Amyloid precursor protein induces reactive astrogliosis
Language English Country Great Britain, England Media print-electronic
Document type Journal Article
Grant support
(EXCELES, LX22NPO5107 (MEYS)) (G.B.S.)
The European Union: Next Generation EU - Project National Institute for Neurological Research
J3-50104 (R.Z.)
The Slovenian Research Agency project
21-27329X (M.A.O. and L.K.)
The Czech Science Foundation GAČR
The Slovenian Research Agency Core Research Program P3 310 Cell Physiology (R.Z.)
CZ.02.1.01/0.0./15_003/0000492 (G.B.S.)
The European Regional Development MAGNET
CZ02.1.01/0.0/16_019/0000868 (G.B.S.)
The European Regional Development ENOCH
Interreg ITA-SLO ImmunoCluster-2; CipKeBip (R.Z.)
5I01BX003671 (B.P.H.)
VA Merit Award
1IK6BX006318 (B.P.H.)
VA Research Career Scientist Award
PubMed
38584589
DOI
10.1111/apha.14142
Knihovny.cz E-resources
- Keywords
- amyloid precursor protein, astrocytes, interferon pathway, lipopolysaccharide, reactive astrogliosis, traumatic brain injury,
- MeSH
- Amyloid beta-Protein Precursor * metabolism genetics MeSH
- Astrocytes * metabolism pathology MeSH
- Gliosis * metabolism pathology MeSH
- Cells, Cultured MeSH
- Mice, Inbred C57BL MeSH
- Mice, Knockout MeSH
- Mice MeSH
- Brain Injuries, Traumatic metabolism pathology MeSH
- Animals MeSH
- Check Tag
- Mice MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Amyloid beta-Protein Precursor * MeSH
AIM: Astrocytes respond to stressors by acquiring a reactive state characterized by changes in their morphology and function. Molecules underlying reactive astrogliosis, however, remain largely unknown. Given that several studies observed increase in the Amyloid Precursor Protein (APP) in reactive astrocytes, we here test whether APP plays a role in reactive astrogliosis. METHODS: We investigated whether APP instigates reactive astroglios by examining in vitro and in vivo the morphology and function of naive and APP-deficient astrocytes in response to APP and well-established stressors. RESULTS: Overexpression of APP in cultured astrocytes led to remodeling of the intermediate filament network, enhancement of cytokine production, and activation of cellular programs centered around the interferon (IFN) pathway, all signs of reactive astrogliosis. Conversely, APP deletion abrogated remodeling of the intermediate filament network and blunted expression of IFN-stimulated gene products in response to lipopolysaccharide. Following traumatic brain injury (TBI), mouse reactive astrocytes also exhibited an association between APP and IFN, while APP deletion curbed the increase in glial fibrillary acidic protein observed canonically in astrocytes in response to TBI. CONCLUSIONS: The APP thus represents a candidate molecular inducer and regulator of reactive astrogliosis. This finding has implications for understanding pathophysiology of neurodegenerative and other diseases of the nervous system characterized by reactive astrogliosis and opens potential new therapeutic avenues targeting APP and its pathways to modulate reactive astrogliosis.
Achucarro Centre for Neuroscience IIKERBASQUE Basque Foundation for Science Bilbao Spain
Celica Biomedical Technology Park Ljubljana Slovenia
Central European Institute of Technology Masaryk University Brno Czech Republic
Department of Anesthesia University of California San Diego La Jolla California USA
Department of Biology Faculty of Medicine Masaryk University Brno Czech Republic
Department of Neurosciences University of California San Diego La Jolla California USA
Faculty of Biology Medicine and Health University of Manchester Manchester UK
Faculty of Science National Centre for Biomedical Research Masaryk University Brno Czech Republic
See more in PubMed
Semyanov A, Verkhratsky A. Astrocytic processes: from tripartite synapses to the active milieu. Trends Neurosci. 2021;44(10):781‐792. doi:10.1016/j.tins.2021.07.006
Araque A, Parpura V, Sanzgiri RP, Haydon PG. Tripartite synapses: glia, the unacknowledged partner. Trends Neurosci. 1999;22(5):208‐215. doi:10.1016/s0166-2236(98)01349-6
Augusto‐Oliveira M. Astroglia‐specific contributions to the regulation of synapses, cognition and behaviour. Neurosci Biobehav Rev. 2020;118:331‐357. doi:10.1016/j.neubiorev.2020.07.039
Durkee CA, Covelo A, Lines J, Kofuji P, Aguilar J, Araque A. G(i/o) protein‐coupled receptors inhibit neurons but activate astrocytes and stimulate gliotransmission. Glia. 2019;67(6):1076‐1093. doi:10.1002/glia.23589
Südhof TC. Towards an understanding of synapse formation. Neuron. 2018;100(2):276‐293. doi:10.1016/j.neuron.2018.09.040
Andersen JaASaAV. Astrocyte energy and neurotransmitter metabolism in Alzheimer's disease: integration of the glutamate/GABA‐glutamine cycle. Prog Neurobiol. 2022;217:102331. doi:10.1016/j.pneurobio.2022.102331
Barros LF. How expensive is the astrocyte? J Cereb Blood Flow Metab. 2022;42(5):738‐745. doi:10.1177/0271678x221077343
Ghosh A, Cheung YY, Mansfield BC, Chou JY. Brain contains a functional glucose‐6‐phosphatase complex capable of endogenous glucose production. J Biol Chem. 2005;280(12):11114‐11119. doi:10.1074/jbc.M410894200
Subbarao KV, Hertz L. Effect of adrenergic agonists on glycogenolysis in primary cultures of astrocytes. Brain Res. 1990;536(1–2):220‐226. doi:10.1016/0006-8993(90)90028-a
Alvarez JI, Katayama T, Prat A. Glial influence on the blood brain barrier. Glia. 2013;61(12):1939‐1958. doi:10.1002/glia.22575
Beck DW, Vinters HV, Hart MN, Cancilla PA. Glial cells influence polarity of the blood‐brain barrier. J Neuropathol Exp Neurol. 1984;43(3):219‐224. doi:10.1097/00005072-198405000-00001
Verkhratsky A, Pivoriūnas A. Astroglia support, regulate and reinforce brain barriers. Neurobiol Dis. 2023;179:106054. doi:10.1016/j.nbd.2023.106054
Vise WM, Liss L, Yashon D, Hunt WE. Astrocytic processes: a route between vessels and neurons followingblood‐brain barrier injurt. J Neuropathol Exp Neurol. 1975;34(4):324‐334. doi:10.1097/00005072-197507000-00002
Escartin C, Galea E, Lakatos A, et al. Reactive astrocyte nomenclature, definitions, and future directions. Nat Neurosci. 2021;24(3):312‐325. doi:10.1038/s41593-020-00783-4
Verkhratsky A, Butt A, Li B, et al. Astrocytes in human central nervous system diseases: a frontier for new therapies. Signal Transduct Target Ther. 2023;8(1):396. doi:10.1038/s41392-023-01628-9
Hol EM, Pekny M. Glial fibrillary acidic protein (GFAP) and the astrocyte intermediate filament system in diseases of the central nervous system. Curr Opin Cell Biol. 2015;32:121‐130. doi:10.1016/j.ceb.2015.02.004
Rodríguez JJ, Yeh CY, Terzieva S, Olabarria M, Kulijewicz‐Nawrot M, Verkhratsky A. Complex and region‐specific changes in astroglial markers in the aging brain. Neurobiol Aging. 2014;35(1):15‐23. doi:10.1016/j.neurobiolaging.2013.07.002
Pirnat S, Božić M, Dolanc D, et al. Astrocyte arborization enhances Ca(2+) but not cAMP signaling plasticity. Glia. 2021;69(12):2899‐2916. doi:10.1002/glia.24076
Leng K, Rose IVL, Kim H, et al. CRISPRi screens in human iPSC‐derived astrocytes elucidate regulators of distinct inflammatory reactive states. Nat Neurosci. 2022;25(11):1528‐1542. doi:10.1038/s41593-022-01180-9
Liao MC, Muratore CR, Gierahn TM, et al. Single‐cell detection of secreted Abeta and sAPPalpha from human IPSC‐derived neurons and astrocytes. J Neurosci. 2016;36(5):1730‐1746. doi:10.1523/JNEUROSCI.2735-15.2016
Mathys H, Davila‐Velderrain J, Peng Z, et al. Author correction: single‐cell transcriptomic analysis of Alzheimer's disease. Nature. 2019;571(7763):E1. doi:10.1038/s41586-019-1329-6
Todd BP, Chimenti MS, Luo Z, Ferguson PJ, Bassuk AG, Newell EA. Traumatic brain injury results in unique microglial and astrocyte transcriptomes enriched for type I interferon response. J Neuroinflammation. 2021;18(1):151. doi:10.1186/s12974-021-02197-w
Zamanian JL, Xu L, Foo LC, et al. Genomic analysis of reactive astrogliosis. J Neurosci. 2012;32(18):6391‐6410. doi:10.1523/JNEUROSCI.6221-11.2012
Matejuk A, Ransohoff RM. Crosstalk between astrocytes and microglia: an overview. Front Immunol. 2020;11:1416. doi:10.3389/fimmu.2020.01416
Thelin EP, Hall CE, Tyzack GE, et al. Delineating astrocytic cytokine responses in a human stem cell model of neural trauma. J Neurotrauma. 2020;37(1):93‐105. doi:10.1089/neu.2019.6480
Božić M, Verkhratsky A, Zorec R, Stenovec M. Exocytosis of large‐diameter lysosomes mediates interferon γ‐induced relocation of MHC class II molecules toward the surface of astrocytes. Cell Mol Life Sci. 2020;77(16):3245‐3264. doi:10.1007/s00018-019-03350-8
LeBlanc AC, Chen HY, Autilio‐Gambetti L, Gambetti P. Differential APP gene expression in rat cerebral cortex, meninges, and primary astroglial, microglial and neuronal cultures. FEBS Lett. 1991;292(1–2):171‐178. doi:10.1016/0014-5793(91)80861-v
Martins RN, Taddei K, Kendall C, Evin G, Bates KA, Harvey AR. Altered expression of apolipoprotein E, amyloid precursor protein and presenilin‐1 is associated with chronic reactive gliosis in rat cortical tissue. Neuroscience. 2001;106(3):557‐569. doi:10.1016/s0306-4522(01)00289-5
Müller UC, Deller T, Korte M. Not just amyloid: physiological functions of the amyloid precursor protein family. Nat Rev Neurosci. 2017;18(5):281‐298. doi:10.1038/nrn.2017.29
Müller UC, Zheng H. Physiological functions of APP family proteins. Cold Spring Harb Perspect Med. 2012;2(2):a006288. doi:10.1101/cshperspect.a006288
Rohan de Silva HA, Jen A, Wickenden C, Jen LS, Wilkinson SL, Patel AJ. Cell‐specific expression of beta‐amyloid precursor protein isoform mRNAs and proteins in neurons and astrocytes. Brain Res Mol Brain Res. 1997;47(1–2):147‐156. doi:10.1016/s0169-328x(97)00045-4
Brugg B, Dubreuil YL, Huber G, Wollman EE, Delhaye‐Bouchaud N, Mariani J. Inflammatory processes induce beta‐amyloid precursor protein changes in mouse brain. Proc Natl Acad Sci USA. 1995;92(7):3032‐3035. doi:10.1073/pnas.92.7.3032
Hauss‐Wegrzyniak B, Dobrzanski P, Stoehr JD, Wenk GL. Chronic neuroinflammation in rats reproduces components of theneurobiology of Alzheimer's disease. Brain Res. 1998;780(2):294‐303. doi:10.1016/s0006-8993(97)01215-8
Lee JW, Lee YK, Yuk DY, et al. Neuro‐inflammation induced by lipopolysaccharide causes cognitive impairment through enhancement of beta‐amyloid generation. J Neuroinflammation. 2008;5:37. doi:10.1186/1742-2094-5-37
Kalehua AN, Taub DD, Baskar PV, et al. Aged mice exhibit greater mortality concomitant to increased brain and plasma TNF‐alpha levels following intracerebroventricular injection of lipopolysaccharide. Gerontology. 2000;46(3):115‐128. doi:10.1159/000022146
Zhao J, O'Connor T, Vassar R. The contribution of activated astrocytes to Aβ production: implications for Alzheimer's disease pathogenesis. J Neuroinflammation. 2011;8:150. doi:10.1186/1742-2094-8-150
Blasko I, Veerhuis R, Stampfer‐Kountchev M, Saurwein‐Teissl M, Eikelenboom P, Grubeck‐Loebenstein B. Costimulatory effects of interferon‐gamma and interleukin‐1beta or tumor necrosis factor alpha on the synthesis of Abeta1‐40 and Abeta1‐42 by human astrocytes. Neurobiol Dis. 2000;7(6 Pt B):682‐689. doi:10.1006/nbdi.2000.0321
Gray CW, Patel AJ. Induction of beta‐amyloid precursor protein isoform mRNAs by bFGF in astrocytes. Neuroreport. 1993;4(6):811‐814. doi:10.1097/00001756-199306000-00054
Gray CW, Patel AJ. Regulation of beta‐amyloid precursor protein isoform mRNAs by transforming growth factor‐beta 1 and interleukin‐1 beta in astrocytes. Brain Res Mol Brain Res. 1993;19(3):251‐256. doi:10.1016/0169-328x(93)90037-p
Sheng JG, Bora SH, Xu G, Borchelt DR, Price DL, Koliatsos VE. Lipopolysaccharide‐induced‐neuroinflammation increases intracellular accumulation of amyloid precursor protein and amyloid beta peptide in APPswe transgenic mice. Neurobiol Dis. 2003;14(1):133‐145. doi:10.1016/s0969-9961(03)00069-x
Burton T, Liang B, Dibrov A, Amara F. Transforming growth factor‐beta‐induced transcription of the Alzheimer beta‐amyloid precursor protein gene involves interaction between the CTCF‐complex and Smads. Biochem Biophys Res Commun. 2002;295(3):713‐723. doi:10.1016/s0006-291x(02)00725-8
Palacios G, Mengod G, Tortosa A, Ferrer I, Palacios JM. Increased beta‐amyloid precursor protein expression in astrocytes in the gerbil hippocampus following ischaemia: association with proliferation of astrocytes. Eur J Neurosci. 1995;7(3):501‐510. doi:10.1111/j.1460-9568.1995.tb00346.x
Otsuka N, Tomonaga M, Ikeda K. Rapid appearance of beta‐amyloid precursor protein immunoreactivity in damaged axons and reactive glial cells in rat brain following needle stab injury. Brain Res. 1991;568(1–2):335‐338. doi:10.1016/0006-8993(91)91422-w
Siman R, Card JP, Nelson RB, Davis LG. Expression of beta‐amyloid precursor protein in reactive astrocytes following neuronal damage. Neuron. 1989;3(3):275‐285. doi:10.1016/0896-6273(89)90252-3
Shepherd CE, Bowes S, Parkinson D, Cambray‐Deakin M, Pearson RC. Expression of amyloid precursor protein in human astrocytes in vitro: isoform‐specific increases following heat shock. Neuroscience. 2000;99(2):317‐325. doi:10.1016/s0306-4522(00)00197-4
Clarner T, Buschmann JP, Beyer C, Kipp M. Glial amyloid precursor protein expression is restricted to astrocytes in an experimental toxic model of multiple sclerosis. J Mol Neurosci. 2011;43(3):268‐274. doi:10.1007/s12031-010-9419-9
Töpper R, Gehrmann J, Banati R, et al. Rapid appearance of beta‐amyloid precursor protein immunoreactivity in glial cells following excitotoxic brain injury. Acta Neuropathol. 1995;89(1):23‐28. doi:10.1007/bf00294255
Komatsu A, Iida I, Nasu Y, et al. Ammonia induces amyloidogenesis in astrocytes by promoting amyloid precursor protein translocation into the endoplasmic reticulum. J Biol Chem. 2022;298(5):101933. doi:10.1016/j.jbc.2022.101933
Delarasse C, Auger R, Gonnord P, Fontaine B, Kanellopoulos JM. The purinergic receptor P2X7 triggers alpha‐secretase‐dependent processing of the amyloid precursor protein. J Biol Chem. 2011;286(4):2596‐2606. doi:10.1074/jbc.M110.200618
Lee RK, Araki W, Wurtman RJ. Stimulation of amyloid precursor protein synthesis by adrenergic receptors coupled to cAMP formation. Proc Natl Acad Sci USA. 1997;94(10):5422‐5426. doi:10.1073/pnas.94.10.5422
Fontana A, Weber E, Grob PJ, Lim R, Miller JF. Dual effect of glia maturation factor on astrocytes. Differentiation and release of interleukin‐1 like factors. J Neuroimmunol. 1983;5(3):261‐269. doi:10.1016/0165-5728(83)90046-2
Frei K, Bodmer S, Schwerdel C, Fontana A. Astrocyte‐derived interleukin 3 as a growth factor for microglia cells and peritoneal macrophages. J Immunol. 1986;137(11):3521‐3527.
Griffin WS, Stanley LC, Ling C, et al. Brain interleukin 1 and S‐100 immunoreactivity are elevated in Down syndrome and Alzheimer disease. Proc Natl Acad Sci USA. 1989;86(19):7611‐7615. doi:10.1073/pnas.86.19.7611
Liang Y, Raven F, Ward JF, et al. Upregulation of Alzheimer's disease amyloid‐β protein precursor in astrocytes both in vitro and in vivo. J Alzheimers Dis. 2020;76(3):1071‐1082. doi:10.3233/jad-200128
Motwani M, Pesiridis S, Fitzgerald KA. DNA sensing by the cGAS‐STING pathway in health and disease. Nat Rev Genet. 2019;20(11):657‐674. doi:10.1038/s41576-019-0151-1
Eckman CB, Mehta ND, Crook R, et al. A new pathogenic mutation in the APP gene (I716V) increases the relative proportion of A beta 42(43). Hum Mol Genet. 1997;6(12):2087‐2089. doi:10.1093/hmg/6.12.2087
Kamino K, Orr HT, Payami H, et al. Linkage and mutational analysis of familial Alzheimer disease kindreds for the APP gene region. Am J Hum Genet. 1992;51(5):998‐1014.
Kumar‐Singh S, De Jonghe C, Cruts M, et al. Nonfibrillar diffuse amyloid deposition due to a gamma(42)‐secretase site mutation points to an essential role for N‐truncated A beta(42) in Alzheimer's disease. Hum Mol Genet. 2000;9(18):2589‐2598. doi:10.1093/hmg/9.18.2589
Mullan M, Crawford F, Axelman K, et al. A pathogenic mutation for probable Alzheimer's disease in the APP gene at the N‐terminus of beta‐amyloid. Nat Genet. 1992;1(5):345‐347. doi:10.1038/ng0892-345
Peacock ML, Warren JT Jr, Roses AD, Fink JK. Novel polymorphism in the A4 region of the amyloid precursor protein gene in a patient without Alzheimer's disease. Neurology. 1993;43(6):1254‐1256. doi:10.1212/wnl.43.6.1254
Niesman IR, Schilling JM, Shapiro LA, et al. Traumatic brain injury enhances neuroinflammation and lesion volume in caveolin deficient mice. J Neuroinflammation. 2014;11:39. doi:10.1186/1742-2094-11-39
Myer DJ, Gurkoff GG, Lee SM, Hovda DA, Sofroniew MV. Essential protective roles of reactive astrocytes in traumatic brain injury. Brain. 2006;129(Pt 10):2761‐2772. doi:10.1093/brain/awl165
Rogers JT, Leiter LM, McPhee J, et al. Translation of the alzheimer amyloid precursor protein mRNA is up‐regulated by interleukin‐1 through 5′‐untranslated region sequences. J Biol Chem. 1999;274(10):6421‐6431. doi:10.1074/jbc.274.10.6421
Cieri MB, Villarreal A, Gomez‐Cuautle DD, Mailing I, Ramos AJ. Progression of reactive gliosis and astroglial phenotypic changes following stab wound‐induced traumatic brain injury in mice. J Neurochem. 2023;167(2):183‐203. doi:10.1111/jnc.15941
Lau LT, Yu AC. Astrocytes produce and release interleukin‐1, interleukin‐6, tumor necrosis factor alpha and interferon‐gamma following traumatic and metabolic injury. J Neurotrauma. 2001;18(3):351‐359. doi:10.1089/08977150151071035
Liu Y, Hong W, Gong P, et al. Specific knockout of Sox2 in astrocytes reduces reactive astrocyte formation and promotes recovery after early postnatal traumatic brain injury in mouse cortex. Glia. 2023;71(3):602‐615. doi:10.1002/glia.24298
Wangler LM, Bray CE, Packer JM, et al. Amplified gliosis and interferon‐associated inflammation in the aging brain following diffuse traumatic brain injury. J Neurosci. 2022;42(48):9082‐9096. doi:10.1523/jneurosci.1377-22.2022
Preman P, Alfonso‐Triguero M, Alberdi E, Verkhratsky A, Arranz AM. Astrocytes in Alzheimer's disease: pathological significance and molecular pathways. Cells. 2021;10(3):540. doi:10.3390/cells10030540
Preman P, Tcw J, Calafate S, et al. Human iPSC‐derived astrocytes transplanted into the mouse brain undergo morphological changes in response to amyloid‐β plaques. Mol Neurodegener. 2021;16(1):68. doi:10.1186/s13024-021-00487-8
Sanalkumar R, Vidyanand S, Lalitha Indulekha C, James J. Neuronal vs. glial fate of embryonic stem cell‐derived neural progenitors (ES‐NPs) is determined by FGF2/EGF during proliferation. J Mol Neurosci. 2010;42(1):17‐27. doi:10.1007/s12031-010-9335-z
Abu Hamdeh S, Shevchenko G, Mi J, Musunuri S, Bergquist J, Marklund N. Proteomic differences between focal and diffuse traumatic brain injury in human brain tissue. Sci Rep. 2018;8(1):6807. doi:10.1038/s41598-018-25060-0
Dozio V, Sanchez JC. Profiling the proteomic inflammatory state of human astrocytes using DIA mass spectrometry. J Neuroinflammation. 2018;15(1):331. doi:10.1186/s12974-018-1371-6
Sholl DA. Dendritic organization in the neurons of the visual and motor cortices of the cat. J Anat. 1953;87(4):387‐406. September 2023. https://www.ncbi.nlm.nih.gov/pubmed/13117757
Busciglio J, Gabuzda DH, Matsudaira P, Yankner BA. Generation of beta‐amyloid in the secretory pathway in neuronal and nonneuronal cells. Proc Natl Acad Sci USA. 1993;90(5):2092‐2096. doi:10.1073/pnas.90.5.2092
Forman MS, Cook DG, Leight S, Doms RW, Lee VM. Differential effects of the swedish mutant amyloid precursor protein on beta‐amyloid accumulation and secretion in neurons and nonneuronal cells. J Biol Chem. 1997;272(51):32247‐32253. doi:10.1074/jbc.272.51.32247
Haass C, Hung AY, Selkoe DJ. Processing of beta‐amyloid precursor protein in microglia and astrocytes favors an internal localization over constitutive secretion. J Neurosci. 1991;11(12):3783‐3793. doi:10.1523/jneurosci.11-12-03783.1991
LeBlanc AC, Xue R, Gambetti P. Amyloid precursor protein metabolism in primary cell cultures of neurons, astrocytes, and microglia. J Neurochem. 1996;66(6):2300‐2310. doi:10.1046/j.1471-4159.1996.66062300.x
Peppercorn K, Kleffmann T, Hughes SM, Tate WP. Secreted amyloid precursor protein alpha (sAPPα) regulates the cellular proteome and secretome of mouse primary astrocytes. Int J Mol Sci. 2023;24(8). doi:10.3390/ijms24087165
Mönning U, König G, Banati RB, et al. Alzheimer beta A4‐amyloid protein precursor in immunocompetent cells. J Biol Chem. 1992;267(33):23950‐23956.
Solà C, García‐Ladona FJ, Mengod G, Probst A, Frey P, Palacios JM. Increased levels of the Kunitz protease inhibitor‐containing beta APP mRNAs in rat brain following neurotoxic damage. Brain Res Mol Brain Res. 1993;17(1–2):41‐52. doi:10.1016/0169-328x(93)90071-v
Young MJ, Lee RK, Jhaveri S, Wurtman RJ. Intracellular and cell‐surface distribution of amyloid precursor protein in cortical astrocytes. Brain Res Bull. 1999;50(1):27‐32. doi:10.1016/s0361-9230(99)00084-2
Neve RL, Finch EA, Dawes LR. Expression of the Alzheimer amyloid precursor gene transcripts in the human brain. Neuron. 1988;1(8):669‐677. doi:10.1016/0896-6273(88)90166-3
Tanaka S, Nakamura S, Ueda K, et al. Three types of amyloid protein precursor mRNA in human brain: their differential expression in Alzheimer's disease. Biochem Biophys Res Commun. 1988;157(2):472‐479. doi:10.1016/s0006-291x(88)80273-0
Hu J, Akama KT, Krafft GA, Chromy BA, Van Eldik LJ. Amyloid‐beta peptide activates cultured astrocytes: morphological alterations, cytokine induction and nitric oxide release. Brain Res. 1998;785(2):195‐206. doi:10.1016/s0006-8993(97)01318-8
Johnstone M, Gearing AJ, Miller KM. A central role for astrocytes in the inflammatory response to beta‐amyloid; chemokines, cytokines and reactive oxygen species are produced. J Neuroimmunol. 1999;93(1–2):182‐193. doi:10.1016/s0165-5728(98)00226-4
LaRocca TJ, Cavalier AN, Roberts CM, et al. Amyloid beta acts synergistically as a pro‐inflammatory cytokine. Neurobiol Dis. 2021;159:105493. doi:10.1016/j.nbd.2021.105493
Leng F, Hinz R, Gentleman S, et al. Neuroinflammation is independently associated with brain network dysfunction in Alzheimer's disease. Mol Psychiatry. 2023;28(3):1303‐1311. doi:10.1038/s41380-022-01878-z
Kulijewicz‐Nawrot M, Verkhratsky A, Chvátal A, Syková E, Rodríguez JJ. Astrocytic cytoskeletal atrophy in the medial prefrontal cortex of a triple transgenic mouse model of Alzheimer's disease. J Anat. 2012;221(3):252‐262. doi:10.1111/j.1469-7580.2012.01536.x
Yeh CY, Vadhwana B, Verkhratsky A, Rodríguez JJ. Early astrocytic atrophy in the entorhinal cortex of a triple transgenic animal model of Alzheimer's disease. ASN Neuro. 2011;3(5):271‐279. doi:10.1042/an20110025
de Rivero Vaccari JP, Brand FJ 3rd, Sedaghat C, Mash DC, Dietrich WD, Keane RW. RIG‐1 receptor expression in the pathology of Alzheimer's disease. J Neuroinflammation. 2014;11:67. doi:10.1186/1742-2094-11-67
Hur JY, Frost GR, Wu X, et al. The innate immunity protein IFITM3 modulates γ‐secretase in Alzheimer's disease. Nature. 2020;586(7831):735‐740. doi:10.1038/s41586-020-2681-2
Hunter S, Brayne C. Relationships between the amyloid precursor protein and its various proteolytic fragments and neuronal systems. Alzheimers Res Ther. 2012;4(2):10. doi:10.1186/alzrt108
Webers A, Heneka MT, Gleeson PA. The role of innate immune responses and neuroinflammation in amyloid accumulation and progression of Alzheimer's disease. Immunol Cell Biol. 2020;98(1):28‐41. doi:10.1111/imcb.12301
Barish ME, Mansdorf NB, Raissdana SS. Gamma‐interferon promotes differentiation of cultured cortical and hippocampal neurons. Dev Biol. 1991;144(2):412‐423. doi:10.1016/0012-1606(91)90433-4
Bourgeade MF, Rousset S, Paulin D, Chany C. Reorganization of the cytoskeleton by interferon in MSV‐transformed cells. J Interf Res. 1981;1(2):323‐332. doi:10.1089/jir.1981.1.323
Hashioka S, McGeer EG, Miyaoka T, Wake R, Horiguchi J, McGeer PL. Interferon‐γ‐induced neurotoxicity of human astrocytes. CNS Neurol Disord Drug Targets. 2015;14(2):251‐256. doi:10.2174/1871527314666150217122305
Hovi T, Lehto VP, Virtanen I. Interferon affects the formation of adhesion plaques in human monocyte cultures. Exp Cell Res. 1985;159(2):305‐312. doi:10.1016/s0014-4827(85)80004-5
Plioplys AV. Expression of the 210 kDa neurofilament subunit in cultured central nervous system from normal and trisomy 16 mice: regulation by interferon. J Neurol Sci. 1988;85(2):209‐222. doi:10.1016/0022-510x(88)90157-8
Ulker N, Zhang X, Samuel CE. Mechanism of interferon action. I. Characterization of a 54‐kDa protein induced by gamma interferon with properties similar to a cytoskeletal component. J Biol Chem. 1987;262(35):16798‐16803.
Eckfeld C, Schoeps B, Häußler D, et al. TIMP‐1 is a novel ligand of amyloid precursor protein and triggers a proinflammatory phenotype in human monocytes. J Cell Biol. 2023;222(2):e202206095. doi:10.1083/jcb.202206095
Sondag CM, Combs CK. Amyloid precursor protein mediates proinflammatory activation of monocytic lineage cells. J Biol Chem. 2004;279(14):14456‐14463. doi:10.1074/jbc.M313747200
Sondag CM, Combs CK. Amyloid precursor protein cross‐linking stimulates beta amyloid production and pro‐inflammatory cytokine release in monocytic lineage cells. J Neurochem. 2006;97(2):449‐461. doi:10.1111/j.1471-4159.2006.03759.x
Sondag CM, Combs CK. Adhesion of monocytes to type I collagen stimulates an APP‐dependent proinflammatory signaling response and release of Abeta1‐40. J Neuroinflammation. 2010;7:22. doi:10.1186/1742-2094-7-22
Carrano A, Das P. Altered innate immune and glial cell responses to inflammatory stimuli in amyloid precursor protein knockout mice. PLoS One. 2015;10(10):e0140210. doi:10.1371/journal.pone.0140210
Sanford SAI, Miller LVC, Vaysburd M, et al. The type‐I interferon response potentiates seeded tau aggregation and exacerbates tau pathology. Alzheimers Dement. 2023;19:1013‐1025. doi:10.1002/alz.13493
Boghdadi AG, Teo L, Bourne JA. The neuroprotective role of reactive astrocytes after central nervous system injury. J Neurotrauma. 2020;37(5):681‐691. doi:10.1089/neu.2019.6938
O'Shea TM, Ao Y, Wang S, et al. Border‐forming wound repair astrocytes. bioRxiv. 2023. doi:10.1101/2023.08.25.554857
Plummer S, Van den Heuvel C, Thornton E, Corrigan F, Cappai R. The neuroprotective properties of the amyloid precursor protein following traumatic brain injury. Aging Dis. 2016;7(2):163‐179. doi:10.14336/ad.2015.0907
Luu L, Ciccotosto GD, Cappai R. The Alzheimer's disease amyloid precursor protein and its neuritogenic actions. Curr Alzheimer Res. 2021;18(10):772‐786. doi:10.2174/1567205018666211208141017
Arai N. The role of swollen astrocytes in human brain lesions after edema—an immunohistochemical study using formalin‐fixed paraffin‐embedded sections. Neurosci Lett. 1992;138(1):56‐58. doi:10.1016/0304-3940(92)90471-i
Brenner M, Johnson AB, Boespflug‐Tanguy O, Rodriguez D, Goldman JE, Messing A. Mutations in GFAP, encoding glial fibrillary acidic protein, are associated with Alexander disease. Nat Genet. 2001;27(1):117‐120. doi:10.1038/83679
De Groot CJ, Montagne L, Barten AD, Sminia P, Van Der Valk P. Expression of transforming growth factor (TGF)‐beta1, ‐beta2, and ‐beta3 isoforms and TGF‐beta type I and type II receptors in multiple sclerosis lesions and human adult astrocyte cultures. J Neuropathol Exp Neurol. 1999;58(2):174‐187. doi:10.1097/00005072-199902000-00007
Zheng H, Jiang M, Trumbauer ME, et al. beta‐Amyloid precursor protein‐deficient mice show reactive gliosis and decreased locomotor activity. Cell. 1995;81(4):525‐531. doi:10.1016/0092-8674(95)90073-x
Schneider CA, Rasband WS, Eliceiri KW. NIH Image to ImageJ: 25 years of image analysis. Nat Methods. 2012;9(7):671‐675. doi:10.1038/nmeth.2089