Convergence, plasticity, and tissue residence of regulatory T cell response via TCR repertoire prism
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
P30 CA008748
NCI NIH HHS - United States
075-15-2019-1789
Ministry of Science and Higher Education of the Russian Federation
PubMed
38591522
PubMed Central
PMC11003740
DOI
10.7554/elife.89382
PII: 89382
Knihovny.cz E-zdroje
- Klíčová slova
- CD4+ T cells, TCR repertoire, antigenic specificity, homing, immunology, inflammation, lung challenges, mouse, treg,
- MeSH
- buněčné klony MeSH
- CD4-pozitivní T-lymfocyty * MeSH
- myši MeSH
- peptidy MeSH
- receptory antigenů T-buněk genetika MeSH
- regulační T-lymfocyty * MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- peptidy MeSH
- receptory antigenů T-buněk MeSH
Suppressive function of regulatory T cells (Treg) is dependent on signaling of their antigen receptors triggered by cognate self, dietary, or microbial peptides presented on MHC II. However, it remains largely unknown whether distinct or shared repertoires of Treg TCRs are mobilized in response to different challenges in the same tissue or the same challenge in different tissues. Here we use a fixed TCRβ chain FoxP3-GFP mouse model to analyze conventional (eCD4) and regulatory (eTreg) effector TCRα repertoires in response to six distinct antigenic challenges to the lung and skin. This model shows highly 'digital' repertoire behavior with easy-to-track challenge-specific TCRα CDR3 clusters. For both eCD4 and eTreg subsets, we observe challenge-specific clonal expansions yielding homologous TCRα clusters within and across animals and exposure sites, which are also reflected in the draining lymph nodes but not systemically. Some CDR3 clusters are shared across cancer challenges, suggesting a response to common tumor-associated antigens. For most challenges, eCD4 and eTreg clonal response does not overlap. Such overlap is exclusively observed at the sites of certain tumor challenges, and not systematically, suggesting transient and local tumor-induced eCD4=>eTreg plasticity. This transition includes a dominant tumor-responding eCD4 CDR3 motif, as well as characteristic iNKT TCRα CDR3. In addition, we examine the homeostatic tissue residency of clonal eTreg populations by excluding the site of challenge from our analysis. We demonstrate that distinct CDR3 motifs are characteristic of eTreg cells residing in particular lymphatic tissues, regardless of the challenge. This observation reveals the tissue-resident, antigen-specific clonal Treg populations.
Abu Dhabi Stem Cells Center Abu Dhabi United Arab Emirates
Central European Institute of Technology Brno Czech Republic
doi: 10.1101/2023.06.15.544726 PubMed
Před aktualizacídoi: 10.7554/eLife.89382.1 PubMed
Před aktualizacídoi: 10.7554/eLife.89382.2 PubMed
Zobrazit více v PubMed
Arpaia N, Green JA, Moltedo B, Arvey A, Hemmers S, Yuan S, Treuting PM, Rudensky AY. A distinct function of regulatory T cells in tissue protection. Cell. 2015;162:1078–1089. doi: 10.1016/j.cell.2015.08.021. PubMed DOI PMC
Bacher P, Heinrich F, Stervbo U, Nienen M, Vahldieck M, Iwert C, Vogt K, Kollet J, Babel N, Sawitzki B, Schwarz C, Bereswill S, Heimesaat MM, Heine G, Gadermaier G, Asam C, Assenmacher M, Kniemeyer O, Brakhage AA, Ferreira F, Wallner M, Worm M, Scheffold A. Regulatory T cell specificity directs tolerance versus allergy against aeroantigens in humans. Cell. 2016;167:1067–1078. doi: 10.1016/j.cell.2016.09.050. PubMed DOI
Betts RJ, Prabhu N, Ho AWS, Lew FC, Hutchinson PE, Rotzschke O, Macary PA, Kemeny DM. Influenza A virus infection results in A robust, antigen-responsive, and widely disseminated Foxp3+ regulatory T cell response. Journal of Virology. 2012;86:2817–2825. doi: 10.1128/JVI.05685-11. PubMed DOI PMC
Bolotin DA, Poslavsky S, Mitrophanov I, Shugay M, Mamedov IZ, Putintseva EV, Chudakov DM. MiXCR: software for comprehensive adaptive immunity profiling. Nature Methods. 2015;12:380–381. doi: 10.1038/nmeth.3364. PubMed DOI
Bos PD, Plitas G, Rudra D, Lee SY, Rudensky AY. Transient regulatory T cell ablation deters oncogene-driven breast cancer and enhances radiotherapy. The Journal of Experimental Medicine. 2013;210:2435–2466. doi: 10.1084/jem.20130762. PubMed DOI PMC
Brincks EL, Roberts AD, Cookenham T, Sell S, Kohlmeier JE, Blackman MA, Woodland DL. Antigen-specific memory regulatory CD4+Foxp3+ T cells control memory responses to influenza virus infection. Journal of Immunology. 2013;190:3438–3446. doi: 10.4049/jimmunol.1203140. PubMed DOI PMC
Camberis M, Le Gros G, Urban J. Animal model of Nippostrongylus brasiliensis and Heligmosomoides polygyrus. Current Protocols in Immunology. 2003;Chapter 19:Unit 19.2. doi: 10.1002/0471142735.im1912s55. PubMed DOI
Campbell C, Rudensky A. Roles of regulatory T cells in tissue pathophysiology and metabolism. Cell Metabolism. 2020;31:18–25. doi: 10.1016/j.cmet.2019.09.010. PubMed DOI PMC
Crowther MD, Dolton G, Legut M, Caillaud ME, Lloyd A, Attaf M, Galloway SAE, Rius C, Farrell CP, Szomolay B, Ager A, Parker AL, Fuller A, Donia M, McCluskey J, Rossjohn J, Svane IM, Phillips JD, Sewell AK. Genome-wide CRISPR-Cas9 screening reveals ubiquitous T cell cancer targeting via the monomorphic MHC class I-related protein MR1. Nature Immunology. 2020;21:178–185. doi: 10.1038/s41590-019-0578-8. PubMed DOI PMC
Fan X, Moltedo B, Mendoza A, Davydov AN, Faire MB, Mazutis L, Sharma R, Pe’er D, Chudakov DM, Rudensky AY. CD49b defines functionally mature Treg cells that survey skin and vascular tissues. The Journal of Experimental Medicine. 2018;215:2796–2814. doi: 10.1084/jem.20181442. PubMed DOI PMC
Feng Y, van der Veeken J, Shugay M, Putintseva EV, Osmanbeyoglu HU, Dikiy S, Hoyos BE, Moltedo B, Hemmers S, Treuting P, Leslie CS, Chudakov DM, Rudensky AY. A mechanism for expansion of regulatory T-cell repertoire and its role in self-tolerance. Nature. 2015;528:132–136. doi: 10.1038/nature16141. PubMed DOI PMC
Fulton RB, Meyerholz DK, Varga SM. Foxp3+ CD4 regulatory T cells limit pulmonary immunopathology by modulating the CD8 T cell response during respiratory syncytial virus infection. Journal of Immunology. 2010;185:2382–2392. doi: 10.4049/jimmunol.1000423. PubMed DOI PMC
Izraelson M, Nakonechnaya TO, Moltedo B, Egorov ES, Kasatskaya SA, Putintseva EV, Mamedov IZ, Staroverov DB, Shemiakina II, Zakharova MY, Davydov AN, Bolotin DA, Shugay M, Chudakov DM, Rudensky AY, Britanova OV. Comparative analysis of murine T‐cell receptor repertoires. Immunology. 2018;153:133–144. doi: 10.1111/imm.12857. PubMed DOI PMC
Klein L, Kyewski B, Allen PM, Hogquist KA. Positive and negative selection of the T cell repertoire: what thymocytes see (and don’T see) Nature Reviews. Immunology. 2014;14:377–391. doi: 10.1038/nri3667. PubMed DOI PMC
Lee H-M, Bautista JL, Scott-Browne J, Mohan JF, Hsieh C-S. A broad range of self-reactivity drives thymic regulatory T cell selection to limit responses to self. Immunity. 2012;37:475–486. doi: 10.1016/j.immuni.2012.07.009. PubMed DOI PMC
Levine AG, Arvey A, Jin W, Rudensky AY. Continuous requirement for the TCR in regulatory T cell function. Nature Immunology. 2014;15:1070–1078. doi: 10.1038/ni.3004. PubMed DOI PMC
Logunova NN, Kriukova VV, Shelyakin PV, Egorov ES, Pereverzeva A, Bozhanova NG, Shugay M, Shcherbinin DS, Pogorelyy MV, Merzlyak EM, Zubov VN, Meiler J, Chudakov DM, Apt AS, Britanova OV. MHC-II alleles shape the CDR3 repertoires of conventional and regulatory naïve CD4+ T cells. PNAS. 2020;117:13659–13669. doi: 10.1073/pnas.2003170117. PubMed DOI PMC
Marrack P, Krovi SH, Silberman D, White J, Kushnir E, Nakayama M, Crooks J, Danhorn T, Leach S, Anselment R, Scott-Browne J, Gapin L, Kappler J. The somatically generated portion of T cell receptor CDR3α contributes to the MHC allele specificity of the T cell receptor. eLife. 2017;6:e30918. doi: 10.7554/eLife.30918. PubMed DOI PMC
Mehrfeld C, Zenner S, Kornek M, Lukacs-Kornek V. The contribution of non-professional antigen-presenting cells to immunity and tolerance in the liver. Frontiers in Immunology. 2018;9:635. doi: 10.3389/fimmu.2018.00635. PubMed DOI PMC
Monteiro M, Almeida CF, Caridade M, Ribot JC, Duarte J, Agua-Doce A, Wollenberg I, Silva-Santos B, Graca L. Identification of regulatory Foxp3+ invariant NKT cells induced by TGF-beta. Journal of Immunology. 2010;185:2157–2163. doi: 10.4049/jimmunol.1000359. PubMed DOI
Moreira-Teixeira L, Resende M, Devergne O, Herbeuval JP, Hermine O, Schneider E, Dy M, Cordeiro-da-Silva A, Leite-de-Moraes MC. Rapamycin combined with TGF-β converts human invariant NKT cells into suppressive Foxp3+ regulatory cells. Journal of Immunology. 2012;188:624–631. doi: 10.4049/jimmunol.1102281. PubMed DOI
Muschaweck M, Kopplin L, Ticconi F, Schippers A, Iljazovic A, Gálvez EJC, Abdallah AT, Wagner N, Costa IG, Strowig T, Pabst O. Cognate recognition of microbial antigens defines constricted CD4+ T cell receptor repertoires in the inflamed colon. Immunity. 2021;54:2565–2577. doi: 10.1016/j.immuni.2021.08.014. PubMed DOI
Pogorelyy MV, Shugay M. A framework for annotation of antigen specificities in high-throughput T-cell repertoire sequencing studies. Frontiers in Immunology. 2019;10:2159. doi: 10.3389/fimmu.2019.02159. PubMed DOI PMC
Popovic B, Golemac M, Podlech J, Zeleznjak J, Bilic-Zulle L, Lukic ML, Cicin-Sain L, Reddehase MJ, Sparwasser T, Krmpotic A, Jonjic S. IL-33/ST2 pathway drives regulatory T cell dependent suppression of liver damage upon cytomegalovirus infection. PLOS Pathogens. 2017;13:e1006345. doi: 10.1371/journal.ppat.1006345. PubMed DOI PMC
Sawant DV, Vignali DAA. Once a treg, always a treg? Immunological Reviews. 2014;259:173–191. doi: 10.1111/imr.12173. PubMed DOI PMC
Shugay M, Britanova OV, Merzlyak EM, Turchaninova MA, Mamedov IZ, Tuganbaev TR, Bolotin DA, Staroverov DB, Putintseva EV, Plevova K, Linnemann C, Shagin D, Pospisilova S, Lukyanov S, Schumacher TN, Chudakov DM. Towards error-free profiling of immune repertoires. Nature Methods. 2014;11:653–655. doi: 10.1038/nmeth.2960. PubMed DOI
Shugay M, Bagaev DV, Turchaninova MA, Bolotin DA, Britanova OV, Putintseva EV, Pogorelyy MV, Nazarov VI, Zvyagin IV, Kirgizova VI, Kirgizov KI, Skorobogatova EV, Chudakov DM. VDJtools: Unifying post-analysis of T cell receptor repertoires. PLOS Computational Biology. 2015;11:e1004503. doi: 10.1371/journal.pcbi.1004503. PubMed DOI PMC
Suffia IJ, Reckling SK, Piccirillo CA, Goldszmid RS, Belkaid Y. Infected site-restricted Foxp3+ natural regulatory T cells are specific for microbial antigens. The Journal of Experimental Medicine. 2006;203:777–788. doi: 10.1084/jem.20052056. PubMed DOI PMC
Tekguc M, Wing JB, Osaki M, Long J, Sakaguchi S. Treg-expressed CTLA-4 depletes CD80/CD86 by trogocytosis, releasing free PD-L1 on antigen-presenting cells. PNAS. 2021;118:e2023739118. doi: 10.1073/pnas.2023739118. PubMed DOI PMC
Venturi V, Kedzierska K, Price DA, Doherty PC, Douek DC, Turner SJ, Davenport MP. Sharing of T cell receptors in antigen-specific responses is driven by convergent recombination. PNAS. 2006;103:18691–18696. doi: 10.1073/pnas.0608907103. PubMed DOI PMC
Xu M, Pokrovskii M, Ding Y, Yi R, Au C, Harrison OJ, Galan C, Belkaid Y, Bonneau R, Littman DR. c-MAF-dependent regulatory T cells mediate immunological tolerance to a gut pathobiont. Nature. 2018;554:373–377. doi: 10.1038/nature25500. PubMed DOI PMC
Zegarra-Ruiz DF, Kim DV, Norwood K, Kim M, Wu W-JH, Saldana-Morales FB, Hill AA, Majumdar S, Orozco S, Bell R, Round JL, Longman RS, Egawa T, Bettini ML, Diehl GE. Thymic development of gut-microbiota-specific T cells. Nature. 2021;594:413–417. doi: 10.1038/s41586-021-03531-1. PubMed DOI PMC