Gut metabolome and microbiota signatures predict response to treatment with exclusive enteral nutrition in a prospective study in children with active Crohn's disease

. 2024 Apr ; 119 (4) : 885-895. [epub] 20240219

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid38569785
Odkazy

PubMed 38569785
PubMed Central PMC11007740
DOI 10.1016/j.ajcnut.2023.12.027
PII: S0002-9165(23)66360-9
Knihovny.cz E-zdroje

BACKGROUND: Predicting response to exclusive enteral nutrition (EEN) in active Crohn's disease (CD) could lead to therapy personalization and pretreatment optimization. OBJECTIVES: This study aimed to explore the ability of pretreatment parameters to predict fecal calprotectin (FCal) levels at EEN completion in a prospective study in children with CD. METHODS: In children with active CD, clinical parameters, dietary intake, cytokines, inflammation-related blood proteomics, and diet-related metabolites, metabolomics and microbiota in feces, were measured before initiation of 8 wk of EEN. Prediction of FCal levels at EEN completion was performed using machine learning. Data are presented with medians (IQR). RESULTS: Of 37 patients recruited, 15 responded (FCal < 250 μg/g) to EEN (responders) and 22 did not (nonresponders). Clinical and immunological parameters were not associated with response to EEN. Responders had lesser (μmol/g) butyrate [responders: 13.2 (8.63-18.4) compared with nonresponders: 22.3 (12.0-32.0); P = 0.03], acetate [responders: 49.9 (46.4-68.4) compared with nonresponders: 70.4 (57.0-95.5); P = 0.027], phenylacetate [responders: 0.175 (0.013-0.611) compared with nonresponders: 0.943 (0.438-1.35); P = 0.021], and a higher microbiota richness [315 (269-347) compared with nonresponders: 243 (205-297); P = 0.015] in feces than nonresponders. Responders consumed (portions/1000 kcal/d) more confectionery products [responders: 0.55 (0.38-0.72) compared with nonresponders: 0.19 (0.01-0.38); P = 0.045]. A multicomponent model using fecal parameters, dietary data, and clinical and immunological parameters predicted response to EEN with 78% accuracy (sensitivity: 80%; specificity: 77%; positive predictive value: 71%; negative predictive value: 85%). Higher taxon abundance from Ruminococcaceae, Lachnospiraceae, and Bacteroides and phenylacetate, butyrate, and acetate were the most influential variables in predicting lack of response to EEN. CONCLUSIONS: We identify microbial signals and diet-related metabolites in feces, which could comprise targets for pretreatment optimization and personalized nutritional therapy in pediatric CD.

Komentář v

PubMed

Zobrazit více v PubMed

Logan M., Clark C.M., Ijaz U.Z., Gervais L., Duncan H., Garrick V., et al. The reduction of faecal calprotectin during exclusive enteral nutrition is lost rapidly after food re-introduction. Aliment. Pharmacol. Ther. 2019;50(6):664–674. doi: 10.1111/apt.15425. PubMed DOI PMC

van Rheenen P.F., Aloi M., Assa A., Bronsky J., Escher J.C., Fagerberg U.L., et al. The medical management of paediatric Crohn's disease: an ECCO-ESPGHAN guideline update. J. Crohns Colitis. 2020;15(2):171–194. doi: 10.1093/ecco-jcc/jjaa161. PubMed DOI

Douglas G.M., Hansen R., Jones C.M.A., Dunn K.A., Comeau A.M., Bielawski J.P., et al. Multi-omics differentially classify disease state and treatment outcome in pediatric Crohn's disease. Microbiome. 2018;6(1):13. doi: 10.1186/s40168-018-0398-3. PubMed DOI PMC

Kugathasan S., Denson L.A., Walters T.D., Kim M.O., Marigorta U.M., Schirmer M., et al. Prediction of complicated disease course for children newly diagnosed with Crohn's disease: a multicentre inception cohort study. Lancet. 2017;389(10080):1710–1718. doi: 10.1016/S0140-6736(17)30317-3. PubMed DOI PMC

Levine A., Chanchlani N., Hussey S., Ziv-Baran T., Escher J.C., Dias J.A., et al. Complicated disease and response to initial therapy predicts early surgery in paediatric Crohn's disease: results from the Porto group GROWTH study. J. Crohns Colitis. 2020;14(1):71–78. doi: 10.1093/ecco-jcc/jjz111. PubMed DOI

Ricciuto A., Aardoom M., Orlanski-Meyer E., Navon D., Carman N., Aloi M., et al. Predicting outcomes in pediatric Crohn's disease for management optimization: systematic review and consensus statements from the pediatric inflammatory bowel disease-ahead program. Gastroenterology. 2021;160(1):403–436.e26. doi: 10.1053/j.gastro.2020.07.065. PubMed DOI

Gerasimidis K., Nikolaou C.K., Edwards C.A., McGrogan P. Serial fecal calprotectin changes in children with Crohn's disease on treatment with exclusive enteral nutrition: associations with disease activity, treatment response, and prediction of a clinical relapse. J. Clin. Gastroenterol. 2011;45(3):234–239. doi: 10.1097/MCG.0b013e3181f39af5. PubMed DOI

Turner D., Griffiths A.M., Walters T.D., Seah T., Markowitz J., Pfefferkorn M., et al. Mathematical weighting of the pediatric Crohn's disease activity index (PCDAI) and comparison with its other short versions. Inflam. Bowel Dis. 2012;18(1):55–62. doi: 10.1002/ibd.21649. PubMed DOI

Carman N., Tomalty D., Church P.C., Mack D.R., Benchimol E.I., Otley A.R., et al. Clinical disease activity and endoscopic severity correlate poorly in children newly diagnosed with Crohn's disease. Gastrointest. Endosc. 2019;89(2):364–372. doi: 10.1016/j.gie.2018.09.025. PubMed DOI

Zubin G., Peter L. Predicting endoscopic Crohn's disease activity before and after induction therapy in children: a comprehensive assessment of PCDAI, CRP, and fecal calprotectin. Inflam. Bowel Dis. 2015;21(6):1386–1391. doi: 10.1097/MIB.0000000000000388. PubMed DOI PMC

Mosli M.H., Zou G., Garg S.K., Feagan S.G., MacDonald J.K., Chande N., et al. C-Reactive protein, fecal calprotectin, and stool lactoferrin for detection of endoscopic activity in symptomatic inflammatory bowel disease patients: A systematic review and meta-analysis. Am. J. Gastroenterol. 2015;110(6):802–819. doi: 10.1038/ajg.2015.120. quiz 20. PubMed DOI

Levine A., Griffiths A., Markowitz J., Wilson D.C., Turner D., Russell R.K., et al. Pediatric modification of the Montreal classification for inflammatory bowel disease: the Paris classification. Inflam. Bowel Dis. 2011;17(6):1314–1321. doi: 10.1002/ibd.21493. PubMed DOI

Tsiountsioura M., Wong J.E., Upton J., McIntyre K., Dimakou D., Buchanan E., et al. Detailed assessment of nutritional status and eating patterns in children with gastrointestinal diseases attending an outpatients clinic and contemporary healthy controls. Eur. J. Clin. Nutr. 2014;68(6):700–706. doi: 10.1038/ejcn.2013.286. PubMed DOI

Gerasimidis K., Bertz M., Hanske L., Junick J., Biskou O., Aguilera M., et al. Decline in presumptively protective gut bacterial species and metabolites are paradoxically associated with disease improvement in pediatric Crohn's disease during enteral nutrition. Inflam. Bowel Dis. 2014;20(5):861–871. doi: 10.1097/mib.0000000000000023. PubMed DOI

Svolos V., Hansen R., Nichols B., Quince C., Ijaz U.Z., Papadopoulou R.T., et al. Treatment of active Crohn's disease with an ordinary food-based diet that replicates exclusive enteral nutrition. Gastroenterology. 2019;156(5):1354–1367.e6. doi: 10.1053/j.gastro.2018.12.002. PubMed DOI

Jaimes J.D., Slavickova A., Hurych J., Cinek O., Nichols B., Vodolanova L., et al. Stool metabolome-microbiota evaluation among children and adolescents with obesity, overweight, and normal-weight using 1H NMR and 16S rRNA gene profiling. PLOS ONE. 2021;16(3) doi: 10.1371/journal.pone.0247378. PubMed DOI PMC

Gerasimidis K., Bertz M., Quince C., Brunner K., Bruce A., Combet E., et al. The effect of DNA extraction methodology on gut microbiota research applications. BMC Res. Notes. 2016;9:365. doi: 10.1186/s13104–016-2171-7. PubMed DOI PMC

Rognes T., Flouri T., Nichols B., Quince C., Mahé F. VSEARCH: a versatile open source tool for metagenomics. PeerJ. 2016;4 doi: 10.7717/peerj.2584. PubMed DOI PMC

Haas B.J., Gevers D., Earl A.M., Feldgarden M., Ward D.V., Giannoukos G., et al. Chimeric 16S rRNA sequence formation and detection in Sanger and 454-pyrosequenced PCR amplicons. Genome Res. 2011;21(3):494–504. doi: 10.1101/gr.112730.110. PubMed DOI PMC

Callahan B.J., McMurdie P.J., Rosen M.J., Han A.W., Johnson A.J., Holmes S.P. DADA2: high-resolution sample inference from Illumina amplicon data. Nat. Methods. 2016;13(7):581–583. doi: 10.1038/nmeth.3869. PubMed DOI PMC

Quast C., Pruesse E., Yilmaz P., Gerken J., Schweer T., Yarza P., et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 2013;41(Database issue):D590–D596. doi: 10.1093/nar/gks1219. PubMed DOI PMC

Oksanen J.B., Friendly G., Kindt M., Legendre R., McGlinn P., O'Hara D., et al. Vegan: Community Ecology Package. R package version. 2020:25–27.

Chen X., Ishwaran H. Random forests for genomic data analysis. Genomics. 2012;99(6):323–329. doi: 10.1016/j.ygeno.2012.04.003. PubMed DOI PMC

Liaw A., Wiene M. Classification and regression by random Forest. R. News. 2002;2(3):18–22.

Murphy M.A., Evans J.S., Storfer A. Quantifying Bufo boreas connectivity in Yellowstone National Park with landscape genetics. Ecology. 2010;91(1):252–261. doi: 10.1890/08-0879.1. PubMed DOI

Segain J.P., Raingeard de la Blétière D., Bourreille A., Leray V., Gervois N., Rosales C., et al. Butyrate inhibits inflammatory responses through NFκB inhibition: implications for Crohn's disease. Gut. 2000;47(3):397–403. doi: 10.1136/gut.47.3.397. PubMed DOI PMC

Gerasimidis K., Gkikas K., Stewart C., Neelis E., Svolos V. Microbiome and paediatric gut diseases. Arch. Dis. Child. 2022;107(9):784–789. doi: 10.1136/archdischild-2020-320875. PubMed DOI

Logan M., Gkikas K., Svolos V., Nichols B., Milling S., Gaya D.R., et al. Analysis of 61 exclusive enteral nutrition formulas used in the management of active Crohn's disease-new insights into dietary disease triggers. Aliment. Pharmacol. Ther. 2020;51(10):935–947. doi: 10.1111/apt.15695. PubMed DOI PMC

Svolos V., Gkikas K., Gerasimidis K. Diet and gut microbiota manipulation for the management of Crohn's disease and ulcerative colitis. Proc. Nutr. Soc. 2021;23:1–15. doi: 10.1017/S0029665121002846. PubMed DOI

Gkikas K., Logan M., Nichols B., Ijaz U.Z., Clark C.M., Svolos V., et al. Dietary triggers of gut inflammation following exclusive enteral nutrition in children with Crohn's disease: a pilot study. BMC Gastroenterol. 2021;21(1):454. doi: 10.1186/s12876-021-02029-4. PubMed DOI PMC

Armstrong H.K., Bording-Jorgensen M., Santer D.M., Zhang Z., Valcheva R., Rieger A.M., et al. Unfermented beta-fructan fibers fuel inflammation in select inflammatory bowel disease patients. Gastroenterology. 2023;164(2):228–240. doi: 10.1053/j.gastro.2022.09.034. PubMed DOI

Palmela C., Chevarin C., Xu Z., Torres J., Sevrin G., Hirten R., et al. Adherent-invasive Escherichia coli in inflammatory bowel disease. Gut. 2018;67(3):574–587. doi: 10.1136/gutjnl-2017-314903. PubMed DOI

Kolho K.L., Korpela K., Jaakkola T., Pichai M.V.A., Zoetendal E.G., Salonen A., et al. Fecal microbiota in pediatric inflammatory bowel disease and its relation to inflammation. Am. J. Gastroenterol. 2015;110(6):921–930. doi: 10.1038/ajg.2015.149. PubMed DOI

Diederen K., Li J.V., Donachie G.E., de Meij T.G., de Waart D.R., Hakvoort T.B.M., et al. Exclusive enteral nutrition mediates gut microbial and metabolic changes that are associated with remission in children with Crohn's disease. Sci. Rep. 2020;10(1) doi: 10.1038/s41598-020-75306-z. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...