Environmental drivers of increased ecosystem respiration in a warming tundra
Language English Country England, Great Britain Media print-electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
PubMed
38632407
PubMed Central
PMC11062900
DOI
10.1038/s41586-024-07274-7
PII: 10.1038/s41586-024-07274-7
Knihovny.cz E-resources
- MeSH
- Cell Respiration * MeSH
- Time Factors MeSH
- Datasets as Topic MeSH
- Nitrogen metabolism analysis MeSH
- Ecosystem * MeSH
- Global Warming * MeSH
- Carbon Cycle MeSH
- Hydrogen-Ion Concentration MeSH
- Soil chemistry MeSH
- Soil Microbiology MeSH
- Seasons MeSH
- Plants metabolism MeSH
- Temperature MeSH
- Tundra * MeSH
- Carbon metabolism analysis MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Geographicals
- Arctic Regions MeSH
- Names of Substances
- Nitrogen MeSH
- Soil MeSH
- Carbon MeSH
Arctic and alpine tundra ecosystems are large reservoirs of organic carbon1,2. Climate warming may stimulate ecosystem respiration and release carbon into the atmosphere3,4. The magnitude and persistency of this stimulation and the environmental mechanisms that drive its variation remain uncertain5-7. This hampers the accuracy of global land carbon-climate feedback projections7,8. Here we synthesize 136 datasets from 56 open-top chamber in situ warming experiments located at 28 arctic and alpine tundra sites which have been running for less than 1 year up to 25 years. We show that a mean rise of 1.4 °C [confidence interval (CI) 0.9-2.0 °C] in air and 0.4 °C [CI 0.2-0.7 °C] in soil temperature results in an increase in growing season ecosystem respiration by 30% [CI 22-38%] (n = 136). Our findings indicate that the stimulation of ecosystem respiration was due to increases in both plant-related and microbial respiration (n = 9) and continued for at least 25 years (n = 136). The magnitude of the warming effects on respiration was driven by variation in warming-induced changes in local soil conditions, that is, changes in total nitrogen concentration and pH and by context-dependent spatial variation in these conditions, in particular total nitrogen concentration and the carbon:nitrogen ratio. Tundra sites with stronger nitrogen limitations and sites in which warming had stimulated plant and microbial nutrient turnover seemed particularly sensitive in their respiration response to warming. The results highlight the importance of local soil conditions and warming-induced changes therein for future climatic impacts on respiration.
Agricultural University of Iceland Reykjavik Iceland
Amsterdam Institute for Life and Environment Vrije Universiteit Amsterdam The Netherlands
Arctic Centre University of Lapland Rovaniemi Finland
Arctic Research Centre Aarhus University Aarhus Denmark
Australian Mountain Research Facility Canberra Australian Capital Territory Australia
Biological Sciences School of Natural Sciences University of Tasmania Hobart Tasmania Australia
Bjerknes Centre for Climate Research University of Bergen Bergen Norway
Center for Ecosystem Science and Society Northern Arizona University Flagstaff AZ USA
Center for Volatile Interactions Department of Biology University of Copenhagen Copenhagen Denmark
Department of Arctic and Marine Biology UiT the Arctic University of Norway Tromsø Norway
Department of Arctic Biology University Centre in Svalbard Longyearbyen Norway
Department of Biological Sciences Dartmouth College Hanover NH USA
Department of Biological Sciences Northern Arizona University Flagstaff AZ USA
Department of Biological Sciences University of Bergen Bergen Norway
Department of Biology Norwegian University of Science and Technology Trondheim Norway
Department of Earth Sciences University of Gothenburg Gothenburg Sweden
Department of Ecology and Environmental Science Umeå University Umeå Sweden
Department of Ecology University of Innsbruck Innsbruck Austria
Department of Ecoscience Aarhus University Roskilde Denmark
Department of Environmental and Biological Sciences University of Eastern Finland Kuopio Finland
Department of Geography and Environmental Management University of Waterloo Waterloo Ontario Canada
Department of Geography University of Calgary Calgary Alberta Canada
Department of Terrestrial Ecology Norwegian Institute for Nature Research Trondheim Norway
Division of Life Sciences Korea Polar Research Institute Incheon South Korea
Ecological Sciences The James Hutton Institute Aberdeen UK
Ecology and Genetics Research Unit University of Oulu Oulu Finland
Faculty of Biological and Environmental Sciences University of Helsinki Helsinki Finland
Gothenburg Global Biodiversity Centre Gothenburg Sweden
Greenland Institute of Natural Resources Nuuk Greenland
Institute for Environmental Science and Sustainability Wilkes University Wilkes Barre PA USA
Institute of Soil Science Universität Hamburg Hamburg Germany
Korea Polar Research Institute Incheon Korea
Life and Environmental Sciences University of Iceland Reykjavík Iceland
Natural Resources Institute Finland Helsinki Finland
NORCE Climate and Environment Norwegian Research Centre AS Bergen Norway
NORCE Norwegian Research Centre AS Bjerknes Centre for Climate Research Bergen Norway
Norwegian Institute for Nature Research Bergen Norway
School of Biosciences University of Nottingham Sutton Bonington Campus Loughborough UK
School of Forest Sciences University of Eastern Finland Joensuu Finland
SEGES Innovation P S Aarhus Denmark
Swiss Federal Institute for Forest Snow and Landscape Research WSL Lausanne Switzerland
Terrestrial Ecology Section Department of Biology University of Copenhagen Copenhagen Denmark
The Ecosystems Center Marine Biological Laboratory Woods Hole MA USA
The Heathland Centre Alver Norway
University of Eastern Finland Department of Environmental and Biological Sciences Kuopio Finland
Water and development research group Aalto University Espoo Finland
See more in PubMed
Schuur EAG, et al. Permafrost and climate change: carbon cycle feedbacks from the warming arctic. Annu. Rev. Environ. Resour. 2022;47:343–371. doi: 10.1146/annurev-environ-012220-011847. DOI
Tarnocai, C. et al. Soil organic carbon pools in the northern circumpolar permafrost region. Glob. Biogeochem. Cycles10.1029/2008GB003327 (2009).
Virkkala A-M, et al. Statistical upscaling of ecosystem CO2 fluxes across the terrestrial tundra and boreal domain: regional patterns and uncertainties. Glob. Change Biol. 2021;27:4040–4059. doi: 10.1111/gcb.15659. PubMed DOI
Karhu K. Temperature sensitivity of soil respiration rates enhanced by microbial community response. Nature. 2014;513:81–83. doi: 10.1038/nature13604. PubMed DOI
Rustad LE, et al. A meta-analysis of the response of soil respiration, net nitrogen mineralization and aboveground plant growth to experimental ecosystem warming. Oecologia. 2001;126:543–562. doi: 10.1007/s004420000544. PubMed DOI
Carey JC, et al. Temperature response of soil respiration largely unaltered with experimental warming. Proc. Natl Acad. Sci. USA. 2016;113:13797–13802. doi: 10.1073/pnas.1605365113. PubMed DOI PMC
Bouskill, N. J., Riley, W. J. & Grant, R. F. Alaskan carbon–climate feedbacks will be weaker than inferred from short-term experiments. Nat. Commun.11, 5798 (2020). PubMed PMC
Schadel C, et al. Divergent patterns of experimental and model-derived permafrost ecosystem carbon dynamics in response to Arctic warming. Environ. Res. Lett. 2018;13:105002. doi: 10.1088/1748-9326/aae0ff. DOI
Lu M, et al. Responses of ecosystem carbon cycle to experimental warming: a meta-analysis. Ecology. 2013;94:726–738. doi: 10.1890/12-0279.1. PubMed DOI
Natali SM, et al. Large loss of CO2 in winter observed across the northern permafrost region. Nat. Clim. Change. 2019;9:852–857. doi: 10.1038/s41558-019-0592-8. PubMed DOI PMC
Oberbauer SF, et al. Tundra CO2 fluxes in response to experimental warming across latitudinal and moisture gradients. Ecol. Monogr. 2007;77:221–238. doi: 10.1890/06-0649. DOI
Schuur EAG, et al. Vulnerability of permafrost carbon to climate change: Implications for the global carbon cycle. Bioscience. 2008;58:701–714. doi: 10.1641/B580807. DOI
Bond-Lamberty B, Wang C, Gower ST. A global relationship between the heterotrophic and autotrophic components of soil respiration? Glob. Change Biol. 2004;10:1756–1766. doi: 10.1111/j.1365-2486.2004.00816.x. DOI
Arctic Climate Change Update 2021: Key Trends and Impacts. Summary for Policy-makers (AMAP, 2021).
Rantanen M, et al. The Arctic has warmed nearly four times faster than the globe since 1979. Commun. Earth Environ. 2022;3:168. doi: 10.1038/s43247-022-00498-3. DOI
Bouskill NJ, Riley WJ, Tang JY. Meta-analysis of high-latitude nitrogen-addition and warming studies implies ecological mechanisms overlooked by land models. Biogeosciences. 2014;11:6969–6983. doi: 10.5194/bg-11-6969-2014. DOI
van Gestel N, et al. Predicting soil carbon loss with warming. Nature. 2018;554:E4–E5. doi: 10.1038/nature25745. PubMed DOI
Hicks Pries CE, et al. Decadal warming causes a consistent and persistent shift from heterotrophic to autotrophic respiration in contrasting permafrost ecosystems. Glob. Change Biol. 2015;21:4508–4519. doi: 10.1111/gcb.13032. PubMed DOI
Dorrepaal E, et al. Carbon respiration from subsurface peat accelerated by climate warming in the subarctic. Nature. 2009;460:616–619. doi: 10.1038/nature08216. DOI
Natali SM, et al. Effects of experimental warming of air, soil and permafrost on carbon balance in Alaskan tundra. Glob. Change Biol. 2011;17:1394–1407. doi: 10.1111/j.1365-2486.2010.02303.x. DOI
Romero-Olivares AL, Allison SD, Treseder KK. Soil microbes and their response to experimental warming over time: a meta-analysis of field studies. Soil Biol. Biochem. 2017;107:32–40. doi: 10.1016/j.soilbio.2016.12.026. DOI
Wang X, et al. Soil respiration under climate warming: differential response of heterotrophic and autotrophic respiration. Glob. Change Biol. 2014;20:3229–3237. doi: 10.1111/gcb.12620. PubMed DOI
Shaver GR, et al. Global warming and terrestrial ecosystems: a conceptual framework for analysis: ecosystem responses to global warming will be complex and varied. Bioscience. 2000;50:871–882. doi: 10.1641/0006-3568(2000)050[0871:GWATEA]2.0.CO;2. DOI
Christiansen CT, et al. Enhanced summer warming reduces fungal decomposer diversity and litter mass loss more strongly in dry than in wet tundra. Glob. Change Biol. 2017;23:406–420. doi: 10.1111/gcb.13362. PubMed DOI
Scharn, R., Little, C. J., Bacon, C. D., Alatalo, J. M. & Antonelli, A. Decreased soil moisture due to warming drives phylogenetic diversity and community transitions in the tundra. Environ. Res. Lett.16, 064031 (2021).
Schuur EAG, et al. Climate change and the permafrost carbon feedback. Nature. 2015;520:171–179. doi: 10.1038/nature14338. PubMed DOI
Pold, G., Baillargeon, N., Lepe, A., Rastetter, E. B. & Sistla, S. A. Warming effects on arctic tundra biogeochemistry are limited but habitat-dependent: a meta-analysis. Ecosphere12, e03777 (2021).
Elmendorf SC, et al. Plot-scale evidence of tundra vegetation change and links to recent summer warming. Nat. Clim. Change. 2012;2:453–457. doi: 10.1038/nclimate1465. DOI
Jeanbille, M. et al. Site-specific responses of fungal and bacterial abundances to experimental warming in litter and soil across Arctic and alpine tundra. Arct. Sci.10.1139/as-2020-0053 (2021).
Bjorkman AD, et al. Plant functional trait change across a warming tundra biome. Nature. 2018;562:57–62. doi: 10.1038/s41586-018-0563-7. PubMed DOI
Nyberg M, Hovenden MJ. Warming increases soil respiration in a carbon-rich soil without changing microbial respiratory potential. Biogeosciences. 2020;17:4405–4420. doi: 10.5194/bg-17-4405-2020. DOI
Keuper F, et al. Carbon loss from northern circumpolar permafrost soils amplified by rhizosphere priming. Nat. Geosci. 2020;13:560–565. doi: 10.1038/s41561-020-0607-0. DOI
Shaver AGR, Street LE, Rastetter EB, Van Wijk MT, Williams M. Functional convergence in regulation of net CO2 flux in heterogeneous tundra landscapes in Alaska and Sweden. J. Ecol. 2007;95:802–817. doi: 10.1111/j.1365-2745.2007.01259.x. DOI
Conant RT, et al. Sensitivity of organic matter decomposition to warming varies with its quality. Glob. Change Biol. 2008;14:868–877. doi: 10.1111/j.1365-2486.2008.01541.x. DOI
Bao, T., Zhu, R., Li, X., Ye, W. & Cheng, X. Effects of multiple environmental variables on tundra ecosystem respiration in maritime Antarctica. Sci Rep.8, 12336 (2018). PubMed PMC
Stuart Chapin F, III, et al. The changing global carbon cycle: linking plant–soil carbon dynamics to global consequences. J. Ecol. 2009;97:840–850. doi: 10.1111/j.1365-2745.2009.01529.x. DOI
Allison SD, Romero-Olivares AL, Lu Y, Taylor JW, Treseder KK. Temperature sensitivities of extracellular enzyme Vmax and Km across thermal environments. Glob. Change Biol. 2018;24:2884–2897. doi: 10.1111/gcb.14045. PubMed DOI
Davidson EA, Janssens IA. Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature. 2006;440:165–173. doi: 10.1038/nature04514. PubMed DOI
Bao, T., Jia, G. & Xu, X. Weakening greenhouse gas sink of pristine wetlands under warming. Nat. Clim. Change10.1038/s41558-023-01637-0 (2023).
Giesler R, Esberg C, Lagerström A, Graae BJ. Phosphorus availability and microbial respiration across different tundra vegetation types. Biogeochemistry. 2012;108:429–445. doi: 10.1007/s10533-011-9609-8. DOI
Mekonnen, Z. A., Riley, W. J. & Grant, R. F. 21st century tundra shrubification could enhance net carbon uptake of North America Arctic tundra under an RCP8.5 climate trajectory. Environ. Res. Lett.13, 054029 (2018).
Parker TC, et al. Rhizosphere allocation by canopy-forming species dominates soil CO2 efflux in a subarctic landscape. New Phytol. 2020;227:1818–1830. doi: 10.1111/nph.16573. PubMed DOI
Sistla SA, et al. Long-term warming restructures Arctic tundra without changing net soil carbon storage. Nature. 2013;497:615–617. doi: 10.1038/nature12129. PubMed DOI
Marion GM, et al. Open-top designs for manipulating field temperature in high-latitude ecosystems. Glob. Change Biol. 1997;3:20–32. doi: 10.1111/j.1365-2486.1997.gcb136.x. DOI
Wu Z, Dijkstra P, Koch GW, Peñuelas J, Hungate BA. Responses of terrestrial ecosystems to temperature and precipitation change: a meta-analysis of experimental manipulation. Glob. Change Biol. 2011;17:927–942. doi: 10.1111/j.1365-2486.2010.02302.x. DOI
Hedges LV. Distribution theory for Glass’s estimator of effect size and related estimators. J. Educ. Stat. 1981;6:107–128. doi: 10.3102/10769986006002107. DOI
Dijkstra, F. A., Carrillo, Y., Pendall, E. & Morgan, J. A. Rhizosphere priming: a nutrient perspective. Front. Microbiol.4, 216 (2013). PubMed PMC
Feng J, Zhu B. Global patterns and associated drivers of priming effect in response to nutrient addition. Soil Biol. Biochem. 2021;153:108118. doi: 10.1016/j.soilbio.2020.108118. DOI
Yin H, et al. Enhanced root exudation stimulates soil nitrogen transformations in a subalpine coniferous forest under experimental warming. Glob. Change Biol. 2013;19:2158–2167. doi: 10.1111/gcb.12161. PubMed DOI
Jiang Z, Liu Y, Yang J, Zhou Z, Gunina A. Effects of nitrogen fertilization on the rhizosphere priming. Plant Soil. 2021;462:489–503. doi: 10.1007/s11104-021-04872-6. DOI
Terrer C, et al. Ecosystem responses to elevated CO2 governed by plant–soil interactions and the cost of nitrogen acquisition. New Phytol. 2018;217:507–522. doi: 10.1111/nph.14872. PubMed DOI
IPCC: Summary for Policymakers. In Climate Change 2022: Impacts, Adaptation and Vulnerability (eds Pörtner, H.-O. et al.) (Cambridge Univ. Press, 2022).
Blume-Werry G, Milbau A, Teuber LM, Johansson M, Dorrepaal E. Dwelling in the deep—strongly increased root growth and rooting depth enhance plant interactions with thawing permafrost soil. New Phytol. 2019;223:1328–1339. doi: 10.1111/nph.15903. PubMed DOI
Voigt C, et al. Warming of subarctic tundra increases emissions of all three important greenhouse gases—carbon dioxide, methane and nitrous oxide. Glob. Change Biol. 2017;23:3121–3138. doi: 10.1111/gcb.13563. PubMed DOI
Li F, et al. Warming effects on methane fluxes differ between two alpine grasslands with contrasting soil water status. Agric. For. Meteorol. 2020;290:107988. doi: 10.1016/j.agrformet.2020.107988. DOI
Björk RG, et al. Linkages between N turnover and plant community structure in a tundra landscape. Plant Soil. 2007;294:247–261. doi: 10.1007/s11104-007-9250-4. DOI
Sullivan BW, Hart SC. Evaluation of mechanisms controlling the priming of soil carbon along a substrate age gradient. Soil Biol. Biochem. 2013;58:293–301. doi: 10.1016/j.soilbio.2012.12.007. DOI
Milcu A, Heim A, Ellis RJ, Scheu S, Manning P. Identification of general patterns of nutrient and labile carbon control on soil carbon dynamics across a successional gradient. Ecosystems. 2011;14:710–719. doi: 10.1007/s10021-011-9440-z. DOI
Metcalfe DB, et al. Patchy field sampling biases understanding of climate change impacts across the Arctic. Nat. Ecol. Evol. 2018;2:1443–1448. doi: 10.1038/s41559-018-0612-5. PubMed DOI
Björkman, M. P. et al. Winter carbon dioxide effluxes from arctic ecosystems: an overview and comparison of methodologies. Global Biogeochem. Cycles10.1029/2009GB003667 (2010).
Blok D, Elberling B, Michelsen A. Initial stages of tundra shrub litter decomposition maybe accelerated by deeper winter snow but slowed down by spring warming. Ecosystems. 2016;19:155–169. doi: 10.1007/s10021-015-9924-3. DOI
Morgner E, Elberling B, Strebel D, Cooper EJ. The importance of winter in annual ecosystem respiration in the High Arctic: effects of snow depth in two vegetation types. Polar Res. 2010;29:58–74. doi: 10.1111/j.1751-8369.2010.00151.x. DOI
Qian H, Joseph R, Zeng N. Enhanced terrestrial carbon uptake in the northern high latitudes in the 21st century from the Coupled Carbon Cycle Climate Model Intercomparison Project model projections. Glob. Change Biol. 2010;16:641–656. doi: 10.1111/j.1365-2486.2009.01989.x. DOI
Melillo JM, et al. Long-term pattern and magnitude of soil carbon feedback to the climate system in a warming world. Science. 2017;358:101–105. doi: 10.1126/science.aan2874. PubMed DOI
Hicks Pries CE, Schuur EAG, Natali SM, Crummer KG. Old soil carbon losses increase with ecosystem respiration in experimentally thawed tundra. Nat. Clim. Change. 2016;6:214–218. doi: 10.1038/nclimate2830. DOI
Hicks Pries CE, Schuur EAG, Crummer KG. Thawing permafrost increases old soil and autotrophic respiration in tundra: partitioning ecosystem respiration using δ13C and {increment}14C. Glob. Change Biol. 2013;19:649–661. doi: 10.1111/gcb.12058. PubMed DOI
Wei, D. et al. Plant uptake of CO2 outpaces losses from permafrost and plant respiration on the Tibetan Plateau. Proc. Natl Acad. Sci. USA118, e2015283118 (2021). PubMed PMC
Henry GHR, Molau U. Tundra plants and climate change: the international tundra experiment (ITEX) Glob. Change Biol. 1997;3:1–9. doi: 10.1111/j.1365-2486.1997.gcb132.x. DOI
Rousseeuw, P. J. & Hubert, M. Robust statistics for outlier detection. WIREs Data Mining Knowl. Discov.1, 73–79 (2011).
Borenstein, M., Hedges, L. V., Higgins, J. P. T. & Rothstein, H. R. Introduction to Meta-analysis (Wiley, 2009).
Walker DA, et al. The Circumpolar Arctic vegetation map. J. Veg. Sci. 2005;16:267–282. doi: 10.1111/j.1654-1103.2005.tb02365.x. DOI
R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2021) .
Viechtbauer W. Conducting meta-analyses in R with the metafor. J. Stat. Softw. 2010;36:1–48. doi: 10.18637/jss.v036.i03. DOI
Hedges LV, Gurevitch J, Curtis PS. The meta-analysis of response ratios in experimental ecology. Ecology. 1999;80:1150–1156. doi: 10.1890/0012-9658(1999)080[1150:TMAORR]2.0.CO;2. DOI
Konstantopoulos S. Fixed effects and variance components estimation in three‐level meta‐analysis. Res. Synth. Methods. 2011;2:61–76. doi: 10.1002/jrsm.35. PubMed DOI
Nakagawa S, Santos ESA. Methodological issues and advances in biological meta-analysis. Evol. Ecol. 2012;26:1253–1274. doi: 10.1007/s10682-012-9555-5. DOI
I shak KJ, Platt RW, Joseph L, Hanley JA, Caro JJ. Meta-analysis of longitudinal studies. Clin. Trials. 2007;4:525–539. doi: 10.1177/1740774507083567. PubMed DOI
Trikalinos TA, Olkin I. Meta-analysis of effect sizes reported at multiple time points: a multivariate approach. Clin. Trials. 2012;9:610–620. doi: 10.1177/1740774512453218. PubMed DOI
Signorini, M., Midolo, G., Cesco, S., Mimmo, T. & Borruso, L. A Matter of metals: copper but not cadmium affects the microbial alpha-diversity of soils and sediments—a meta-analysis. Microb. Ecol.10.1007/s00248-022-02115-4 (2022). PubMed PMC
Jenkins DG, et al. A meta-analysis of isolation by distance: relic or reference standard for landscape genetics? Ecography. 2010;33:315–320. doi: 10.1111/j.1600-0587.2010.06285.x. DOI
Vaessen, T. et al. The association between self-reported stress and cardiovascular measures in daily life: a systematic review. PLoS ONE10.1371/journal.pone.0259557 (2021). PubMed PMC
Raue A, et al. Structural and practical identifiability analysis of partially observed dynamical models by exploiting the profile likelihood. Bioinformatics. 2009;25:1923–1929. doi: 10.1093/bioinformatics/btp358. PubMed DOI
Jennions MD, Møller AP. Publication bias in ecology and evolution: an empirical assessment using the ‘trim and fill’ method. Biol. Rev. 2002;77:211–222. doi: 10.1017/S1464793101005875. PubMed DOI
Testolin R, Attorre F, Jiménez-Alfaro B. Global distribution and bioclimatic characterization of alpine biomes. Ecography. 2020;43:779–788. doi: 10.1111/ecog.05012. DOI
Poggio L, et al. SoilGrids 2.0: producing soil information for the globe with quantified spatial uncertainty. SOIL. 2021;7:217–240. doi: 10.5194/soil-7-217-2021. DOI
Warner, D. L., Bond-Lamberty, B. P., Jian, J., Stell, E. & Vargas, R. Global Gridded 1-km Annual Soil Respiration and Uncertainty Derived from SRDB V3 (ORNL DAAC, 2019); 10.3334/ORNLDAAC/1736.
Huntingford, C. et al. Implications of improved representations of plant respiration in a changing climate. Nat. Commun.8, 1602 (2017). PubMed PMC
Dataset for “Environmental drivers of increased ecosystem respiration in a warming tundra”. Zenodo10.5281/zenodo.10572479 (2024). PubMed PMC
Scripts for “Environmental drivers of increasd ecosystem respiration in a warming tundra”. GitHubhttps://github.com/mjalava/tundraflux (2024). PubMed PMC