Gut metabolome and microbiota signatures predict response to treatment with exclusive enteral nutrition in a prospective study in children with active Crohn's disease
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
38569785
PubMed Central
PMC11007740
DOI
10.1016/j.ajcnut.2023.12.027
PII: S0002-9165(23)66360-9
Knihovny.cz E-zdroje
- Klíčová slova
- Crohn’s disease, cytokines, exclusive enteral nutrition, metabolome, microbiome, o'link, precision therapy, short chain fatty acids,
- MeSH
- acetáty MeSH
- butyráty MeSH
- Crohnova nemoc * terapie metabolismus MeSH
- dítě MeSH
- enterální výživa MeSH
- fenylacetáty MeSH
- indukce remise MeSH
- lidé MeSH
- metabolom MeSH
- mikrobiota * MeSH
- prospektivní studie MeSH
- Check Tag
- dítě MeSH
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- acetáty MeSH
- butyráty MeSH
- fenylacetáty MeSH
BACKGROUND: Predicting response to exclusive enteral nutrition (EEN) in active Crohn's disease (CD) could lead to therapy personalization and pretreatment optimization. OBJECTIVES: This study aimed to explore the ability of pretreatment parameters to predict fecal calprotectin (FCal) levels at EEN completion in a prospective study in children with CD. METHODS: In children with active CD, clinical parameters, dietary intake, cytokines, inflammation-related blood proteomics, and diet-related metabolites, metabolomics and microbiota in feces, were measured before initiation of 8 wk of EEN. Prediction of FCal levels at EEN completion was performed using machine learning. Data are presented with medians (IQR). RESULTS: Of 37 patients recruited, 15 responded (FCal < 250 μg/g) to EEN (responders) and 22 did not (nonresponders). Clinical and immunological parameters were not associated with response to EEN. Responders had lesser (μmol/g) butyrate [responders: 13.2 (8.63-18.4) compared with nonresponders: 22.3 (12.0-32.0); P = 0.03], acetate [responders: 49.9 (46.4-68.4) compared with nonresponders: 70.4 (57.0-95.5); P = 0.027], phenylacetate [responders: 0.175 (0.013-0.611) compared with nonresponders: 0.943 (0.438-1.35); P = 0.021], and a higher microbiota richness [315 (269-347) compared with nonresponders: 243 (205-297); P = 0.015] in feces than nonresponders. Responders consumed (portions/1000 kcal/d) more confectionery products [responders: 0.55 (0.38-0.72) compared with nonresponders: 0.19 (0.01-0.38); P = 0.045]. A multicomponent model using fecal parameters, dietary data, and clinical and immunological parameters predicted response to EEN with 78% accuracy (sensitivity: 80%; specificity: 77%; positive predictive value: 71%; negative predictive value: 85%). Higher taxon abundance from Ruminococcaceae, Lachnospiraceae, and Bacteroides and phenylacetate, butyrate, and acetate were the most influential variables in predicting lack of response to EEN. CONCLUSIONS: We identify microbial signals and diet-related metabolites in feces, which could comprise targets for pretreatment optimization and personalized nutritional therapy in pediatric CD.
Civil Engineering School of Engineering University of Glasgow Glasgow United Kingdom
Department of Food Science Czech University of Life Sciences Prague Prague Czech Republic
Organisms and Ecosystems Earlham Institute Norwich United Kingdom
School of Infection and Inflammation University of Glasgow Glasgow United Kingdom
Zobrazit více v PubMed
Logan M., Clark C.M., Ijaz U.Z., Gervais L., Duncan H., Garrick V., et al. The reduction of faecal calprotectin during exclusive enteral nutrition is lost rapidly after food re-introduction. Aliment. Pharmacol. Ther. 2019;50(6):664–674. doi: 10.1111/apt.15425. PubMed DOI PMC
van Rheenen P.F., Aloi M., Assa A., Bronsky J., Escher J.C., Fagerberg U.L., et al. The medical management of paediatric Crohn's disease: an ECCO-ESPGHAN guideline update. J. Crohns Colitis. 2020;15(2):171–194. doi: 10.1093/ecco-jcc/jjaa161. PubMed DOI
Douglas G.M., Hansen R., Jones C.M.A., Dunn K.A., Comeau A.M., Bielawski J.P., et al. Multi-omics differentially classify disease state and treatment outcome in pediatric Crohn's disease. Microbiome. 2018;6(1):13. doi: 10.1186/s40168-018-0398-3. PubMed DOI PMC
Kugathasan S., Denson L.A., Walters T.D., Kim M.O., Marigorta U.M., Schirmer M., et al. Prediction of complicated disease course for children newly diagnosed with Crohn's disease: a multicentre inception cohort study. Lancet. 2017;389(10080):1710–1718. doi: 10.1016/S0140-6736(17)30317-3. PubMed DOI PMC
Levine A., Chanchlani N., Hussey S., Ziv-Baran T., Escher J.C., Dias J.A., et al. Complicated disease and response to initial therapy predicts early surgery in paediatric Crohn's disease: results from the Porto group GROWTH study. J. Crohns Colitis. 2020;14(1):71–78. doi: 10.1093/ecco-jcc/jjz111. PubMed DOI
Ricciuto A., Aardoom M., Orlanski-Meyer E., Navon D., Carman N., Aloi M., et al. Predicting outcomes in pediatric Crohn's disease for management optimization: systematic review and consensus statements from the pediatric inflammatory bowel disease-ahead program. Gastroenterology. 2021;160(1):403–436.e26. doi: 10.1053/j.gastro.2020.07.065. PubMed DOI
Gerasimidis K., Nikolaou C.K., Edwards C.A., McGrogan P. Serial fecal calprotectin changes in children with Crohn's disease on treatment with exclusive enteral nutrition: associations with disease activity, treatment response, and prediction of a clinical relapse. J. Clin. Gastroenterol. 2011;45(3):234–239. doi: 10.1097/MCG.0b013e3181f39af5. PubMed DOI
Turner D., Griffiths A.M., Walters T.D., Seah T., Markowitz J., Pfefferkorn M., et al. Mathematical weighting of the pediatric Crohn's disease activity index (PCDAI) and comparison with its other short versions. Inflam. Bowel Dis. 2012;18(1):55–62. doi: 10.1002/ibd.21649. PubMed DOI
Carman N., Tomalty D., Church P.C., Mack D.R., Benchimol E.I., Otley A.R., et al. Clinical disease activity and endoscopic severity correlate poorly in children newly diagnosed with Crohn's disease. Gastrointest. Endosc. 2019;89(2):364–372. doi: 10.1016/j.gie.2018.09.025. PubMed DOI
Zubin G., Peter L. Predicting endoscopic Crohn's disease activity before and after induction therapy in children: a comprehensive assessment of PCDAI, CRP, and fecal calprotectin. Inflam. Bowel Dis. 2015;21(6):1386–1391. doi: 10.1097/MIB.0000000000000388. PubMed DOI PMC
Mosli M.H., Zou G., Garg S.K., Feagan S.G., MacDonald J.K., Chande N., et al. C-Reactive protein, fecal calprotectin, and stool lactoferrin for detection of endoscopic activity in symptomatic inflammatory bowel disease patients: A systematic review and meta-analysis. Am. J. Gastroenterol. 2015;110(6):802–819. doi: 10.1038/ajg.2015.120. quiz 20. PubMed DOI
Levine A., Griffiths A., Markowitz J., Wilson D.C., Turner D., Russell R.K., et al. Pediatric modification of the Montreal classification for inflammatory bowel disease: the Paris classification. Inflam. Bowel Dis. 2011;17(6):1314–1321. doi: 10.1002/ibd.21493. PubMed DOI
Tsiountsioura M., Wong J.E., Upton J., McIntyre K., Dimakou D., Buchanan E., et al. Detailed assessment of nutritional status and eating patterns in children with gastrointestinal diseases attending an outpatients clinic and contemporary healthy controls. Eur. J. Clin. Nutr. 2014;68(6):700–706. doi: 10.1038/ejcn.2013.286. PubMed DOI
Gerasimidis K., Bertz M., Hanske L., Junick J., Biskou O., Aguilera M., et al. Decline in presumptively protective gut bacterial species and metabolites are paradoxically associated with disease improvement in pediatric Crohn's disease during enteral nutrition. Inflam. Bowel Dis. 2014;20(5):861–871. doi: 10.1097/mib.0000000000000023. PubMed DOI
Svolos V., Hansen R., Nichols B., Quince C., Ijaz U.Z., Papadopoulou R.T., et al. Treatment of active Crohn's disease with an ordinary food-based diet that replicates exclusive enteral nutrition. Gastroenterology. 2019;156(5):1354–1367.e6. doi: 10.1053/j.gastro.2018.12.002. PubMed DOI
Jaimes J.D., Slavickova A., Hurych J., Cinek O., Nichols B., Vodolanova L., et al. Stool metabolome-microbiota evaluation among children and adolescents with obesity, overweight, and normal-weight using 1H NMR and 16S rRNA gene profiling. PLOS ONE. 2021;16(3) doi: 10.1371/journal.pone.0247378. PubMed DOI PMC
Gerasimidis K., Bertz M., Quince C., Brunner K., Bruce A., Combet E., et al. The effect of DNA extraction methodology on gut microbiota research applications. BMC Res. Notes. 2016;9:365. doi: 10.1186/s13104–016-2171-7. PubMed DOI PMC
Rognes T., Flouri T., Nichols B., Quince C., Mahé F. VSEARCH: a versatile open source tool for metagenomics. PeerJ. 2016;4 doi: 10.7717/peerj.2584. PubMed DOI PMC
Haas B.J., Gevers D., Earl A.M., Feldgarden M., Ward D.V., Giannoukos G., et al. Chimeric 16S rRNA sequence formation and detection in Sanger and 454-pyrosequenced PCR amplicons. Genome Res. 2011;21(3):494–504. doi: 10.1101/gr.112730.110. PubMed DOI PMC
Callahan B.J., McMurdie P.J., Rosen M.J., Han A.W., Johnson A.J., Holmes S.P. DADA2: high-resolution sample inference from Illumina amplicon data. Nat. Methods. 2016;13(7):581–583. doi: 10.1038/nmeth.3869. PubMed DOI PMC
Quast C., Pruesse E., Yilmaz P., Gerken J., Schweer T., Yarza P., et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 2013;41(Database issue):D590–D596. doi: 10.1093/nar/gks1219. PubMed DOI PMC
Oksanen J.B., Friendly G., Kindt M., Legendre R., McGlinn P., O'Hara D., et al. Vegan: Community Ecology Package. R package version. 2020:25–27.
Chen X., Ishwaran H. Random forests for genomic data analysis. Genomics. 2012;99(6):323–329. doi: 10.1016/j.ygeno.2012.04.003. PubMed DOI PMC
Liaw A., Wiene M. Classification and regression by random Forest. R. News. 2002;2(3):18–22.
Murphy M.A., Evans J.S., Storfer A. Quantifying Bufo boreas connectivity in Yellowstone National Park with landscape genetics. Ecology. 2010;91(1):252–261. doi: 10.1890/08-0879.1. PubMed DOI
Segain J.P., Raingeard de la Blétière D., Bourreille A., Leray V., Gervois N., Rosales C., et al. Butyrate inhibits inflammatory responses through NFκB inhibition: implications for Crohn's disease. Gut. 2000;47(3):397–403. doi: 10.1136/gut.47.3.397. PubMed DOI PMC
Gerasimidis K., Gkikas K., Stewart C., Neelis E., Svolos V. Microbiome and paediatric gut diseases. Arch. Dis. Child. 2022;107(9):784–789. doi: 10.1136/archdischild-2020-320875. PubMed DOI
Logan M., Gkikas K., Svolos V., Nichols B., Milling S., Gaya D.R., et al. Analysis of 61 exclusive enteral nutrition formulas used in the management of active Crohn's disease-new insights into dietary disease triggers. Aliment. Pharmacol. Ther. 2020;51(10):935–947. doi: 10.1111/apt.15695. PubMed DOI PMC
Svolos V., Gkikas K., Gerasimidis K. Diet and gut microbiota manipulation for the management of Crohn's disease and ulcerative colitis. Proc. Nutr. Soc. 2021;23:1–15. doi: 10.1017/S0029665121002846. PubMed DOI
Gkikas K., Logan M., Nichols B., Ijaz U.Z., Clark C.M., Svolos V., et al. Dietary triggers of gut inflammation following exclusive enteral nutrition in children with Crohn's disease: a pilot study. BMC Gastroenterol. 2021;21(1):454. doi: 10.1186/s12876-021-02029-4. PubMed DOI PMC
Armstrong H.K., Bording-Jorgensen M., Santer D.M., Zhang Z., Valcheva R., Rieger A.M., et al. Unfermented beta-fructan fibers fuel inflammation in select inflammatory bowel disease patients. Gastroenterology. 2023;164(2):228–240. doi: 10.1053/j.gastro.2022.09.034. PubMed DOI
Palmela C., Chevarin C., Xu Z., Torres J., Sevrin G., Hirten R., et al. Adherent-invasive Escherichia coli in inflammatory bowel disease. Gut. 2018;67(3):574–587. doi: 10.1136/gutjnl-2017-314903. PubMed DOI
Kolho K.L., Korpela K., Jaakkola T., Pichai M.V.A., Zoetendal E.G., Salonen A., et al. Fecal microbiota in pediatric inflammatory bowel disease and its relation to inflammation. Am. J. Gastroenterol. 2015;110(6):921–930. doi: 10.1038/ajg.2015.149. PubMed DOI
Diederen K., Li J.V., Donachie G.E., de Meij T.G., de Waart D.R., Hakvoort T.B.M., et al. Exclusive enteral nutrition mediates gut microbial and metabolic changes that are associated with remission in children with Crohn's disease. Sci. Rep. 2020;10(1) doi: 10.1038/s41598-020-75306-z. PubMed DOI PMC