BRCA1 and 53BP1 regulate reprogramming efficiency by mediating DNA repair pathway choice at replication-associated double-strand breaks
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem, Research Support, N.I.H., Extramural
Grantová podpora
R01 CA227450
NCI NIH HHS - United States
R01 GM132604
NIGMS NIH HHS - United States
P01 CA174653
NCI NIH HHS - United States
R35 CA253174
NCI NIH HHS - United States
P30 DK063608
NIDDK NIH HHS - United States
R21 HG010165
NHGRI NIH HHS - United States
R01 CA197774
NCI NIH HHS - United States
P30 CA008748
NCI NIH HHS - United States
T32 CA009503
NCI NIH HHS - United States
PubMed
38554279
PubMed Central
PMC11272184
DOI
10.1016/j.celrep.2024.114006
PII: S2211-1247(24)00334-6
Knihovny.cz E-zdroje
- Klíčová slova
- BRCA1, BRCA2, CP: Molecular biology, double-strand break, pluripotency, replication gap suppression, replication stress, somatic cell reprogramming, stalled replication fork,
- MeSH
- 53BP1 * metabolismus genetika MeSH
- dvouřetězcové zlomy DNA * MeSH
- lidé MeSH
- myši MeSH
- oprava DNA * MeSH
- přeprogramování buněk * MeSH
- protein BRCA1 * metabolismus genetika MeSH
- rekombinační oprava DNA MeSH
- replikace DNA MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
- Názvy látek
- 53BP1 * MeSH
- BRCA1 protein, human MeSH Prohlížeč
- Brca1 protein, mouse MeSH Prohlížeč
- protein BRCA1 * MeSH
- TP53BP1 protein, human MeSH Prohlížeč
- Trp53bp1 protein, mouse MeSH Prohlížeč
Reprogramming to pluripotency is associated with DNA damage and requires the functions of the BRCA1 tumor suppressor. Here, we leverage separation-of-function mutations in BRCA1/2 as well as the physical and/or genetic interactions between BRCA1 and its associated repair proteins to ascertain the relevance of homology-directed repair (HDR), stalled fork protection (SFP), and replication gap suppression (RGS) in somatic cell reprogramming. Surprisingly, loss of SFP and RGS is inconsequential for the transition to pluripotency. In contrast, cells deficient in HDR, but proficient in SFP and RGS, reprogram with reduced efficiency. Conversely, the restoration of HDR function through inactivation of 53bp1 rescues reprogramming in Brca1-deficient cells, and 53bp1 loss leads to elevated HDR and enhanced reprogramming in mouse and human cells. These results demonstrate that somatic cell reprogramming is especially dependent on repair of replication-associated double-strand breaks (DSBs) by the HDR activity of BRCA1 and BRCA2 and can be improved in the absence of 53BP1.
Zobrazit více v PubMed
Takahashi K, and Yamanaka S (2006). Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126, 663–676. PubMed
Gonzalez F, Georgieva D, Vanoli F, Shi ZD, Stadtfeld M, Ludwig T, Jasin M, and Huangfu D (2013). Homologous recombination DNA repair genes play a critical role in reprogramming to a pluripotent state. Cell Rep 3, 651–660. S2211–1247(13)00064–8 [pii] 10.1016/j.celrep.2013.02.005 [doi]. PubMed DOI PMC
Ruiz S, Lopez-Contreras AJ, Gabut M, Marion RM, Gutierrez-Martinez P, Bua S, Ramirez O, Olalde I, Rodrigo-Perez S, Li H, et al. (2015). Limiting replication stress during somatic cell reprogramming reduces genomic instability in induced pluripotent stem cells. Nat Commun 6, 8036. 10.1038/ncomms9036. PubMed DOI PMC
Muller LU, Milsom MD, Harris CE, Vyas R, Brumme KM, Parmar K, Moreau LA, Schambach A, Park IH, London WB, et al. (2012). Overcoming reprogramming resistance of Fanconi anemia cells. Blood 119, 5449–5457. blood-2012-02-408674 [pii] 10.1182/blood-2012-02-408674 [doi]. PubMed DOI PMC
Chia G, Agudo J, Treff N, Sauer MV, Billing D, Brown BD, Baer R, and Egli D (2017). Genomic instability during reprogramming by nuclear transfer is DNA replication dependent. Nat Cell Biol 19, 282–291. 10.1038/ncb3485. PubMed DOI PMC
Gomez-Cabello D, Checa-Rodriguez C, Abad M, Serrano M, and Huertas P (2017). CtIP-Specific Roles during Cell Reprogramming Have Long-Term Consequences in the Survival and Fitness of Induced Pluripotent Stem Cells. Stem Cell Reports 8, 432–445. 10.1016/j.stemcr.2016.12.009. PubMed DOI PMC
Raya A, Rodriguez-Piza I,R, Guillermo G, Vassena R, and Navarro S (2009). Disease-corrected haematopoietic progenitors from Fanconi anaemia induced pluripotent stem cells. Nature 460, 53–59. PubMed PMC
Kinoshita T, Nagamatsu G, Kosaka T, Takubo K, Hotta A, Ellis J, and Suda T (2011). Ataxia-telangiectasia mutated (ATM) deficiency decreases reprogramming efficiency and leads to genomic instability in iPS cells. Biochem Biophys Res Commun 407, 321–326. 10.1016/j.bbrc.2011.03.013. PubMed DOI
Utikal J, Polo JM, Stadtfeld M, Maherali N, Kulalert W, Walsh RM, Khalil A, Rheinwald J, and Hochedlinger K (2009). Immortalization eliminates a roadblock during cellular reprogramming into iPS cells. Nature 460, Nature. 2009 Aug 2027;2460(7259):1145–2008. doi: 10.1038/nature08285. Epub 02009 Aug 08289. PubMed DOI PMC
Hong H, Takahashi K, Ichisaka T, Aoi T, Kanagawa O, Nakagawa M, Okita K, and Yamanaka S (2009). Suppression of Indued Pluripotent Stem Cell Generation by the p53-p21 Pathway. Nature 460, 1132–1134. PubMed PMC
Kawamura T, Suzuki J, Wang Y, Menendez S, Morera L, Raya A, Wahl G, and Izpisúa Belmonte J (2009). Linking the p53 tumour suppressor pathway to somatic cell reprogramming. Nature 460, 1140–1144. PubMed PMC
Kareta MS, Gorges LL, Hafeez S, Benayoun BA, Marro S, Zmoos AF, Cecchini MJ, Spacek D, Batista LF, O’Brien M, et al. (2015). Inhibition of pluripotency networks by the Rb tumor suppressor restricts reprogramming and tumorigenesis. Cell Stem Cell 16, 39–50. 10.1016/j.stem.2014.10.019. PubMed DOI PMC
Moynahan ME, Chiu JW, Koller B, and Maria Jasin M (1999). Brca1 Controls Homology-Directed DNA Repair. Molecular Cell 4. PubMed
Chen CC, Feng W, Lim PX, Kass EM, and Jasin M (2018). Homology-Directed Repair and the Role of BRCA1, BRCA2, and Related Proteins in Genome Integrity and Cancer. Annu Rev Cancer Biol 2, 313–336. 10.1146/annurev-cancerbio-030617-050502. PubMed DOI PMC
Bunting SF, Callen E, Wong N, Chen HT, Polato F, Gunn A, Bothmer A, Feldhahn N, Fernandez-Capetillo O, Cao L, et al. (2010). 53BP1 inhibits homologous recombination in Brca1-deficient cells by blocking resection of DNA breaks. Cell 141, 243–254. 10.1016/j.cell.2010.03.012. PubMed DOI PMC
Setiaputra D, and Durocher D (2019). Shieldin - the protector of DNA ends. EMBO Rep 20. 10.15252/embr.201847560. PubMed DOI PMC
Schlacher K, Wu H, and Jasin M (2012). A distinct replication fork protection pathway connects Fanconi anemia tumor suppressors to RAD51-BRCA1/2. Cancer Cell 22, 106–116. 10.1016/j.ccr.2012.05.015. PubMed DOI PMC
Pathania S, Bade S, Le Guillou M, Burke K, Reed R, Bowman-Colin C, Su Y, Ting DT, Polyak K, Richardson AL, et al. (2014). BRCA1 haploinsufficiency for replication stress suppression in primary cells. Nat Commun 5, 5496. 10.1038/ncomms6496. PubMed DOI PMC
Billing D, Horiguchi M, Wu-Baer F, Taglialatela A, Leuzzi G, Nanez SA, Jiang W, Zha S, Szabolcs M, Lin CS, et al. (2018). The BRCT Domains of the BRCA1 and BARD1 Tumor Suppressors Differentially Regulate Homology-Directed Repair and Stalled Fork Protection. Mol Cell 72, 127–139 e128. 10.1016/j.molcel.2018.08.016. PubMed DOI PMC
Mason JM, Chan YL, Weichselbaum RW, and Bishop DK (2019). Non-enzymatic roles of human RAD51 at stalled replication forks. Nat Commun 10, 4410. 10.1038/s41467-019-12297-0. PubMed DOI PMC
Przetocka S, Porro A, Bolck HA, Walker C, Lezaja A, Trenner A, von Aesch C, Himmels SF, D’Andrea AD, Ceccaldi R, et al. (2018). CtIP-Mediated Fork Protection Synergizes with BRCA1 to Suppress Genomic Instability upon DNA Replication Stress. Mol Cell 72, 568–582 e566. 10.1016/j.molcel.2018.09.014. PubMed DOI
Schlacher K, Christ N, Siaud N, Egashira A, Wu H, and Jasin M (2011). Double-strand break repair-independent role for BRCA2 in blocking stalled replication fork degradation by MRE11. Cell 145, 529–542. 10.1016/j.cell.2011.03.041. PubMed DOI PMC
Taglialatela A, Leuzzi G, Sannino V, Cuella-Martin R, Huang JW, Wu-Baer F, Baer R, Costanzo V, and Ciccia A (2021). REV1-Polzeta maintains the viability of homologous recombination-deficient cancer cells through mutagenic repair of PRIMPOL-dependent ssDNA gaps. Mol Cell 81, 4008–4025 e4007. 10.1016/j.molcel.2021.08.016. PubMed DOI PMC
Panzarino NJ, Krais JJ, Cong K, Peng M, Mosqueda M, Nayak SU, Bond SM, Calvo JA, Doshi MB, Bere M, et al. (2020). Replication Gaps Underlie BRCA-deficiency and Therapy Response. Cancer Res. 10.1158/0008-5472.CAN-20-1602. PubMed DOI PMC
Kang Z, Fu P, Alcivar AL, Fu H, Redon C, Foo TK, Zuo Y, Ye C, Baxley R, Madireddy A, et al. (2021). BRCA2 associates with MCM10 to suppress PRIMPOL-mediated repriming and single-stranded gap formation after DNA damage. Nat Commun 12, 5966. 10.1038/s41467-021-26227-6. PubMed DOI PMC
Quinet A, Tirman S, Jackson J, Šviković S, Lemaçon D, Carvajal-Maldonado D, González-Acosta D, Vessoni AT, Cybulla E, Wood M, et al. (2020). PRIMPOL-Mediated Adaptive Response Suppresses Replication Fork Reversal in BRCA-Deficient Cells. Mol Cell 77, 461–474.e469. 10.1016/j.molcel.2019.10.008. PubMed DOI PMC
Ludwig T, Fisher P, Ganesan S, and Efstratiadis A (2001). Tumorigenesis in mice carrying a truncating Brca1 mutation. Genes Dev 15, 1188–1193. 10.1101/gad.879201. PubMed DOI PMC
Shakya R, Reid L, Reczek C, Cole F, Egli D, Lin C, deRooij D, Hirsch S, Ravi K, Hicks J, et al. (2011). BRCA1 Tumor Suppression Depends on BRCT Phosphoprotein Binding, But Not Its E3 Ligase Activity. Science 334, 525–527. PubMed PMC
Wang B, Matsuoka S, Ballif BA, Zhang D, Smogorzewska A, Gygi SP, and Elledge SJ (2007). Abraxas and RAP80 form a BRCA1 protein complex required for the DNA damage response. Science 316, 1194–1198. 10.1126/science.1139476. PubMed DOI PMC
Cantor S, Bell D, Ganesan S, Kass E, Drapkin R, Grossman S, Wahrer D, Sgroi D, Lane W, Haber D, and Livingston D (2001). BACH1, a Novel Helicase-like Protein, Interacts Directly with BRCA1 and Contributes to Its DNA Repair Function. Cell 105, 149–160. PubMed
Yu XW,L; Bowcock A; Aronheim A; Baer R (1998). The C-terminal (BRCT) Domains of BRCA1 Interact in Vivo with CtIP, a Protein Implicated in the CtBP Pathway of Transcriptional Repression. The Journal of Biological Chemistry Vol. 273, 25388–25392. PubMed
Mateos-Gomez PA, Kent T, Deng SK, McDevitt S, Kashkina E, Hoang TM, Pomerantz RT, and Sfeir A (2017). The helicase domain of Poltheta counteracts RPA to promote alt-NHEJ. Nat Struct Mol Biol 24, 1116–1123. 10.1038/nsmb.3494. PubMed DOI PMC
Wu L, Wang Z, Tsan J, Spillman M, Phung A, Xu X, Yang M, Hwang L, Bowcock A, and Baer R (1996). Identification of a RING protein that can interact in vivo with the BRCA1 gene product. Nature Genetics 14, 430–440. PubMed
Li M, and Yu X (2013). Function of BRCA1 in the DNA damage response is mediated by ADP-ribosylation. Cancer Cell 23, 693–704. 10.1016/j.ccr.2013.03.025. PubMed DOI PMC
Vassin VM, Anantha RW, Sokolova E, Kanner S, and Borowiec JA (2009). Human RPA phosphorylation by ATR stimulates DNA synthesis and prevents ssDNA accumulation during DNA-replication stress. J Cell Sci 122, 4070–4080. 10.1242/jcs.053702. PubMed DOI PMC
Murphy AK, Fitzgerald M, Ro T, Kim JH, Rabinowitsch AI, Chowdhury D, Schildkraut CL, and Borowiec JA (2014). Phosphorylated RPA recruits PALB2 to stalled DNA replication forks to facilitate fork recovery. J Cell Biol 206, 493–507. 10.1083/jcb.201404111. PubMed DOI PMC
Joseph SA, Taglialatela A, Leuzzi G, Huang JW, Cuella-Martin R, and Ciccia A (2020). Time for remodeling: SNF2-family DNA translocases in replication fork metabolism and human disease. DNA Repair (Amst) 95, 102943. 10.1016/j.dnarep.2020.102943. PubMed DOI PMC
Taglialatela A, Alvarez S, Leuzzi G, Sannino V, Ranjha L, Huang JW, Madubata C, Anand R, Levy B, Rabadan R, et al. (2017). Restoration of Replication Fork Stability in BRCA1- and BRCA2-Deficient Cells by Inactivation of SNF2-Family Fork Remodelers. Mol Cell 68, 414–430 e418. 10.1016/j.molcel.2017.09.036. PubMed DOI PMC
Rodriguez R, Muller S, Yeoman JA, Trentesaux C, Riou JF, and Balasubramanian S (2008). A novel small molecule that alters shelterin integrity and triggers a DNA-damage response at telomeres. J Am Chem Soc 130, 15758–15759. 10.1021/ja805615w. PubMed DOI PMC
Mirman Z d.L. T (2020). 53BP1: a DSB escort. Genes & Development 34, 7–23. 10.1101/gad.333237. PubMed DOI PMC
Bouwman P, Aly A, Escandell JM, Pieterse M, Bartkova J, van der Gulden H, Hiddingh S, Thanasoula M, Kulkarni A, Yang Q, et al. (2010). 53BP1 loss rescues BRCA1 deficiency and is associated with triple-negative and BRCA-mutated breast cancers. Nat Struct Mol Biol 17, 688–695. 10.1038/nsmb.1831. PubMed DOI PMC
Liu WK,A; Zhao R; Cortez D (2020). Two replication fork remodeling pathways generate nuclease substrates for distinct fork protection factors. Science Advances PubMed PMC
Cuella-Martin R, Oliveira C, Lockstone HE, Snellenberg S, Grolmusova N, and Chapman JR (2016). 53BP1 Integrates DNA Repair and p53-Dependent Cell Fate Decisions via Distinct Mechanisms. Mol Cell 64, 51–64. 10.1016/j.molcel.2016.08.002. PubMed DOI PMC
Ward IM, Difilippantonio S, Minn K, Mueller MD, Molina JR, Yu X, Frisk CS, Ried T, Nussenzweig A, and Chen J (2005). 53BP1 cooperates with p53 and functions as a haploinsufficient tumor suppressor in mice. Mol Cell Biol 25, 10079–10086. 10.1128/MCB.25.22.10079-10086.2005. PubMed DOI PMC
Balestrini A, Ristic D, Dionne I, Liu XZ, Wyman C, Wellinger RJ, and Petrini JH (2013). The Ku heterodimer and the metabolism of single-ended DNA double-strand breaks. Cell Rep 3, 2033–2045. 10.1016/j.celrep.2013.05.026. PubMed DOI PMC
Shao RG, Cao CX, Zhang H, Kohn KW, Wold MS, and Pommier Y (1999). Replication-mediated DNA damage by camptothecin induces phosphorylation of RPA by DNA-dependent protein kinase and dissociates RPA:DNA-PK complexes. Embo j 18, 1397–1406. 10.1093/emboj/18.5.1397. PubMed DOI PMC
Strumberg D, Pilon AA, Smith M, Hickey R, Malkas L, and Pommier Y (2000). Conversion of topoisomerase I cleavage complexes on the leading strand of ribosomal DNA into 5’-phosphorylated DNA double-strand breaks by replication runoff. Mol Cell Biol 20, 3977–3987. 10.1128/mcb.20.11.3977-3987.2000. PubMed DOI PMC
Rothkamm K, Kruger I, Thompson LH, and Lobrich M (2003). Pathways of DNA double-strand break repair during the mammalian cell cycle. Mol Cell Biol 23, 5706–5715. PubMed PMC
Glover TB,C; Coyle J; Echo B (1984). DNA polymerase a inhibition by aphidicolin induces gaps and breaks at common fragile sites in human chromosomes. Hum Genetics 67, 136–142. PubMed
Strumberg D, Pilon A, Smith M, Hickey R, Malkas L, and Pommier Y (2000). Conversion of Topoisomerase I Cleavage Complexes on the Leading Strand of Ribosomal DNA into 5’-Phosphorylated DNA Double-Strand Breaks by Replication Runoff. MOLECULAR AND CELLULAR BIOLOGY 20, 3977–3987. PubMed PMC
Doege CA, Inoue K, Yamashita T, Rhee DB, Travis S, Fujita R, Guarnieri P, Bhagat G, Vanti WB, Shih A, et al. (2012). Early-stage epigenetic modification during somatic cell reprogramming by Parp1 and Tet2. Nature 488, 652–655. nature11333 [pii] 10.1038/nature11333 [doi]. PubMed DOI PMC
Farmer H, McCabe N, Lord C, Tutt A, Johnson D, Richardson T, Santarosa M, Dillon K, Hickson I, Knights C, et al. (2005). Targeting the DNA repair defect in BRCA mutant cells as a therapeutic strategy. Nature 434, 917–921. PubMed
Bryant H, Schultz N, Thomas H, Parker K, Flower D, Lopez E, Kyle S, Meuth M, Curtin N, and Helleday T (2005). Specific killing of BRCA2-deficient tumours with inhibitors of poly(ADP-ribose) polymerase. Nature 434, 913–917. PubMed
Hanzlikova H, Kalasova I, Demin AA, Pennicott LE, Cihlarova Z, and Caldecott KW (2018). The Importance of Poly(ADP-Ribose) Polymerase as a Sensor of Unligated Okazaki Fragments during DNA Replication. Mol Cell 71, 319–331 e313. 10.1016/j.molcel.2018.06.004. PubMed DOI PMC
Cong K, Peng M, Kousholt AN, Lee WTC, Lee S, Nayak S, Krais J, VanderVere-Carozza PS, Pawelczak KS, Calvo J, et al. (2021). Replication gaps are a key determinant of PARP inhibitor synthetic lethality with BRCA deficiency. Mol Cell 81, 3128–3144 e3127. 10.1016/j.molcel.2021.06.011. PubMed DOI PMC
Ward IM, Minn K, van Deursen J, and Chen J (2003). p53 Binding protein 53BP1 is required for DNA damage responses and tumor suppression in mice. Mol Cell Biol 23, 2556–2563. PubMed PMC
Quinet A, Martins DJ, Vessoni AT, Biard D, Sarasin A, Stary A, and Menck CF (2016). Translesion synthesis mechanisms depend on the nature of DNA damage in UV-irradiated human cells. Nucleic Acids Res 44, 5717–5731. 10.1093/nar/gkw280. PubMed DOI PMC
Lim PX, Zaman M, Feng W, and Jasin M (2024). BRCA2 promotes genomic integrity and therapy resistance primarily through its role in homology-directed repair. Mol Cell 84, 447–462.e410. 10.1016/j.molcel.2023.12.025. PubMed DOI PMC
Lim PX, Zaman M, and Jasin M (2023). BRCA2 promotes genomic integrity and therapy resistance primarily through its role in homology-directed repair. bioRxiv. 10.1101/2023.04.11.536470. PubMed DOI PMC
Brumbaugh J, Di Stefano B, and Hochedlinger K (2019). Reprogramming: identifying the mechanisms that safeguard cell identity. Development 146. 10.1242/dev.182170. PubMed DOI PMC
Ryan AJ, Squires S, Strutt HL, and Johnson RT (1991). Camptothecin cytotoxicity in mammalian cells is associated with the induction of persistent double strand breaks in replicating DNA. Nucleic Acids Res 19, 3295–3300. 10.1093/nar/19.12.3295. PubMed DOI PMC
Ben-Porath I, Thomson MW, Carey VJ, Ge R, Bell GW, Regev A, and Weinberg RA (2008). An embryonic stem cell-like gene expression signature in poorly differentiated aggressive human tumors. Nat Genet 40, 499–507. 10.1038/ng.127. PubMed DOI PMC
Bartkova J, Rezaei N, Liontos M, Karakaidos P, Kletsas D, Issaeva N, Vassiliou LV, Kolettas E, Niforou K, Zoumpourlis VC, et al. (2006). Oncogene-induced senescence is part of the tumorigenesis barrier imposed by DNA damage checkpoints. Nature 444, 633–637. nature05268 [pii] 10.1038/nature05268 [doi]. PubMed DOI
Moreno A, Carrington JT, Albergante L, Al Mamun M, Haagensen EJ, Komseli ES, Gorgoulis VG, Newman TJ, and Blow JJ (2016). Unreplicated DNA remaining from unperturbed S phases passes through mitosis for resolution in daughter cells. Proc Natl Acad Sci U S A 113, E5757–5764. 10.1073/pnas.1603252113. PubMed DOI PMC
Lezaja A, and Altmeyer M (2018). Inherited DNA lesions determine G1 duration in the next cell cycle. Cell Cycle 17, 24–32. 10.1080/15384101.2017.1383578. PubMed DOI PMC
Moser J, Miller I, Carter D, and Spencer SL (2018). Control of the Restriction Point by Rb and p21. Proc Natl Acad Sci U S A 115, E8219–e8227. 10.1073/pnas.1722446115. PubMed DOI PMC
Hussein SM, Batada NN, Vuoristo S, Ching RW, Autio R, Narva E, Ng S, Sourour M, Hamalainen R, Olsson C, et al. (2011). Copy number variation and selection during reprogramming to pluripotency. Nature 471, 58–62. nature09871 [pii] 10.1038/nature09871 [doi]. PubMed DOI
Mandai M, Watanabe A, Kurimoto Y, Hirami Y, Morinaga C, Daimon T, Fujihara M, Akimaru H, Sakai N, Shibata Y, et al. (2017). Autologous Induced Stem-Cell–Derived Retinal Cells for Macular Degeneration. New England Journal of Medicine 376, 1038–1046. 10.1056/NEJMoa1608368. PubMed DOI
Reczek CR, Szabolcs M, Stark JM, Ludwig T, and Baer R (2013). The interaction between CtIP and BRCA1 is not essential for resection-mediated DNA repair or tumor suppression. J Cell Biol 201, 693–707. 10.1083/jcb.201302145. PubMed DOI PMC
Durkin MQ,X; Popescu N; Lowy D (2013). Isolation of Mouse Embryo Fibroblasts. Bio Protoc 3. PubMed PMC
Anantha RW, Vassin VM, and Borowiec JA (2007). Sequential and synergistic modification of human RPA stimulates chromosomal DNA repair. J Biol Chem 282, 35910–35923. 10.1074/jbc.M704645200. PubMed DOI
Orlando L, Tanasijevic B, Nakanishi M, Reid JC, García-Rodríguez JL, Chauhan KD, Porras DP, Aslostovar L, Lu JD, Shapovalova Z, et al. (2021). Phosphorylation state of the histone variant H2A.X controls human stem and progenitor cell fate decisions. Cell Rep 34, 108818. 10.1016/j.celrep.2021.108818. PubMed DOI
Palmerola KL, Amrane S, De Los Angeles A, Xu S, Wang N, de Pinho J, Zuccaro MV, Taglialatela A, Massey DJ, Turocy J, et al. (2022). Replication stress impairs chromosome segregation and preimplantation development in human embryos. Cell 185, 2988–3007.e2920. 10.1016/j.cell.2022.06.028. PubMed DOI
Terret ME, Sherwood R, Rahman S, Qin J, and Jallepalli PV (2009). Cohesin acetylation speeds the replication fork. Nature 462, 231–234. nature08550 [pii] 10.1038/nature08550 [doi]. PubMed DOI PMC