Environmental drivers of increased ecosystem respiration in a warming tundra

. 2024 May ; 629 (8010) : 105-113. [epub] 20240417

Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid38632407
Odkazy

PubMed 38632407
PubMed Central PMC11062900
DOI 10.1038/s41586-024-07274-7
PII: 10.1038/s41586-024-07274-7
Knihovny.cz E-zdroje

Arctic and alpine tundra ecosystems are large reservoirs of organic carbon1,2. Climate warming may stimulate ecosystem respiration and release carbon into the atmosphere3,4. The magnitude and persistency of this stimulation and the environmental mechanisms that drive its variation remain uncertain5-7. This hampers the accuracy of global land carbon-climate feedback projections7,8. Here we synthesize 136 datasets from 56 open-top chamber in situ warming experiments located at 28 arctic and alpine tundra sites which have been running for less than 1 year up to 25 years. We show that a mean rise of 1.4 °C [confidence interval (CI) 0.9-2.0 °C] in air and 0.4 °C [CI 0.2-0.7 °C] in soil temperature results in an increase in growing season ecosystem respiration by 30% [CI 22-38%] (n = 136). Our findings indicate that the stimulation of ecosystem respiration was due to increases in both plant-related and microbial respiration (n = 9) and continued for at least 25 years (n = 136). The magnitude of the warming effects on respiration was driven by variation in warming-induced changes in local soil conditions, that is, changes in total nitrogen concentration and pH and by context-dependent spatial variation in these conditions, in particular total nitrogen concentration and the carbon:nitrogen ratio. Tundra sites with stronger nitrogen limitations and sites in which warming had stimulated plant and microbial nutrient turnover seemed particularly sensitive in their respiration response to warming. The results highlight the importance of local soil conditions and warming-induced changes therein for future climatic impacts on respiration.

Agricultural University of Iceland Reykjavik Iceland

Amsterdam Institute for Life and Environment Vrije Universiteit Amsterdam The Netherlands

Arctic Centre University of Lapland Rovaniemi Finland

Arctic Research Centre Aarhus University Aarhus Denmark

Australian Mountain Research Facility Canberra Australian Capital Territory Australia

Biological Sciences School of Natural Sciences University of Tasmania Hobart Tasmania Australia

Bjerknes Centre for Climate Research University of Bergen Bergen Norway

Carbone Boréal Département des Sciences Fondamentales Université du Québec à Chicoutimi Chicoutimi Quebec Canada

Center for Ecosystem Science and Society Northern Arizona University Flagstaff AZ USA

Center for Permafrost Department of Geosciences and Natural Resource Management University of Copenhagen Copenhagen Denmark

Center for Volatile Interactions Department of Biology University of Copenhagen Copenhagen Denmark

Climate Impacts Research Centre Department of Ecology and Environmental Science Umeå University Abisko Sweden

Department of Arctic and Marine Biology Faculty of Biosciences Fisheries and Economics The Arctic University of Norway Tromsø Norway

Department of Arctic and Marine Biology UiT the Arctic University of Norway Tromsø Norway

Department of Arctic Biology University Centre in Svalbard Longyearbyen Norway

Department of Biological Sciences Dartmouth College Hanover NH USA

Department of Biological Sciences Northern Arizona University Flagstaff AZ USA

Department of Biological Sciences University of Bergen Bergen Norway

Department of Biology Norwegian University of Science and Technology Trondheim Norway

Department of Chemistry Life Sciences and Environmental Sustainability University of Parma Parma Italy

Department of Earth Sciences University of Gothenburg Gothenburg Sweden

Department of Ecology and Environmental Science Umeå University Umeå Sweden

Department of Ecology University of Innsbruck Innsbruck Austria

Department of Ecoscience Aarhus University Roskilde Denmark

Department of Environmental and Biological Sciences University of Eastern Finland Kuopio Finland

Department of Forest Mycology and Plant Pathology Swedish University of Agricultural Sciences Uppsala Sweden

Department of Geography and Environmental Management University of Waterloo Waterloo Ontario Canada

Department of Geography University of Calgary Calgary Alberta Canada

Department of Spatial Sciences Faculty of Environmental Sciences Czech University of Life Sciences Prague Praha Suchdol Czech Republic

Department of Terrestrial Ecology Norwegian Institute for Nature Research Trondheim Norway

Department of Wildland Resources Quinney College of Natural Resources and Ecology Center Utah State University Logan UT USA

Division of Life Sciences Korea Polar Research Institute Incheon South Korea

Ecological Sciences The James Hutton Institute Aberdeen UK

Ecology and Genetics Research Unit University of Oulu Oulu Finland

Faculty of Biological and Environmental Sciences University of Helsinki Helsinki Finland

Forest Ecology and Management Group Department of Earth and Environmental Sciences KU Leuven Leuven Belgium

Gjærevoll Centre for Biodiversity Foresight Analyses and Department of Biology Norwegian University of Science and Technology Trondheim Norway

Gothenburg Global Biodiversity Centre Gothenburg Sweden

Greenland Institute of Natural Resources Nuuk Greenland

Institute for Environmental Science and Sustainability Wilkes University Wilkes Barre PA USA

Institute of Ecology College of Urban and Environmental Sciences Key Laboratory for Earth Surface Processes of the Ministry of Education Peking University Beijing China

Institute of Soil Science Universität Hamburg Hamburg Germany

Korea Polar Research Institute Incheon Korea

Life and Environmental Sciences University of Iceland Reykjavík Iceland

Natural Resources Institute Finland Helsinki Finland

NORCE Climate and Environment Norwegian Research Centre AS Bergen Norway

NORCE Norwegian Research Centre AS Bjerknes Centre for Climate Research Bergen Norway

Norwegian Institute for Nature Research Bergen Norway

Research Centre for Ecological Change Organismal and Evolutionary Biology Research Programme Faculty of Biological and Environmental Sciences University of Helsinki Helsinki Finland

School of Biosciences University of Nottingham Sutton Bonington Campus Loughborough UK

School of Forest Sciences University of Eastern Finland Joensuu Finland

SEGES Innovation P S Aarhus Denmark

State Key Laboratory of Herbage Improvement and Grassland Agro Ecosystems and College of Pastoral Agriculture Science and Technology Lanzhou University Lanzhou China

State Key Laboratory of Vegetation and Environmental Change Institute of Botany Chinese Academy of Sciences Beijing China

Swiss Federal Institute for Forest Snow and Landscape Research WSL Lausanne Switzerland

Terrestrial Ecology Section Department of Biology University of Copenhagen Copenhagen Denmark

The Ecosystems Center Marine Biological Laboratory Woods Hole MA USA

The Heathland Centre Alver Norway

University of Eastern Finland Department of Environmental and Biological Sciences Kuopio Finland

Water and development research group Aalto University Espoo Finland

Zobrazit více v PubMed

Schuur EAG, et al. Permafrost and climate change: carbon cycle feedbacks from the warming arctic. Annu. Rev. Environ. Resour. 2022;47:343–371. doi: 10.1146/annurev-environ-012220-011847. DOI

Tarnocai, C. et al. Soil organic carbon pools in the northern circumpolar permafrost region. Glob. Biogeochem. Cycles10.1029/2008GB003327 (2009).

Virkkala A-M, et al. Statistical upscaling of ecosystem CO2 fluxes across the terrestrial tundra and boreal domain: regional patterns and uncertainties. Glob. Change Biol. 2021;27:4040–4059. doi: 10.1111/gcb.15659. PubMed DOI

Karhu K. Temperature sensitivity of soil respiration rates enhanced by microbial community response. Nature. 2014;513:81–83. doi: 10.1038/nature13604. PubMed DOI

Rustad LE, et al. A meta-analysis of the response of soil respiration, net nitrogen mineralization and aboveground plant growth to experimental ecosystem warming. Oecologia. 2001;126:543–562. doi: 10.1007/s004420000544. PubMed DOI

Carey JC, et al. Temperature response of soil respiration largely unaltered with experimental warming. Proc. Natl Acad. Sci. USA. 2016;113:13797–13802. doi: 10.1073/pnas.1605365113. PubMed DOI PMC

Bouskill, N. J., Riley, W. J. & Grant, R. F. Alaskan carbon–climate feedbacks will be weaker than inferred from short-term experiments. Nat. Commun.11, 5798 (2020). PubMed PMC

Schadel C, et al. Divergent patterns of experimental and model-derived permafrost ecosystem carbon dynamics in response to Arctic warming. Environ. Res. Lett. 2018;13:105002. doi: 10.1088/1748-9326/aae0ff. DOI

Lu M, et al. Responses of ecosystem carbon cycle to experimental warming: a meta-analysis. Ecology. 2013;94:726–738. doi: 10.1890/12-0279.1. PubMed DOI

Natali SM, et al. Large loss of CO2 in winter observed across the northern permafrost region. Nat. Clim. Change. 2019;9:852–857. doi: 10.1038/s41558-019-0592-8. PubMed DOI PMC

Oberbauer SF, et al. Tundra CO2 fluxes in response to experimental warming across latitudinal and moisture gradients. Ecol. Monogr. 2007;77:221–238. doi: 10.1890/06-0649. DOI

Schuur EAG, et al. Vulnerability of permafrost carbon to climate change: Implications for the global carbon cycle. Bioscience. 2008;58:701–714. doi: 10.1641/B580807. DOI

Bond-Lamberty B, Wang C, Gower ST. A global relationship between the heterotrophic and autotrophic components of soil respiration? Glob. Change Biol. 2004;10:1756–1766. doi: 10.1111/j.1365-2486.2004.00816.x. DOI

Arctic Climate Change Update 2021: Key Trends and Impacts. Summary for Policy-makers (AMAP, 2021).

Rantanen M, et al. The Arctic has warmed nearly four times faster than the globe since 1979. Commun. Earth Environ. 2022;3:168. doi: 10.1038/s43247-022-00498-3. DOI

Bouskill NJ, Riley WJ, Tang JY. Meta-analysis of high-latitude nitrogen-addition and warming studies implies ecological mechanisms overlooked by land models. Biogeosciences. 2014;11:6969–6983. doi: 10.5194/bg-11-6969-2014. DOI

van Gestel N, et al. Predicting soil carbon loss with warming. Nature. 2018;554:E4–E5. doi: 10.1038/nature25745. PubMed DOI

Hicks Pries CE, et al. Decadal warming causes a consistent and persistent shift from heterotrophic to autotrophic respiration in contrasting permafrost ecosystems. Glob. Change Biol. 2015;21:4508–4519. doi: 10.1111/gcb.13032. PubMed DOI

Dorrepaal E, et al. Carbon respiration from subsurface peat accelerated by climate warming in the subarctic. Nature. 2009;460:616–619. doi: 10.1038/nature08216. DOI

Natali SM, et al. Effects of experimental warming of air, soil and permafrost on carbon balance in Alaskan tundra. Glob. Change Biol. 2011;17:1394–1407. doi: 10.1111/j.1365-2486.2010.02303.x. DOI

Romero-Olivares AL, Allison SD, Treseder KK. Soil microbes and their response to experimental warming over time: a meta-analysis of field studies. Soil Biol. Biochem. 2017;107:32–40. doi: 10.1016/j.soilbio.2016.12.026. DOI

Wang X, et al. Soil respiration under climate warming: differential response of heterotrophic and autotrophic respiration. Glob. Change Biol. 2014;20:3229–3237. doi: 10.1111/gcb.12620. PubMed DOI

Shaver GR, et al. Global warming and terrestrial ecosystems: a conceptual framework for analysis: ecosystem responses to global warming will be complex and varied. Bioscience. 2000;50:871–882. doi: 10.1641/0006-3568(2000)050[0871:GWATEA]2.0.CO;2. DOI

Christiansen CT, et al. Enhanced summer warming reduces fungal decomposer diversity and litter mass loss more strongly in dry than in wet tundra. Glob. Change Biol. 2017;23:406–420. doi: 10.1111/gcb.13362. PubMed DOI

Scharn, R., Little, C. J., Bacon, C. D., Alatalo, J. M. & Antonelli, A. Decreased soil moisture due to warming drives phylogenetic diversity and community transitions in the tundra. Environ. Res. Lett.16, 064031 (2021).

Schuur EAG, et al. Climate change and the permafrost carbon feedback. Nature. 2015;520:171–179. doi: 10.1038/nature14338. PubMed DOI

Pold, G., Baillargeon, N., Lepe, A., Rastetter, E. B. & Sistla, S. A. Warming effects on arctic tundra biogeochemistry are limited but habitat-dependent: a meta-analysis. Ecosphere12, e03777 (2021).

Elmendorf SC, et al. Plot-scale evidence of tundra vegetation change and links to recent summer warming. Nat. Clim. Change. 2012;2:453–457. doi: 10.1038/nclimate1465. DOI

Jeanbille, M. et al. Site-specific responses of fungal and bacterial abundances to experimental warming in litter and soil across Arctic and alpine tundra. Arct. Sci.10.1139/as-2020-0053 (2021).

Bjorkman AD, et al. Plant functional trait change across a warming tundra biome. Nature. 2018;562:57–62. doi: 10.1038/s41586-018-0563-7. PubMed DOI

Nyberg M, Hovenden MJ. Warming increases soil respiration in a carbon-rich soil without changing microbial respiratory potential. Biogeosciences. 2020;17:4405–4420. doi: 10.5194/bg-17-4405-2020. DOI

Keuper F, et al. Carbon loss from northern circumpolar permafrost soils amplified by rhizosphere priming. Nat. Geosci. 2020;13:560–565. doi: 10.1038/s41561-020-0607-0. DOI

Shaver AGR, Street LE, Rastetter EB, Van Wijk MT, Williams M. Functional convergence in regulation of net CO2 flux in heterogeneous tundra landscapes in Alaska and Sweden. J. Ecol. 2007;95:802–817. doi: 10.1111/j.1365-2745.2007.01259.x. DOI

Conant RT, et al. Sensitivity of organic matter decomposition to warming varies with its quality. Glob. Change Biol. 2008;14:868–877. doi: 10.1111/j.1365-2486.2008.01541.x. DOI

Bao, T., Zhu, R., Li, X., Ye, W. & Cheng, X. Effects of multiple environmental variables on tundra ecosystem respiration in maritime Antarctica. Sci Rep.8, 12336 (2018). PubMed PMC

Stuart Chapin F, III, et al. The changing global carbon cycle: linking plant–soil carbon dynamics to global consequences. J. Ecol. 2009;97:840–850. doi: 10.1111/j.1365-2745.2009.01529.x. DOI

Allison SD, Romero-Olivares AL, Lu Y, Taylor JW, Treseder KK. Temperature sensitivities of extracellular enzyme Vmax and Km across thermal environments. Glob. Change Biol. 2018;24:2884–2897. doi: 10.1111/gcb.14045. PubMed DOI

Davidson EA, Janssens IA. Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature. 2006;440:165–173. doi: 10.1038/nature04514. PubMed DOI

Bao, T., Jia, G. & Xu, X. Weakening greenhouse gas sink of pristine wetlands under warming. Nat. Clim. Change10.1038/s41558-023-01637-0 (2023).

Giesler R, Esberg C, Lagerström A, Graae BJ. Phosphorus availability and microbial respiration across different tundra vegetation types. Biogeochemistry. 2012;108:429–445. doi: 10.1007/s10533-011-9609-8. DOI

Mekonnen, Z. A., Riley, W. J. & Grant, R. F. 21st century tundra shrubification could enhance net carbon uptake of North America Arctic tundra under an RCP8.5 climate trajectory. Environ. Res. Lett.13, 054029 (2018).

Parker TC, et al. Rhizosphere allocation by canopy-forming species dominates soil CO2 efflux in a subarctic landscape. New Phytol. 2020;227:1818–1830. doi: 10.1111/nph.16573. PubMed DOI

Sistla SA, et al. Long-term warming restructures Arctic tundra without changing net soil carbon storage. Nature. 2013;497:615–617. doi: 10.1038/nature12129. PubMed DOI

Marion GM, et al. Open-top designs for manipulating field temperature in high-latitude ecosystems. Glob. Change Biol. 1997;3:20–32. doi: 10.1111/j.1365-2486.1997.gcb136.x. DOI

Wu Z, Dijkstra P, Koch GW, Peñuelas J, Hungate BA. Responses of terrestrial ecosystems to temperature and precipitation change: a meta-analysis of experimental manipulation. Glob. Change Biol. 2011;17:927–942. doi: 10.1111/j.1365-2486.2010.02302.x. DOI

Hedges LV. Distribution theory for Glass’s estimator of effect size and related estimators. J. Educ. Stat. 1981;6:107–128. doi: 10.3102/10769986006002107. DOI

Dijkstra, F. A., Carrillo, Y., Pendall, E. & Morgan, J. A. Rhizosphere priming: a nutrient perspective. Front. Microbiol.4, 216 (2013). PubMed PMC

Feng J, Zhu B. Global patterns and associated drivers of priming effect in response to nutrient addition. Soil Biol. Biochem. 2021;153:108118. doi: 10.1016/j.soilbio.2020.108118. DOI

Yin H, et al. Enhanced root exudation stimulates soil nitrogen transformations in a subalpine coniferous forest under experimental warming. Glob. Change Biol. 2013;19:2158–2167. doi: 10.1111/gcb.12161. PubMed DOI

Jiang Z, Liu Y, Yang J, Zhou Z, Gunina A. Effects of nitrogen fertilization on the rhizosphere priming. Plant Soil. 2021;462:489–503. doi: 10.1007/s11104-021-04872-6. DOI

Terrer C, et al. Ecosystem responses to elevated CO2 governed by plant–soil interactions and the cost of nitrogen acquisition. New Phytol. 2018;217:507–522. doi: 10.1111/nph.14872. PubMed DOI

IPCC: Summary for Policymakers. In Climate Change 2022: Impacts, Adaptation and Vulnerability (eds Pörtner, H.-O. et al.) (Cambridge Univ. Press, 2022).

Blume-Werry G, Milbau A, Teuber LM, Johansson M, Dorrepaal E. Dwelling in the deep—strongly increased root growth and rooting depth enhance plant interactions with thawing permafrost soil. New Phytol. 2019;223:1328–1339. doi: 10.1111/nph.15903. PubMed DOI

Voigt C, et al. Warming of subarctic tundra increases emissions of all three important greenhouse gases—carbon dioxide, methane and nitrous oxide. Glob. Change Biol. 2017;23:3121–3138. doi: 10.1111/gcb.13563. PubMed DOI

Li F, et al. Warming effects on methane fluxes differ between two alpine grasslands with contrasting soil water status. Agric. For. Meteorol. 2020;290:107988. doi: 10.1016/j.agrformet.2020.107988. DOI

Björk RG, et al. Linkages between N turnover and plant community structure in a tundra landscape. Plant Soil. 2007;294:247–261. doi: 10.1007/s11104-007-9250-4. DOI

Sullivan BW, Hart SC. Evaluation of mechanisms controlling the priming of soil carbon along a substrate age gradient. Soil Biol. Biochem. 2013;58:293–301. doi: 10.1016/j.soilbio.2012.12.007. DOI

Milcu A, Heim A, Ellis RJ, Scheu S, Manning P. Identification of general patterns of nutrient and labile carbon control on soil carbon dynamics across a successional gradient. Ecosystems. 2011;14:710–719. doi: 10.1007/s10021-011-9440-z. DOI

Metcalfe DB, et al. Patchy field sampling biases understanding of climate change impacts across the Arctic. Nat. Ecol. Evol. 2018;2:1443–1448. doi: 10.1038/s41559-018-0612-5. PubMed DOI

Björkman, M. P. et al. Winter carbon dioxide effluxes from arctic ecosystems: an overview and comparison of methodologies. Global Biogeochem. Cycles10.1029/2009GB003667 (2010).

Blok D, Elberling B, Michelsen A. Initial stages of tundra shrub litter decomposition maybe accelerated by deeper winter snow but slowed down by spring warming. Ecosystems. 2016;19:155–169. doi: 10.1007/s10021-015-9924-3. DOI

Morgner E, Elberling B, Strebel D, Cooper EJ. The importance of winter in annual ecosystem respiration in the High Arctic: effects of snow depth in two vegetation types. Polar Res. 2010;29:58–74. doi: 10.1111/j.1751-8369.2010.00151.x. DOI

Qian H, Joseph R, Zeng N. Enhanced terrestrial carbon uptake in the northern high latitudes in the 21st century from the Coupled Carbon Cycle Climate Model Intercomparison Project model projections. Glob. Change Biol. 2010;16:641–656. doi: 10.1111/j.1365-2486.2009.01989.x. DOI

Melillo JM, et al. Long-term pattern and magnitude of soil carbon feedback to the climate system in a warming world. Science. 2017;358:101–105. doi: 10.1126/science.aan2874. PubMed DOI

Hicks Pries CE, Schuur EAG, Natali SM, Crummer KG. Old soil carbon losses increase with ecosystem respiration in experimentally thawed tundra. Nat. Clim. Change. 2016;6:214–218. doi: 10.1038/nclimate2830. DOI

Hicks Pries CE, Schuur EAG, Crummer KG. Thawing permafrost increases old soil and autotrophic respiration in tundra: partitioning ecosystem respiration using δ13C and {increment}14C. Glob. Change Biol. 2013;19:649–661. doi: 10.1111/gcb.12058. PubMed DOI

Wei, D. et al. Plant uptake of CO2 outpaces losses from permafrost and plant respiration on the Tibetan Plateau. Proc. Natl Acad. Sci. USA118, e2015283118 (2021). PubMed PMC

Henry GHR, Molau U. Tundra plants and climate change: the international tundra experiment (ITEX) Glob. Change Biol. 1997;3:1–9. doi: 10.1111/j.1365-2486.1997.gcb132.x. DOI

Rousseeuw, P. J. & Hubert, M. Robust statistics for outlier detection. WIREs Data Mining Knowl. Discov.1, 73–79 (2011).

Borenstein, M., Hedges, L. V., Higgins, J. P. T. & Rothstein, H. R. Introduction to Meta-analysis (Wiley, 2009).

Walker DA, et al. The Circumpolar Arctic vegetation map. J. Veg. Sci. 2005;16:267–282. doi: 10.1111/j.1654-1103.2005.tb02365.x. DOI

R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2021) .

Viechtbauer W. Conducting meta-analyses in R with the metafor. J. Stat. Softw. 2010;36:1–48. doi: 10.18637/jss.v036.i03. DOI

Hedges LV, Gurevitch J, Curtis PS. The meta-analysis of response ratios in experimental ecology. Ecology. 1999;80:1150–1156. doi: 10.1890/0012-9658(1999)080[1150:TMAORR]2.0.CO;2. DOI

Konstantopoulos S. Fixed effects and variance components estimation in three‐level meta‐analysis. Res. Synth. Methods. 2011;2:61–76. doi: 10.1002/jrsm.35. PubMed DOI

Nakagawa S, Santos ESA. Methodological issues and advances in biological meta-analysis. Evol. Ecol. 2012;26:1253–1274. doi: 10.1007/s10682-012-9555-5. DOI

I shak KJ, Platt RW, Joseph L, Hanley JA, Caro JJ. Meta-analysis of longitudinal studies. Clin. Trials. 2007;4:525–539. doi: 10.1177/1740774507083567. PubMed DOI

Trikalinos TA, Olkin I. Meta-analysis of effect sizes reported at multiple time points: a multivariate approach. Clin. Trials. 2012;9:610–620. doi: 10.1177/1740774512453218. PubMed DOI

Signorini, M., Midolo, G., Cesco, S., Mimmo, T. & Borruso, L. A Matter of metals: copper but not cadmium affects the microbial alpha-diversity of soils and sediments—a meta-analysis. Microb. Ecol.10.1007/s00248-022-02115-4 (2022). PubMed PMC

Jenkins DG, et al. A meta-analysis of isolation by distance: relic or reference standard for landscape genetics? Ecography. 2010;33:315–320. doi: 10.1111/j.1600-0587.2010.06285.x. DOI

Vaessen, T. et al. The association between self-reported stress and cardiovascular measures in daily life: a systematic review. PLoS ONE10.1371/journal.pone.0259557 (2021). PubMed PMC

Raue A, et al. Structural and practical identifiability analysis of partially observed dynamical models by exploiting the profile likelihood. Bioinformatics. 2009;25:1923–1929. doi: 10.1093/bioinformatics/btp358. PubMed DOI

Jennions MD, Møller AP. Publication bias in ecology and evolution: an empirical assessment using the ‘trim and fill’ method. Biol. Rev. 2002;77:211–222. doi: 10.1017/S1464793101005875. PubMed DOI

Testolin R, Attorre F, Jiménez-Alfaro B. Global distribution and bioclimatic characterization of alpine biomes. Ecography. 2020;43:779–788. doi: 10.1111/ecog.05012. DOI

Poggio L, et al. SoilGrids 2.0: producing soil information for the globe with quantified spatial uncertainty. SOIL. 2021;7:217–240. doi: 10.5194/soil-7-217-2021. DOI

Warner, D. L., Bond-Lamberty, B. P., Jian, J., Stell, E. & Vargas, R. Global Gridded 1-km Annual Soil Respiration and Uncertainty Derived from SRDB V3 (ORNL DAAC, 2019); 10.3334/ORNLDAAC/1736.

Huntingford, C. et al. Implications of improved representations of plant respiration in a changing climate. Nat. Commun.8, 1602 (2017). PubMed PMC

Dataset for “Environmental drivers of increased ecosystem respiration in a warming tundra”. Zenodo10.5281/zenodo.10572479 (2024). PubMed PMC

Scripts for “Environmental drivers of increasd ecosystem respiration in a warming tundra”. GitHubhttps://github.com/mjalava/tundraflux (2024). PubMed PMC

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Environmental drivers of increased ecosystem respiration in a warming tundra

. 2024 May ; 629 (8010) : 105-113. [epub] 20240417

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...