s-2006-961473. PubMed DOI
Kim S.R., Lee M.K., Koo K.A., Kim S.H., Sung S.H., Lee N.G., Markelonis G.J., Oh T.H., Yang J.H., Kim Y.C. Dibenzocyclooctadiene lignans from Schisandra chinensis protect primary cultures of rat cortical cells from glutamate-induced toxicity. J. Neurosci. Res. 2004;76:397–405. doi: 10.1002/jnr.20089. PubMed DOI
Stankov S.V. Definition of inflammation, causes of inflammation and possible anti-inflammatory strategies. Open Inflamm. J. 2012;5:1–9. doi: 10.2174/1875041901205010001. DOI
Tak P.P., Firestein G.S. NF-κB: A key role in inflammatory diseases. J. Clin. Investig. 2001;107:7–11. doi: 10.1172/JCI11830. PubMed DOI PMC
Luo G., Cheng B.C.Y., Zhao H., Fu X.Q., Xie R., Zhang S.F., Pan S.Y., Zhang Y. Schisandra chinensis lignans suppresses the production of inflammatory mediators regulated by NF-κB, AP-1, and IRF3 in lipopolysaccharide-stimulated RAW264.7 cells. Molecules. 2018;23:3319. doi: 10.3390/molecules23123319. PubMed DOI PMC
Ohkura Y., Mizoguchi Y., Morisawa S., Takeda S., Aburada M., Hosoya E. Effect of gomisin A (TJN-101) on arachidonic acid cascade in macrophages. Jap. J. Pharmacol. 1990;52:331–336. doi: 10.1016/S0021-5198(19)40068-1. PubMed DOI
Hervé J.C., Derangeon M. Gap-junction-mediated cell to cell communication. Cell Tissue Res. 2013;352:21–31. doi: 10.1007/s00441-012-1485-6. PubMed DOI
Caruso G., Di Pietro L., Caraci F. Gap Junction and Connexins in Microglia-Related Oxidative Stress and Neuroinflammation: Perspectives for drug Discovery. Biomolecules. 2023;13:505. doi: 10.3390/biom13030505. PubMed DOI PMC
Hansson E., Skiöldebrand E. Low-grade inflammation causes gap junction-coupled cell dysfunction throughout the body which can lead to spread of systemic inflammation. Scan. J. Pain. 2019;19:639–649. doi: 10.1515/sjpain-2019-0061. PubMed DOI
Dai J., Mumper R.J. Plant Phenolics: Extraction, Analysis and Their Antioxidant and Anticancer Properties. Molecules. 2010;15:7313–7352. doi: 10.3390/molecules15107313. PubMed DOI PMC
Ikeya Y., Taguchi H., Yosioka I., Kobayashi H. The constituents of Schizandra chinensis Baill. I. Isolation and structure determination of five new lignans, gomisin A, B, C, F and G, and the absolute structure of schisandrin. Chem. Pharm. Bull. 1979;27:1383–1394. doi: 10.1248/cpb.27.1383. PubMed DOI
Ikeya Y., Taguchi H., Yosioka I., Kobayashi H. The constituents of Schizandra chinensis Baill. VIII. The structures of two new lignans, tiogloylgomisin P and angeloylgomisin P. Chem. Pharm. Bull. 1980;28:3357–3361. doi: 10.1248/cpb.28.3357. DOI
Ikeya Y., Taguchi H., Yosioka I., Kobayashi H. The constituents of Schizandra chinensis Baill. V. The structures of four new lignans, gomisin N, gomisin O, epigomisin O and gomisin E, and transformation of gomisin N to deangeloylgomisin B. Chem. Pharm. Bull. 1979;27:2695–2709. doi: 10.1248/cpb.27.2695. DOI
Chen Y.B., Chang M.T., Lo Y.W., Ho C.J., Kuo Y.C., Chien C.T., Chen S.Y., Liou S.S., Kuo Y.H., Shen Y.C. Oxygenated lignans from the fruits of Schisandra arisanensis. J. Nat. Prod. 2009;72:1663–1668. doi: 10.1021/np9003678. PubMed DOI
Ikeya Y., Miki E., Okada M., Mitsuhashi H., Chai J.G. Benzoylgomisin Q and benzoylgomisin P, two new lignans from Schisandra sphenanthera Rehd. et Wils. Chem. Pharm. Bull. 1990;35:1408–1411. doi: 10.1248/cpb.38.1408. DOI
Šmejkal K., Šlapetová T., Krmenčík P., Kubínová R., Suchý P., Dall’Acqua S., Innocenti G., Vančo J., Kalvarová K., Dvorská M., et al. Evaluation of the antiradical activity of Schisandra chinensis lignans using different experimental models. Molecules. 2000;15:1223–1231. doi: 10.3390/molecules15031223. PubMed DOI PMC
Blasa M., Angelino D., Gennari L., Ninfali P. The cellular antioxidant activity in red blood cells (CAA-RBC): A new approach to bioavailability and synergy of phytochemicals and botanical extracts. Food Chem. 2011;125:685–691. doi: 10.1016/j.foodchem.2010.09.065. DOI
Wolfe K.L., Liu R.H. Cellular antioxidant activity (CAA) assay for assessing antioxidants, foods, and dietary supplements. J. Agric. Food Chem. 2007;55:8896–8907. doi: 10.1021/jf0715166. PubMed DOI
Jeong J.B., Jeong H.J. Schisandra chinensis inhibits oxidative DNA damage and lipid peroxidation via antioxidant activity. Korean J. Plant Res. 2009;22:195–202.
Wang M.C., Lai Y.C., Chang C.L. High throughput screening and antioxidant assay of dibenzo[a, c]cyclooctadiene lignans in modified-ultrasonic and supercritical fluid extracts of Schisandra chinensis Baill by liquid chromatography–mass spectrometry and a free radical-scavenging method. J. Sep. Sci. 2008;31:1322–1332. doi: 10.1002/jssc.200700443. PubMed DOI
Min X., Zhao L., Shi Y., Wang J., Lv H., Song X., Zhao Q., Zhao Q., Jing R., Hu J. Gomisin J attenuates cerebral ischemia/reperfusion injury by inducing anti-apoptotic, anti-inflammatory, and antioxidant effects in rats. Bioengineered. 2022;13:6908–6918. doi: 10.1080/21655979.2022.2026709. PubMed DOI PMC
Yoshikawa A., Saito Y., Maruyama K. Lignan compounds and 4,4′-dihydroxybiphenyl protect C2C12 cells against damage from oxidative stress. Biochem. Biophys. Res. Commun. 2006;344:394–399. doi: 10.1016/j.bbrc.2006.03.107. PubMed DOI
Ngo T.C., Mai T.V.T., Pham T.T., Jeremic S., Markovic Z., Hyunh L.K., Dao D.Q. Natural acridones and coumarins as free radical scavengers. Mechanistic and kinetic studies. Chem. Phys. Lett. 2020;746:137312. doi: 10.1016/j.cplett.2020.137312. DOI
Li X., Zhao B., Liu G., Xin W. Scavenging effects on active oxygen radicals by schizandrins with different structures and configurations. Free Radic. Biol. Med. 1990;9:99–104. PubMed
Takanche J.S., Kim J.E., Han S.H., Yi H.K. Effect of gomisin A on osteoblast differentiation in high glucose-mediated oxidative stress. Phytomedicine. 2020;66:153107. doi: 10.1016/j.phymed.2019.153107. PubMed DOI
You Y.L., Lee J.Y., Choi H.S. Schisandra chinensis derived gomisin C suppreses lipid accumulation by JAK2-STAT signaling in adipocyte. Food Sci. Biotechnol. 2023;32:1225–1233. doi: 10.1007/s10068-023-01263-8. PubMed DOI PMC
Choi Y.H. Schisandrin A prevents oxidative stress induced DNA damaged and apoptosis by attenuating ROS generation in C2Cl2 cells. Biomed. Pharmacother. 2018;106:902–909. doi: 10.1016/j.biopha.2018.07.035. PubMed DOI
Ding M., Shu P., Gao S., Wang F., Gao Y., Chen Y., Deng W., He G., Hu Z., Li T. Schisandrin B protects human keratinocyte-derived HaCaT cells from tert-butyl hydroperoxide-induced oxidative damage through activating the Nrf2 signaling pathway. Int. J. Mol. Med. 2018;42:3571–3581. doi: 10.3892/ijmm.2018.3901. PubMed DOI
Oh S.Y., Kim Y.H., Bae D.S., Um B.H., Pan C.H., Kim C.Y., Lee H.J., Lee J.K.M. Anti-inflammatory effects of gomisin N, gomisin J, and schisandrin C isolated from the fruit of Schisandra chinensis. Biosci. Biotechnol. Biochem. 2010;74:285–291. doi: 10.1271/bbb.90597. PubMed DOI
Hu D., Yang Z., Yao X., Wang H., Han N., Liu Z., Wang Y., Yang J., Yin J. Dibenzocyclooctadiene lignans from Schisandra chinensis and their inhibitory activity on NO production in lipopolysaccharide-activated microglia cells. Phytochemistry. 2014;104:72. doi: 10.1016/j.phytochem.2014.04.014. PubMed DOI
Lin Q., Qin X., Shi M., Qin Z., Meng Y., Qin Z., Guo S. Schisandrin B inhibits LPS-induced inflammatory response in human umbilical vein endothelial cells by activating Nrf2. Int. Immunopharmacol. 2017;49:142–147. doi: 10.1016/j.intimp.2017.05.032. PubMed DOI
Chen P., Pang S., Yang N., Meng H., Liu J., Zhou N., Zhang M., Xu Z., Gao W., Chen B., et al. Beneficial effects of schisandrin B on the cardiac function in mice model of myocardial infarction. PLoS ONE. 2013;8:e79418. doi: 10.1371/journal.pone.0079418. PubMed DOI PMC
Kortesoja M., Karhu E., Olafsdottir E.S., Olafsdottir E.S., Freysdottir J., Hanski L. Impact of dibenzocyclooctadiene lignans from Schisandra chinensis on the redox status and activation of human innate immune system cells. Free Radic. Biol. Med. 2019;131:309–317. doi: 10.1016/j.freeradbiomed.2018.12.019. PubMed DOI
Li W., Liu Y., Wang Z., Yu T., Lu Q., Chen H. Suppression of MAPK and NF-κB pathways by schisandrin B contributes to attenuation of DSS-induced mice model of inflammatory bowel disease. Pharmazie. 2015;70:598–603. PubMed
Guo M., An F., Yu H., Wei X., Hong M., Lu Y. Comparative effects of schisandrin A, B, and C on Propionibacterium acnes-induced, NLRP3 inflammasome activation-mediated IL-1β secretion and pyroptosis. Biomed. Pharmacother. 2017;96:129–136. doi: 10.1016/j.biopha.2017.09.097. PubMed DOI
Liu N., Zheng J.X., Zhuang Y.S., Zhou Z.K., Zhao J.H., Yang L. Anti-inflammatory effects of schisandrin B on LPS-stimulated BV2 microglia via activating PPAR-γ. Inflammation. 2017;40:1006–1011. doi: 10.1007/s10753-017-0544-2. PubMed DOI
Kwon D.H., Cha H.J., Choi E.O., Leem S.H., Kim G.Y., Moon S.K., Chang Y.C., Yun S.J., Hwang H.J., Kim B.W., et al. Schisandrin A suppresses lipopolysaccharide-induced inflammation and oxidative stress in RAW 264.7 macrophages by suppressing the NF-κB, MAPKs and PI3K/Akt pathways and activating Nrf2/HO-1 signaling. Int. J. Mol. Med. 2018;41:264–274. doi: 10.3892/ijmm.2017.3209. PubMed DOI PMC
Tu C., Huang X., Xiao Y., Song M., Ma Y., Yan J., You H., Wu H. Schisandrin A inhibits the IL-1β induced inflammation and cartilage degradation via suppression of MAPK and NF-κB signal pathways in rat chondrocytes. Front. Pharmacol. 2019;10:41. doi: 10.3389/fphar.2019.00041. PubMed DOI PMC
Takimoto Y., Qian H.Y., Yoshigai E., Okumura T., Ikeya Y., Nishizawa M. Gomisin N in the herbal drug gomishi (Schisandra chinensis) suppresses inducible nitric oxide synthase gene via C/EBPβ and NF-κB in rat hepatocytes. Nitric Oxide. 2013;28:47–56. doi: 10.1016/j.niox.2012.10.003. PubMed DOI
Szopa A., Dziurka M., Warzecha A., Kubica P., Klimek-Szczykutowicz M., Ekiert H. Targeted lignan profiling and anti-inflammatory properties of Schisandra rubriflora and Schisandra chinensis extracts. Molecules. 2018;23:3103. doi: 10.3390/molecules23123103. PubMed DOI PMC
Araki R., Hiraki Y., Nishida S., Inatomi Y., Yabe T. Gomisin N ameliorates lipopolysaccharide-induced depressive-like behaviors by attenuating inflammation in the hypothalamic paraventricular nucleus and central nucleus of the amygdala in mice. J. Pharmacol. Sci. 2016;132:138–144. doi: 10.1016/j.jphs.2016.09.004. PubMed DOI
Park S.Y., Bae Y.S., Ko M.J., Lee S.J., Choi Y.W. Comparison of anti-inflammatory potential of four different dibenzocyclooctadiene lignans in microglia; action via activation of PKA and Nrf-2 signaling and inhibition of MAPK/STAT/NF-κB pathways. Mol. Nutr. Food Res. 2014;58:738–748. doi: 10.1002/mnfr.201300445. PubMed DOI
Dydowiczova A., Brozman O., Babica P., Sovadinová I. Improved multiparametric scrape loading-dye transfer assay for a simultaneous high-throughput analysis of gap junctional intercellular assay for a simultaneous high-throughput analysis of gap junctional intercellular communication, cell density and viability. Sci. Rep. 2020;10:730. PubMed PMC
Sun H., Liu G.T. Chemopreventive effect of dimethyl dicarboxylate biphenyl on malignant transformation of WB- F344 rat liver epithelial cells. Acta Pharmacol. Sin. 2005;26:1339–1344. doi: 10.1111/j.1745-7254.2005.00208.x. PubMed DOI
Dobrowolska A., Regulska-Ilow B. The legitimacy of using dietary supplement dicloside seicosolariciresinol (SDG) from flaxseed in cancer. Rocz. Panstw. Zakl. Hig. 2021;72:9–20. doi: 10.32394/rpzh.2021.0144. PubMed DOI
Šmejkal K., Šlapetová T., Krmenčík P., Babula P., Dall’Acqua S., Innocenti G., Vančo J., Casarin E., Carrara M., Kalvarová K., et al. Evaluation of cytotoxic activity of Schisandra chinensis lignans. Planta Med. 2010;76:1672–1677. doi: 10.1055/s-0030-1249861. PubMed DOI
Malaník M., Treml J., Leláková V., Nykodýmová D., Oravec M., Marek J., Šmejkal K. Anti-Inflammatory and Antioxidant Properties of Chemical Constituents of Broussonetia Papyrifera. Bioorg. Chem. 2020;104:104298. doi: 10.1016/j.bioorg.2020.104298. PubMed DOI
Defeijter A.W., Ray J.S., Weghorst C.M., Klaunig J.E., Goodman J.I., Chang C.C., Ruch R.J., Trosko J.E. Infection of Rat-Liver Epithelial-Cells with V-Ha-Ras-Correlation between Oncogene Expression, Gap Junctional Communication, and Tumorigenicity. Mol. Carcinog. 1990;3:54–67. doi: 10.1002/mc.2940030203. PubMed DOI
Hayashi T., Nomata K., Chang C.C., Ruch R.J., Trosko J.E. Cooperative effects of v-myc and c-Ha-ras oncogenes on gap junctional intercellular communication and tumorigenicity in rat liver epithelial cells. Cancer Lett. 1998;128:145–154. doi: 10.1016/S0304-3835(98)00060-3. PubMed DOI