Structural and functional characterization of the interaction between the influenza A virus RNA polymerase and the CTD of host RNA polymerase II

. 2024 May 14 ; 98 (5) : e0013824. [epub] 20240402

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid38563748

Grantová podpora
MR/R009945/1 Medical Research Council - United Kingdom
MR/R009945/1, MR/X008312/1 UKRI | Medical Research Council (MRC)
MR/X008312/1 Medical Research Council - United Kingdom
BB/M011224/1 UKRI | Biotechnology and Biological Sciences Research Council (BBSRC)
CZ.02.01.01/00/22_008/0004575 Ministry of education, youth and sports of the Czech Republic
200835/Z/16/Z, 222510/Z/21/Z, 060208/Z/00/Z, 093305/Z/10/Z, 203141/Z/16/Z Wellcome Trust (WT)
Wellcome Trust - United Kingdom

Influenza A viruses, causing seasonal epidemics and occasional pandemics, rely on interactions with host proteins for their RNA genome transcription and replication. The viral RNA polymerase utilizes host RNA polymerase II (Pol II) and interacts with the serine 5 phosphorylated (pS5) C-terminal domain (CTD) of Pol II to initiate transcription. Our study, using single-particle electron cryomicroscopy (cryo-EM), reveals the structure of the 1918 pandemic influenza A virus polymerase bound to a synthetic pS5 CTD peptide composed of four heptad repeats mimicking the 52 heptad repeat mammalian Pol II CTD. The structure shows that the CTD peptide binds at the C-terminal domain of the PA viral polymerase subunit (PA-C) and reveals a previously unobserved position of the 627 domain of the PB2 subunit near the CTD. We identify crucial residues of the CTD peptide that mediate interactions with positively charged cavities on PA-C, explaining the preference of the viral polymerase for pS5 CTD. Functional analysis of mutants targeting the CTD-binding site within PA-C reveals reduced transcriptional function or defects in replication, highlighting the multifunctional role of PA-C in viral RNA synthesis. Our study provides insights into the structural and functional aspects of the influenza virus polymerase-host Pol II interaction and identifies a target for antiviral development.IMPORTANCEUnderstanding the intricate interactions between influenza A viruses and host proteins is crucial for developing targeted antiviral strategies. This study employs advanced imaging techniques to uncover the structural nuances of the 1918 pandemic influenza A virus polymerase bound to a specific host protein, shedding light on the vital process of viral RNA synthesis. The study identifies key amino acid residues in the influenza polymerase involved in binding host polymerase II (Pol II) and highlights their role in both viral transcription and genome replication. These findings not only deepen our understanding of the influenza virus life cycle but also pinpoint a potential target for antiviral development. By elucidating the structural and functional aspects of the influenza virus polymerase-host Pol II interaction, this research provides a foundation for designing interventions to disrupt viral replication and transcription, offering promising avenues for future antiviral therapies.

Zobrazit více v PubMed

Eisfeld AJ, Neumann G, Kawaoka Y. 2015. At the centre: influenza A virus ribonucleoproteins. Nat Rev Microbiol 13:28–41. doi:10.1038/nrmicro3367 PubMed DOI PMC

Te Velthuis AJW, Fodor E. 2016. Influenza virus RNA polymerase: insights into the mechanisms of viral RNA synthesis. Nat Rev Microbiol 14:479–493. doi:10.1038/nrmicro.2016.87 PubMed DOI PMC

Zhu Z, Fodor E, Keown JR. 2023. A structural understanding of influenza virus genome replication. Trends Microbiol 31:308–319. doi:10.1016/j.tim.2022.09.015 PubMed DOI

Walker AP, Fodor E. 2019. Interplay between influenza virus and the host RNA polymerase II transcriptional machinery. Trends Microbiol 27:398–407. doi:10.1016/j.tim.2018.12.013 PubMed DOI PMC

Wandzik JM, Kouba T, Cusack S. 2021. Structure and function of influenza polymerase. Cold Spring Harb Perspect Med 11:a038372. doi:10.1101/cshperspect.a038372 PubMed DOI PMC

Engelhardt OG, Smith M, Fodor E. 2005. Association of the influenza A virus RNA-dependent RNA polymerase with cellular RNA polymerase II. J Virol 79:5812–5818. doi:10.1128/JVI.79.9.5812-5818.2005 PubMed DOI PMC

Vreede FT, Chan AY, Sharps J, Fodor E. 2010. Mechanisms and functional implications of the degradation of host RNA polymerase II in influenza virus infected cells. Virology 396:125–134. doi:10.1016/j.virol.2009.10.003 PubMed DOI PMC

Bauer DLV, Tellier M, Martínez-Alonso M, Nojima T, Proudfoot NJ, Murphy S, Fodor E. 2018. Influenza virus mounts a two-pronged attack on host RNA polymerase II transcription. Cell Rep 23:2119–2129. doi:10.1016/j.celrep.2018.04.047 PubMed DOI PMC

Rodriguez A, Pérez-González A, Nieto A. 2007. Influenza virus infection causes specific degradation of the largest subunit of cellular RNA polymerase II. J Virol 81:5315–5324. doi:10.1128/JVI.02129-06 PubMed DOI PMC

Krischuns T, Lukarska M, Naffakh N, Cusack S. 2021. Influenza virus RNA-dependent RNA polymerase and the host transcriptional apparatus. Annu Rev Biochem 90:321–348. doi:10.1146/annurev-biochem-072820-100645 PubMed DOI

Krischuns T, Isel C, Drncova P, Lukarska M, Pflug A, Paisant S, Navratil V, Cusack S, Naffakh N. 2022. Type B and type A influenza polymerases have evolved distinct binding interfaces to recruit the RNA polymerase II CTD. PLoS Pathog 18:e1010328. doi:10.1371/journal.ppat.1010328 PubMed DOI PMC

Serna Martin I, Hengrung N, Renner M, Sharps J, Martínez-Alonso M, Masiulis S, Grimes JM, Fodor E. 2018. A mechanism for the activation of the influenza virus transcriptase. Molecular Cell 70:1101–1110. doi:10.1016/j.molcel.2018.05.011 PubMed DOI PMC

Lukarska M, Fournier G, Pflug A, Resa-Infante P, Reich S, Naffakh N, Cusack S. 2017. Structural basis of an essential interaction between influenza polymerase and Pol II CTD. Nature 541:117–121. doi:10.1038/nature20594 PubMed DOI

Morel J, Sedano L, Lejal N, Da Costa B, Batsché E, Muchardt C, Delmas B. 2022. The influenza virus RNA-polymerase and the host RNA-polymerase II: RPB4 is targeted by a PB2 domain that is involved in viral transcription. Viruses 14:518. doi:10.3390/v14030518 PubMed DOI PMC

Dieci G. 2021. Removing quote marks from the RNA polymerase II CTD 'code'. Biosystems 207:104468. doi:10.1016/j.biosystems.2021.104468 PubMed DOI

Zaborowska J, Egloff S, Murphy S. 2016. The Pol II CTD: new twists in the tail. Nat Struct Mol Biol 23:771–777. doi:10.1038/nsmb.3285 PubMed DOI

Jasnovidova O, Stefl R. 2013. The CTD code of RNA polymerase II: a structural view. Wiley Interdiscip Rev RNA 4:1–16. doi:10.1002/wrna.1138 PubMed DOI

Yurko NM, Manley JL. 2018. “The RNA polymerase II CTD "orphan" residues: emerging insights into the functions of Tyr-1, Thr-4, and Ser-7”. Transcription 9:30–40. doi:10.1080/21541264.2017.1338176 PubMed DOI PMC

Schüller R, Forné I, Straub T, Schreieck A, Texier Y, Shah N, Decker T-M, Cramer P, Imhof A, Eick D. 2016. Heptad-specific phosphorylation of RNA polymerase II CTD. Mol Cell 61:305–314. doi:10.1016/j.molcel.2015.12.003 PubMed DOI

Suh H, Ficarro SB, Kang UB, Chun Y, Marto JA, Buratowski S. 2016. Direct analysis of phosphorylation sites on the Rpb1 C-terminal domain of RNA polymerase II. Mol Cell 61:297–304. doi:10.1016/j.molcel.2015.12.021 PubMed DOI PMC

Lyons DE, McMahon S, Ott M. 2020. A combinatorial view of old and new RNA polymerase II modifications. Transcription 11:66–82. doi:10.1080/21541264.2020.1762468 PubMed DOI PMC

Martínez-Alonso M, Hengrung N, Fodor E. 2016. RNA-free and ribonucleoprotein-associated influenza virus polymerases directly bind the serine-5-phosphorylated carboxyl-terminal domain of host RNA polymerase II. J Virol 90:6014–6021. doi:10.1128/JVI.00494-16 PubMed DOI PMC

Whelan M, Pelchat M. 2022. Role of RNA polymerase II promoter-proximal pausing in viral transcription. Viruses 14:2029. doi:10.3390/v14092029 PubMed DOI PMC

Pflug A, Guilligay D, Reich S, Cusack S. 2014. Structure of influenza A polymerase bound to the viral RNA promoter. Nature 516:355–360. doi:10.1038/nature14008 PubMed DOI

Wandzik JM, Kouba T, Karuppasamy M, Pflug A, Drncova P, Provaznik J, Azevedo N, Cusack S. 2020. A structure-based model for the complete transcription cycle of influenza polymerase. Cell 181:877–893. doi:10.1016/j.cell.2020.03.061 PubMed DOI

Fan H, Walker AP, Carrique L, Keown JR, Serna Martin I, Karia D, Sharps J, Hengrung N, Pardon E, Steyaert J, Grimes JM, Fodor E. 2019. Structures of influenza A virus RNA polymerase offer insight into viral genome replication. Nature 573:287–290. doi:10.1038/s41586-019-1530-7 PubMed DOI PMC

Keown JR, Zhu Z, Carrique L, Fan H, Walker AP, Serna Martin I, Pardon E, Steyaert J, Fodor E, Grimes JM. 2022. Mapping inhibitory sites on the RNA polymerase of the 1918 pandemic influenza virus using nanobodies. Nat Commun 13:251. doi:10.1038/s41467-021-27950-w PubMed DOI PMC

Li H, Wu Y, Li M, Guo L, Gao Y, Wang Q, Zhang J, Lai Z, Zhang X, Zhu L, Lan P, Rao Z, Liu Y, Liang H. 2023. An intermediate state allows influenza polymerase to switch smoothly between transcription and replication cycles. Nat Struct Mol Biol 30:1183–1192. doi:10.1038/s41594-023-01043-2 PubMed DOI

te Velthuis AJW, Grimes JM, Fodor E. 2021. Structural insights into RNA polymerases of negative-sense RNA viruses. Nat Rev Microbiol 19:303–318. doi:10.1038/s41579-020-00501-8 PubMed DOI PMC

Heidemann M, Hintermair C, Voß K, Eick D. 2013. Dynamic phosphorylation patterns of RNA polymerase II CTD during transcription. Biochim Biophys Acta 1829:55–62. doi:10.1016/j.bbagrm.2012.08.013 PubMed DOI

Core L, Adelman K. 2019. Promoter-proximal pausing of RNA polymerase II: a nexus of gene regulation. Genes Dev 33:960–982. doi:10.1101/gad.325142.119 PubMed DOI PMC

Fodor E, Mingay LJ, Crow M, Deng T, Brownlee GG. 2003. A single amino acid mutation in the PA subunit of the influenza virus RNA polymerase promotes the generation of defective interfering RNAs. J Virol 77:5017–5020. doi:10.1128/jvi.77.8.5017-5020.2003 PubMed DOI PMC

Carrique L, Fan H, Walker AP, Keown JR, Sharps J, Staller E, Barclay WS, Fodor E, Grimes JM. 2020. Host ANP32A mediates the assembly of the influenza virus replicase. Nature 587:638–643. doi:10.1038/s41586-020-2927-z PubMed DOI PMC

Staller E, Sheppard CM, Neasham PJ, Mistry B, Peacock TP, Goldhill DH, Long JS, Barclay WS. 2019. ANP32 proteins are essential for influenza virus replication in human cells. J Virol 93:e00217-19. doi:10.1128/JVI.00217-19 PubMed DOI PMC

Zhang H, Zhang Z, Wang Y, Wang M, Wang X, Zhang X, Ji S, Du C, Chen H, Wang X. 2019. Fundamental contribution and host range determination of ANP32A and ANP32B in influenza A virus polymerase activity. J Virol 93:e00174-19. doi:10.1128/JVI.00174-19 PubMed DOI PMC

Krischuns T, Arragain B, Isel C, Paisant S, Budt M, Wolff T, Cusack S, Naffakh N. 2024. The host RNA polymerase II C-terminal domain is the anchor for replication of the influenza virus genome. Nat Commun 15:1064. doi:10.1038/s41467-024-45205-2 PubMed DOI PMC

Boehning M, Dugast-Darzacq C, Rankovic M, Hansen AS, Yu T, Marie-Nelly H, McSwiggen DT, Kokic G, Dailey GM, Cramer P, Darzacq X, Zweckstetter M. 2018. RNA polymerase II clustering through carboxy-terminal domain phase separation. Nat Struct Mol Biol 25:833–840. doi:10.1038/s41594-018-0112-y PubMed DOI

Flores-Solis D, Lushpinskaia IP, Polyansky AA, Changiarath A, Boehning M, Mirkovic M, Walshe J, Pietrek LM, Cramer P, Stelzl LS, Zagrovic B, Zweckstetter M. 2023. Driving forces behind phase separation of the carboxy-terminal domain of RNA polymerase II. Nat Commun 14:5979. doi:10.1038/s41467-023-41633-8 PubMed DOI PMC

Cho WK, Spille JH, Hecht M, Lee C, Li C, Grube V, Cisse II. 2018. Mediator and RNA polymerase II clusters associate in transcription-dependent condensates. Science 361:412–415. doi:10.1126/science.aar4199 PubMed DOI PMC

Guo YE, Manteiga JC, Henninger JE, Sabari BR, Dall’Agnese A, Hannett NM, Spille J-H, Afeyan LK, Zamudio AV, Shrinivas K, Abraham BJ, Boija A, Decker T-M, Rimel JK, Fant CB, Lee TI, Cisse II, Sharp PA, Taatjes DJ, Young RA. 2019. Pol II phosphorylation regulates a switch between transcriptional and splicing condensates. Nature 572:543–548. doi:10.1038/s41586-019-1464-0 PubMed DOI PMC

Sabari BR, Dall’Agnese A, Boija A, Klein IA, Coffey EL, Shrinivas K, Abraham BJ, Hannett NM, Zamudio AV, Manteiga JC, Li CH, Guo YE, Day DS, Schuijers J, Vasile E, Malik S, Hnisz D, Lee TI, Cisse II, Roeder RG, Sharp PA, Chakraborty AK, Young RA. 2018. Coactivator condensation at super-enhancers links phase separation and gene control. Science 361. doi:10.1126/science.aar3958 PubMed DOI PMC

Bieniossek C, Imasaki T, Takagi Y, Berger I. 2012. MultiBac: expanding the research toolbox for multiprotein complexes. Trends Biochem Sci 37:49–57. doi:10.1016/j.tibs.2011.10.005 PubMed DOI PMC

York A, Hengrung N, Vreede FT, Huiskonen JT, Fodor E. 2013. Isolation and characterization of the positive-sense replicative intermediate of a negative-strand RNA virus. Proc Natl Acad Sci U S A 110:E4238–45. doi:10.1073/pnas.1315068110 PubMed DOI PMC

Mastronarde DN. 2003. Serialem: a program for automated tilt series acquisition on tecnai microscopes using prediction of specimen position. Microsc Microanal 9:1182–1183. doi:10.1017/S1431927603445911 DOI

Pettersen EF, Goddard TD, Huang CC, Meng EC, Couch GS, Croll TI, Morris JH, Ferrin TE. 2021. UCSF chimerax: structure visualization for researchers, educators, and developers. Protein Sci 30:70–82. doi:10.1002/pro.3943 PubMed DOI PMC

Punjani A, Rubinstein JL, Fleet DJ, Brubaker MA. 2017. cryoSPARC: algorithms for rapid unsupervised cryo-EM structure determination. Nat Methods 14:290–296. doi:10.1038/nmeth.4169 PubMed DOI

Punjani A, Zhang H, Fleet DJ. 2020. Non-uniform refinement: adaptive regularization improves single-particle cryo-EM reconstruction. Nat Methods 17:1214–1221. doi:10.1038/s41592-020-00990-8 PubMed DOI

Bepler T, Morin A, Rapp M, Brasch J, Shapiro L, Noble AJ, Berger B. 2019. Positive-unlabeled convolutional neural networks for particle picking in cryo-electron micrographs. Nat Methods 16:1153–1160. doi:10.1038/s41592-019-0575-8 PubMed DOI PMC

Afonine PV, Poon BK, Read RJ, Sobolev OV, Terwilliger TC, Urzhumtsev A, Adams PD. 2018. Real-space refinement in PHENIX for cryo-EM and crystallography. Acta Crystallogr D Struct Biol 74:531–544. doi:10.1107/S2059798318006551 PubMed DOI PMC

Sanchez-Garcia R, Gomez-Blanco J, Cuervo A, Carazo JM, Sorzano COS, Vargas J. 2021. Deepemhancer: a deep learning solution for cryo-EM volume post-processing. Commun Biol 4:874. doi:10.1038/s42003-021-02399-1 PubMed DOI PMC

Tumpey TM, Basler CF, Aguilar PV, Zeng H, Solórzano A, Swayne DE, Cox NJ, Katz JM, Taubenberger JK, Palese P, García-Sastre A. 2005. Characterization of the reconstructed 1918 spanish influenza pandemic virus. Science 310:77–80. doi:10.1126/science.1119392 PubMed DOI

Fodor E, Devenish L, Engelhardt OG, Palese P, Brownlee GG, García-Sastre A. 1999. Rescue of influenza A virus from recombinant DNA. J Virol 73:9679–9682. doi:10.1128/JVI.73.11.9679-9682.1999 PubMed DOI PMC

te Velthuis AJW, Robb NC, Kapanidis AN, Fodor E. 2016. The role of the priming loop in influenza A virus RNA synthesis. Nat Microbiol 1:16029. doi:10.1038/nmicrobiol.2016.29 PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...