Efficient two-step excitation energy transfer in artificial light-harvesting antenna based on bacteriochlorophyll aggregates
Jazyk angličtina Země Švýcarsko Médium print-electronic
Typ dokumentu časopisecké články
PubMed
38555841
DOI
10.1016/j.jphotobiol.2024.112891
PII: S1011-1344(24)00051-4
Knihovny.cz E-zdroje
- Klíčová slova
- Artificial light-harvesting antenna, Bacteriochlorophyll aggregates, Chlorosomes, Efficiency of excitation energy transfer, Fluorescence spectroscopy,
- MeSH
- bakteriální proteiny metabolismus MeSH
- bakteriochlorofyl A * chemie MeSH
- bakteriochlorofyly * chemie MeSH
- beta-karoten MeSH
- fotosyntéza MeSH
- přenos energie MeSH
- světlosběrné proteinové komplexy chemie MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- bakteriální proteiny MeSH
- bakteriochlorofyl A * MeSH
- bakteriochlorofyly * MeSH
- beta-karoten MeSH
- světlosběrné proteinové komplexy MeSH
Chlorosomes of green photosynthetic bacteria are large light-harvesting complexes enabling these organisms to survive at extremely low-light conditions. Bacteriochlorophylls found in chlorosomes self-organize and are ideal candidates for use in biomimetic light-harvesting in artificial photosynthesis and other applications for solar energy utilization. Here we report on the construction and characterization of an artificial antenna consisting of bacteriochlorophyll c co-aggregated with β-carotene, which is used to extend the light-harvesting spectral range, and bacteriochlorophyll a, which acts as a final acceptor for excitation energy. Efficient energy transfer between all three components was observed by means of fluorescence spectroscopy. The efficiency varies with the β-carotene content, which increases the average distance between the donor and acceptor in both energy transfer steps. The efficiency ranges from 89 to 37% for the transfer from β-carotene to bacteriochlorophyll c, and from 93 to 69% for the bacteriochlorophyll c to bacteriochlorophyll a step. A significant part of this study was dedicated to a development of methods for determination of energy transfer efficiency. These methods may be applied also for study of chlorosomes and other pigment complexes.
Citace poskytuje Crossref.org