Optical characterization of inhomogeneity of polymer-like thin films arising in the initial phase of plasma-enhanced chemical vapor deposition

. 2024 Mar 15 ; 10 (5) : e27246. [epub] 20240301

Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid38562509
Odkazy

PubMed 38562509
PubMed Central PMC10982981
DOI 10.1016/j.heliyon.2024.e27246
PII: S2405-8440(24)03277-8
Knihovny.cz E-zdroje

In this study, an optical investigation in a wide spectral range of polymer-like (SiOxCyHz) thin films deposited by plasma-enhanced chemical vapor deposition (PECVD) is presented. The primary focus is on assessing the homogeneity of the grown films. Within the PECVD, it is possible to alter the properties of the deposited material by continually adjusting deposition process parameters and hence allow for the growth of inhomogeneous layers. However, as shown in this study, the growth of homogeneous layers could be similarly challenging. This challenge is especially pronounced at the beginning of the deposition process, where it is necessary to consider the influence of the substrate among other factors, as even slight variations in the deposition conditions can lead to the formation of inhomogeneous layers. Several series of polymer-like thin films were deposited onto silicon substrates with the goal of producing homogeneous layers, i.e. all deposition parameters were held constant. These samples were optically characterized with a special interest in homogeneity, especially at the beginning of the growth. It was found that initial inhomogeneous growth is always present. The thickness of the initial inhomogeneous part was found to be surprisingly large.

Zobrazit více v PubMed

Biederman H. World Scientific; 2004. Plasma Polymer Films.

Nisol B., Reniers F. Challenges in the characterization of plasma polymers using XPS. J. Electron Spectrosc. 2015;200:311–331.

Lou B.S., Wang S.B., Hung S.B., Wang C.J., Lee J.W. Characterization of plasma polymerized organosilicon thin films deposited on 316L stainless steel. Thin Solid Films. 2018;660:637–645.

Lu S.K., Chen S.C., Chen T.H., Lai L.W., Liao R.M., Liu D.S. Barrier property and mechanical flexibility of stress controlled organosilicon/silicon oxide coatings on plastic substrates. Surf. Coat. Technol. 2015;280:92–99.

Deng Q., Li W., Zhu L., Chen H., Ju P., Liu H. Ultrathin, highly anticorrosive and hydrophobic film for metal protection based on a composite organosilicon structure. Colloids Surf. A, Physicochem. Eng. Asp. 2018;558:359–366.

Gosar Ž., Kovač J., Mozetič M., Primc G., Vesel A., Zaplotnik R. Deposition of SiOxCyHz protective coatings on polymer substrates in an industrial-scale PECVD reactor. Coatings. 2019;9:234.

Aumaille K., Vallée C., Granier A., Goullet A., Gaboriau F., Turban G. A comparative study of oxygen/organosilicon plasmas and thin SiOxCyHz films deposited in a helicon reactor. Thin Solid Films. 2000;359:188–196.

Hall C.J., Murphy P.J., Griesser H.J. Etching and deposition mechanism of an alcohol plasma on polycarbonate and poly (methyl methacrylate): an adhesion promotion mechanism for plasma deposited a:SiOxCyHz coating. Plasma Process. Polym. 2012;9:855–865.

Zajíčková L., Buršíková V., Peřina V., Macková A., Subedi D., Janča J., Smirnov S. Plasma modification of polycarbonates. Surf. Coat. Technol. 2001;142:449–454.

Čermák M., Kelarová Š., Jurmanová J., Kührová P., Buršíková V. The wide range optical spectrum characterization of the silicon and oxygen doped diamond like carbon inhomogeneous thin films. Diam. Relat. Mater. 2022;128

Zajíčková L., Buršíková V., Peřina V., Macková A., Janča J. Correlation between SiOx content and properties of DLC: SiOx films prepared by PECVD. Surf. Coat. Technol. 2003;174:281–285.

Zajíčková L., Buršíková V., Kučerová Z., Franta D., Dvořák P., Šmíd R., Peřina V., Macková A. Deposition of protective coatings in rf organosilicon discharges. Plasma Sources Sci. Technol. 2007;16:S123.

Carneiro de Oliveira J., Airoudj A., Kunemann P., Bally-Le Gall F., Roucoules V. Mechanical properties of plasma polymer films: a review. SN Appl. Sci. 2021;3:656.

Vinx N., Damman P., Leclère P., Bresson B., Fretigny C., Poleunis C., Delcorte A., Cossement D., Snyders R., Thiry D. Investigating the relationship between the mechanical properties of plasma polymer-like thin films and their glass transition temperature. Soft Matter. 2021;17:10032–10041. PubMed

Mota R.P., Galvão D., Durrant S.F., De Moraes M.A.B., de Oliveira Dantas S., Cantão M. HMDSO plasma polymerization and thin film optical properties. Thin Solid Films. 1995;270:109–113.

Cechalova B., Branecky M., Klapetek P., Cech V. Optical properties of oxidized plasma-polymerized organosilicones and their correlation with mechanical and chemical parameters. Materials. 2019;12:539. PubMed PMC

Xie X., de los Arcos T., Grundmeier G. Comparative analysis of hexamethyldisiloxane and hexamethyldisilazane plasma polymer thin films before and after plasma oxidation. Plasma Process. Polym. 2022;19

Poll H.U., Meichsner J., Arzt M., Friedrich M., Rochotzki R., Kreyßig E. Optical properties of plasma polymer films. Surf. Coat. Technol. 1993;59:365–370.

Rochotzki R., Arzt M., Blaschta F., Kreyßig E., Poll H. Optical properties of plasma polymer films (hexamethyldisiloxane) Thin Solid Films. 1993;234:463–467.

Franta D., Ohlídal I., Nečas D., Vižďa F., Caha O., Hasoň M., Pokorný P. Optical characterization of HfO2 thin films. Thin Solid Films. 2011;519:6085–6091.

Korkmaz Ş., Pat S., Ekem N., Balbağ M.Z., Temel S. Thermal treatment effect on the optical properties of ZrO2 thin films deposited by thermionic vacuum arc. Vacuum. 2012;86:1930–1933.

Liu M.C., Lee C.C., Kaneko M., Nakahira K., Takano Y. Microstructure-related properties at 193 nm of MgF2 and GdF3 films deposited by a resistive-heating boat. Appl. Opt. 2006;45:1368–1374. PubMed

Jin J., Jin C., Li C., Deng W., Yao S. Influence of substrate temperatures on the properties of GdF3 thin films with quarter-wave thickness in the ultraviolet region. Appl. Opt. 2015;54:5117–5122. PubMed

Azzam R.M.A., Elshazly-Zaghloul M., Bashara N.M. Combined reflection and transmission thin-film ellipsometry: a unified linear analysis. Appl. Opt. 1975;14:1652–1663. PubMed

Pei L., Jiaqi Z., Yuankun Z., Jiecai H. Preparation and optical properties of sputtered-deposition yttrium fluoride film. Nucl. Instrum. Methods Phys. Res. B. 2013;307:429–433.

Vedam K., McMarr P.J., Narayan J. Nondestructive depth profiling by spectroscopic ellipsometry. Appl. Phys. Lett. 1985;47:339–341.

Kildemo M. Real-time monitoring and growth control of Si-gradient-index structures by multiwavelength ellipsometry. Appl. Opt. 1998;37:113–124. PubMed

Carniglia C.K. Ellipsometric calculations for nonabsorbing thin films with linear refractive-index gradients. J. Opt. Soc. Am. A. 1990;7:848–856.

Jacobsson R. In: Wolf E., editor. vol. 5. Elsevier; 1966. Light Reflection from Films of Continuously Varying Refractive Index; pp. 247–286. (Progress in Optics).

Sheldon B., Haggerty J.S., Emslie A.G. Exact computation of the reflectance of a surface layer of arbitrary refractive-index profile and an approximate solution of the inverse problem. J. Opt. Soc. Am. 1982;72:1049–1055.

Franta D., Vohánka J., Dvořák J., Franta P., Ohlídal I., Klapetek P., Březina J., Škoda D. Optical characterization of gadolinium fluoride films using universal dispersion model. Coatings. 2023;13:218.

Ohlídal I., Vohánka J., Buršíková V., Ženíšek J., Vašina P., Čermák M., Franta D. Optical characterization of inhomogeneous thin films containing transition layers using the combined method of spectroscopic ellipsometry and spectroscopic reflectometry based on multiple-beam interference model. J. Vac. Sci. Technol. B. 2019;37

Franta D., Ohlídal I., Klapetek P., Montaigne Ramil A., Bonanni A., Stifter D., Sitter H. Influence of overlayers on determination of the optical constants of ZnSe thin films. J. Appl. Phys. 2002;92:1873–1880.

Ohlídal M., Ohlídal I., Klapetek P., Nečas D., Majumdar A. Measurement of the thickness distribution and optical constants of non-uniform thin films. Meas. Sci. Technol. 2011;22

Vohánka J., Franta D., Čermák M., Homola V., Buršíková V., Ohlídal I. Ellipsometric characterization of highly non-uniform thin films with the shape of thickness non-uniformity modeled by polynomials. Opt. Express. 2020;28:5492–5506. PubMed

Richter U. Application of the degree of polarization to film thickness gradients. Thin Solid Films. 1998;313:102–107.

Pisarkiewicz T. Reflection spectrum for a thin film with non-uniform thickness. J. Phys. D, Appl. Phys. 1994;27:690.

Nagata K., Nishiwaki J. Reflection of light from filmed rough surface: determination of film thickness and rms roughness. Jpn. J. Appl. Phys. 1967;6:251–257.

Bauer J. Optical properties, band gap, and surface roughness of Si3N4. Phys. Status Solidi A. 1977;39:411–418.

Ohlídal I., Vohánka J., Buršíková V., Dvořák J., Klapetek P., Kaur N.J. Optical characterization of inhomogeneous thin films with randomly rough boundaries exhibiting wide intervals of spatial frequencies. Opt. Eng. 2022;30:39068–39085. PubMed

Vohánka J., Ohlídal I., Buršíková V., Klapetek P., Kaur N.J. Optical characterization of inhomogeneous thin films with randomly rough boundaries. Opt. Express. 2022;30:2033–2047. PubMed

Martinu L., Poitras D. Plasma deposition of optical films and coatings: a review. J. Vac. Sci. Technol., A, Vac. Surf. Films. 2000;18:2619–2645.

Franta D., Ohlídal I. Analysis of thin films by optical multi-sample methods. Acta Phys. Slovaca. 2000;50:411–421.

Fujiwara H. Wiley; England: 2007. Spectroscopic Ellipsometry: Principles and Applications.

Germer T., Zwinkels J.C., Tsai B.K. Elsevier; 2014. Spectrophotometry: Accurate Measurement of Optical Properties of Materials.

Franta D., Nečas D., Ohlídal I. Universal dispersion model for characterization of optical thin films over wide spectral range: application to hafnia. Appl. Opt. 2015;54:9108–9119. PubMed

Franta D., Vohánka J., Čermák M. In: Optical Characterization of Thin Solid Films. Stenzel O., Ohlídal M., editors. Springer International Publishing; Cham: 2018. Universal dispersion model for characterisation of thin films over wide spectral range; pp. 31–82.

Peter S., Graupner K., Grambole D., Richter F. Comparative experimental analysis of the aC: H deposition processes using CH4 and C2H2 as precursors. J. Appl. Phys. 2007:102.

Campi D., Coriasso C. Prediction of optical properties of amorphous tetrahedrally bounded materials. J. Appl. Phys. 1988;64:4128–4134.

Franta D., Mureşan M.G. Wide spectral range optical characterization of yttrium aluminum garnet (YAG) single crystal by the universal dispersion model. Opt. Mater. Express. 2021;11:3930–3945.

Dvořák J., Vohánka J., Buršíková V., Franta D., Ohlídal I. Optical characterization of inhomogeneous thin films deposited onto non-absorbing substrates. Coatings. 2023;13:873.

Ohlídal I., Vohánka J., Buršíková V., Franta D., Čermák M. Spectroscopic ellipsometry of inhomogeneous thin films exhibiting thickness non-uniformity and transition layers. Opt. Express. 2020;28:160–174. PubMed

Ohlídal I., Vohánka J., Čermák M. Optics of inhomogeneous thin films with defects: application to optical characterization. Coatings. 2021;11:22.

Ohlídal I., Vohánka J., Buršíková V., Šulc V., Šustek Š., Ohlídal M. Ellipsometric characterization of inhomogeneous thin films with complicated thickness non-uniformity: application to inhomogeneous polymer-like thin films. Opt. Express. 2020;28:36796–36811. PubMed

Franta D., Nečas D., Vohánka J. Software for optical characterization newAD2. http://newad.physics.muni.cz/

Ohlídal I., Vohánka J., Mistrík J., Čermák M., Vižďa F., Franta D. Approximations of reflection and transmission coefficients of inhomogeneous thin films based on multiple-beam interference model. Thin Solid Films. 2019

Tyczkowski J. Plasma Polymer Films. 2004. Electrical and optical properties of plasma polymers; pp. 143–216.

Catherine Y., Turban G. Reactive plasma deposited SixCyHz films. Thin Solid Films. 1979;60:193–200.

Borvon G., Goullet A., Mellhaoui X., Charrouf N., Granier A. Electrical properties of low-dielectric-constant films prepared by PECVD in O2/CH4/HMDSO. Mater. Sci. Semicond. Process. 2002;5:279–284.

Brzobohatý O., Buršíková V., Trunec D. Mirror effect in PECVD reactor and its explanation via MC-PIC computer simulation. Czechoslov. J. Phys. 2004;54:C527–C532.

Brzobohatý O., Buršíková V., Nečas D., Valtr M., Trunec D. Influence of substrate material on plasma in deposition/sputtering reactor: experiment and computer simulation. J. Phys. D, Appl. Phys. 2008;41

Taccogna F., Longo S., Capitelli M. Plasma-surface interaction model with secondary electron emission effects. Phys. Plasmas. 2004;11:1220–1228.

Taccogna F., Longo S., Capitelli M. Effects of secondary electron emission from a floating surface on the plasma sheath. Vacuum. 2004;73:89–92.

Jolivet L., Roussel J.F. Numerical modeling of plasma sheath phenomena in the presence of secondary electron emission. IEEE Trans. Plasma Sci. 2002;30:318–326.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...