New Salicylanilide Derivatives and Their Peptide Conjugates as Anticancer Compounds: Synthesis, Characterization, and In Vitro Effect on Glioblastoma
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
38645331
PubMed Central
PMC11024950
DOI
10.1021/acsomega.3c05727
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
Pharmacologically active salicylanilides (2-hydroxy-N-phenylbenzamides) have been a promising area of interest in medicinal chemistry-related research for quite some time. This group of compounds has shown a wide spectrum of biological activities, including but not limited to anticancer effects. In this study, substituted salicylanilides were chosen to evaluate the in vitro activity on U87 human glioblastoma (GBM) cells. The parent salicylanilide, salicylanilide 5-chloropyrazinoates, a 4-aminosalicylic acid derivative, and the new salicylanilide 4-formylbenzoates were chemically and in vitro characterized. To enhance the internalization of the compounds, they were conjugated to delivery peptides with the formation of oxime bonds. Oligotuftsins ([TKPKG]n, n = 1-4), the ligands of neuropilin receptors, were used as GBM-targeting carrier peptides. The in vitro cellular uptake, intracellular localization, and penetration ability on tissue-mimicking models of the fluorescent peptide derivatives were determined. The compounds and their peptide conjugates significantly decreased the viability of U87 glioma cells. Salicylanilide compound-induced GBM cell death was associated with activation of autophagy, as characterized by immunodetection of autophagy-related processing of light chain 3 protein.
Institute of Biology Doctoral School of Biology Eötvös Loránd University Budapest 1117 Hungary
Institute of Physics Department of Biological Physics Eötvös Loránd University Budapest 1117 Hungary
Research Centre for Natural Sciences Institute of Enzymology Budapest 1053 Hungary
Zobrazit více v PubMed
Holland E. C. Glioblastoma multiforme: the terminator. Proc. Natl. Acad. Sci. U.S.A. 2000, 97, 6242–6244. 10.1073/pnas.97.12.6242. PubMed DOI PMC
Adamson C.; Kanu O. O.; Mehta A. I.; Di C.; Lin N.; Mattox A. K.; Bigner D. D. Glioblastoma multiforme: a review of where we have been and where we are going. Expert Opin. Invest. Drugs 2009, 18, 1061–1083. 10.1517/13543780903052764. PubMed DOI
Kanu O. O.; Mehta A.; Di C.; Lin N.; Bortoff K.; Bigner D. D.; Yan H.; Adamson D. C. Glioblastoma multiforme: a review of therapeutic targets. Expert Opin. Ther. Targets 2009, 13, 701–718. 10.1517/14728220902942348. PubMed DOI
Alifieris C.; Trafalis D. T. Glioblastoma multiforme: Pathogenesis and treatment. Pharmacol. Ther. 2015, 152, 63–82. 10.1016/j.pharmthera.2015.05.005. PubMed DOI
Hanif F.; Muzaffar K.; Perveen K.; Malhi S. M.; Simjee S. U. Glioblastoma Multiforme: A Review of its Epidemiology and Pathogenesis through Clinical Presentation and Treatment. Asian Pac J. Cancer Prev. 2017, 18, 3–9. 10.22034/APJCP.2017.18.1.3. PubMed DOI PMC
Batash R.; Asna N.; Schaffer P.; Francis N.; Schaffer M. Glioblastoma Multiforme, Diagnosis and Treatment; Recent Literature Review. Curr. Med. Chem. 2017, 24, 3002–3009. 10.2174/0929867324666170516123206. PubMed DOI
Stupp R.; Mason W. P.; van den Bent M. J.; Weller M.; Fisher B.; Taphoorn M. J. B.; Belanger K.; Brandes A. A.; Marosi C.; Bogdahn U.; Curschmann J.; Janzer R. C.; Ludwin S. K.; Gorlia T.; Allgeier A.; Lacombe D.; Cairncross J. G.; Eisenhauer E.; Mirimanoff R. O. Radiotherapy plus concomitant and adjuvant Temozolomide for glioblastoma. N. Engl. J. Med. 2005, 352, 987–996. 10.1056/nejmoa043330. PubMed DOI
Weller M.; Wick W.; Aldape K.; Brada M.; Berger M.; Pfister S. M.; Nishikawa R.; Rosenthal M.; Wen P. Y.; Stupp R.; Reifenberger G. Glioma. Nat. Rev. Dis. Primers 2015, 1, 15017.10.1038/nrdp.2015.17. PubMed DOI
Eyler C. E.; Rich J. N. Survival of the fittest: cancer stem cells in therapeutic resistance and angiogenesis. J. Clin. Oncol. 2008, 26, 2839–2845. 10.1200/JCO.2007.15.1829. PubMed DOI PMC
Wicha M. S.; Liu S.; Dontu G. Cancer stem cells: an old idea-a paradigm shift. Cancer Res. 2006, 66, 1883–1890. 10.1158/0008-5472.CAN-05-3153. PubMed DOI
Alves T. R.; Lima F. R. S.; Kahn S. A.; Lobo D.; Dubois L. G. F.; Soletti R.; Borges H.; Neto V. M. Glioblastoma cells: a heterogeneous and fatal tumor interacting with the parenchyma. Life Sci. 2011, 89, 532–539. 10.1016/j.lfs.2011.04.022. PubMed DOI
Shergalis A.; Bankhead A. 3rd; Luesakul U.; Muangsin N.; Neamati N. Current Challenges and Opportunities in Treating Glioblastoma. Pharmacol. Rev. 2018, 70, 412–445. 10.1124/pr.117.014944. PubMed DOI PMC
Kim H. J.; Kim D.-Y. Present and Future of Anti-Glioblastoma Therapies: A Deep Look into Molecular Dependencies/Features. Molecules 2020, 25, 4641.10.3390/molecules25204641. PubMed DOI PMC
Levy J. M. M.; Towers C. G.; Thorburn A. Targeting autophagy in cancer. Nat. Rev. Cancer 2017, 17, 528–542. 10.1038/nrc.2017.53. PubMed DOI PMC
Nazio F.; Bordi M.; Cianfanelli V.; Locatelli F.; Cecconi F. Autophagy and cancer stem cells: molecular mechanisms and therapeutic applications. Cell Death Differ. 2019, 26, 690–702. 10.1038/s41418-019-0292-y. PubMed DOI PMC
Rahman M. A.; Saha S. K.; Rahman M. S.; Uddin M. J.; Uddin M. S.; Pang M.-G.; Rhim H.; Cho S.-G. Molecular Insights Into Therapeutic Potential of Autophagy Modulation by Natural Products for Cancer Stem Cells. Front. Cell Dev. Biol. 2020, 8, 283.10.3389/fcell.2020.00283. PubMed DOI PMC
Rahman M. A.; Hannan M. A.; Dash R.; Rahman M. H.; Islam R.; Uddin M. J.; Sohag A. A. M.; Rahman M. H.; Rhim H. Phytochemicals as a Complement to Cancer Chemotherapy: Pharmacological Modulation of the Autophagy-Apoptosis Pathway. Front. Pharmacol 2021, 12, 639628.10.3389/fphar.2021.639628. PubMed DOI PMC
Jandrey E. H. F.; Bezerra M.; Inoue L. T.; Furnari F. B.; Camargo A. A.; Costa E. T. A Key Pathway to Cancer Resilience: The Role of Autophagy in Glioblastomas. Front. Oncol. 2021, 11, 652133.10.3389/fonc.2021.652133. PubMed DOI PMC
Buzun K.; Gornowicz A.; Lesyk R.; Bielawski K.; Bielawska A. Autophagy Modulators in Cancer Therapy. Int. J. Mol. Sci. 2021, 22, 5804.10.3390/ijms22115804. PubMed DOI PMC
Mizushima N. Autophagy: process and function. Genes Dev. 2007, 21, 2861–2873. 10.1101/gad.1599207. PubMed DOI
Hayat M. A.Chapter 1 - Overview of Autophagy. In Autophagy: Cancer, Other Pathologies, Inflammation, Immunity, Infection, and Aging; Hayat M. A., Ed.; Academic Press: San Diego, 2016, pp 1–71.
Li W. W.; Li J.; Bao J. K. Microautophagy: lesser-known self-eating. Cell. Mol. Life Sci. 2012, 69, 1125–1136. 10.1007/s00018-011-0865-5. PubMed DOI PMC
Cuervo A. M.; Wong E. Chaperone-mediated autophagy: roles in disease and aging. Cell. Res. 2014, 24, 92–104. 10.1038/cr.2013.153. PubMed DOI PMC
Noda N. N. Atg2 and Atg9: Intermembrane and interleaflet lipid transporters driving autophagy. Biochim. Biophys. Acta, Mol. Cell Biol. Lipids 2021, 1866, 158956.10.1016/j.bbalip.2021.158956. PubMed DOI
Tanida I.; Ueno T.; Kominami E. LC3 and Autophagy. Methods Mol. Biol. 2008, 445, 77–88. 10.1007/978-1-59745-157-4_4. PubMed DOI
Yoshii S. R.; Mizushima N. Monitoring and Measuring Autophagy. Int. J. Mol. Sci. 2017, 18, 1865.10.3390/ijms18091865. PubMed DOI PMC
Glick D.; Barth S.; Macleod K. F. Autophagy: cellular and molecular mechanisms. J. Pathol. 2010, 221, 3–12. 10.1002/path.2697. PubMed DOI PMC
Ma Y.Chapter 13 - Role of Autophagy in Cancer Therapy. In Autophagy: Cancer, Other Pathologies, Inflammation, Immunity, Infection, and Aging; Hayat M. A., Ed.; Academic Press: San Diego, 2016, pp 231–251.
Liu H.; He Z.; Simon H.-U.. Chapter 14 - The Role of Autophagy in Cancer and Chemotherapy. In Autophagy: Cancer, Other Pathologies, Inflammation, Immunity, Infection, and Aging; Hayat M. A., Ed.; Academic Press: San Diego, 2016, pp 253–265.
Janji B.; Viry E.; Mgrditchian T.; Arakelian T.; Medves S.; Berchem G.. Chapter 15 - Autophagy Activation in the Tumor Microenvironment: A Major Process in Shaping the Antitumor Immune Response. In Autophagy: Cancer, Other Pathologies, Inflammation, Immunity, Infection, and Aging; Hayat M. A., Ed.; Academic Press: San Diego, 2016, pp 267–290.
Shen S.; Codogno P.. Chapter 7 - The Role of Autophagy in Cell Death. In Autophagy: Cancer, Other Pathologies, Inflammation, Immunity, Infection, and Aging; Hayat M. A., Ed.; Academic Press: San Diego, 2016, pp 139–154.
Doherty J.; Baehrecke E. H. Life, death and autophagy. Nat. Cell Biol. 2018, 20, 1110–1117. 10.1038/s41556-018-0201-5. PubMed DOI PMC
Koukourakis M. I.; Mitrakas A. G.; Giatromanolaki A. Therapeutic interactions of autophagy with radiation and Temozolomide in glioblastoma: evidence and issues to resolve. Br. J. Cancer 2016, 114, 485–496. 10.1038/bjc.2016.19. PubMed DOI PMC
Huang H.; Song J.; Liu Z.; Pan L.; Xu G. Autophagy activation promotes bevacizumab resistance in glioblastoma by suppressing Akt/mTOR signaling pathway. Oncol. Lett. 2018, 15, 1487–1494. 10.3892/ol.2017.7446. PubMed DOI PMC
Golden E. B.; Cho H. Y.; Jahanian A.; Hofman F. M.; Louie S. G.; Schonthal A. H.; Chen T. C. Chloroquine enhances Temozolomide cytotoxicity in malignant gliomas by blocking autophagy. Neurosurg. Focus. 2014, 37, E1210.3171/2014.9.FOCUS14504. PubMed DOI
Jiang H.; Gomez-Manzano C.; Aoki H.; Alonso M. M.; Kondo S.; McCormick F.; Xu J.; Kondo Y.; Bekele B. N.; Colman H.; Lang F. F.; Fueyo J. Examination of the therapeutic potential of Delta-24-RGD in brain tumor stem cells: role of autophagic cell death. J. Natl. Cancer Inst. 2007, 99, 1410–1414. 10.1093/jnci/djm102. PubMed DOI
Jiang Y.; Jiao Y.; Liu Y.; Zhang M.; Wang Z.; Li Y.; Li T.; Zhao X.; Wang D. Sinomenine Hydrochloride Inhibits the Metastasis of Human Glioblastoma Cells by Suppressing the Expression of Matrix Metalloproteinase-2/-9 and Reversing the Endogenous and Exogenous Epithelial-Mesenchymal Transition. Int. J. Mol. Sci. 2018, 19, 844.10.3390/ijms19030844. PubMed DOI PMC
Rahman M. A.; Bishayee K.; Habib K.; Sadra A.; Huh S.-O. 18α-Glycyrrhetinic acid lethality for neuroblastoma cells via de-regulating the Beclin-1/Bcl-2 complex and inducing apoptosis. Biochem. Pharmacol. 2016, 117, 97–112. 10.1016/j.bcp.2016.08.006. PubMed DOI
Luo G.-X.; Cai J.; Lin J.-Z.; Luo W.-S.; Luo H.-S.; Jiang Y.-Y.; Zhang Y. Autophagy inhibition promotes gambogic acid-induced suppression of growth and apoptosis in glioblastoma cells. Asian Pac. J. Cancer Prev. 2012, 13, 6211–6216. 10.7314/APJCP.2012.13.12.6211. PubMed DOI
Liu Y.; Chen Y.; Lin L.; Li H. Gambogic Acid as a Candidate for Cancer Therapy: A Review. Int. J. Nanomed. 2020, 15, 10385–10399. 10.2147/IJN.S277645. PubMed DOI PMC
Rahman M. A.; Hwang H.; Nah S.-Y.; Rhim H. Gintonin stimulates autophagic flux in primary cortical astrocytes. J. Ginseng Res. 2020, 44, 67–78. 10.1016/j.jgr.2018.08.004. PubMed DOI PMC
Jovanović Stojanov S.; Kostić A.; Ljujić M.; Lupšić E.; Schenone S.; Pešić M.; Dinić J. Autophagy Inhibition Enhances Anti-Glioblastoma Effects of Pyrazolo[3,4-d]pyrimidine Tyrosine Kinase Inhibitors. Life 2022, 12, 1503.10.3390/life12101503. PubMed DOI PMC
Jiang J.; Zhang L.; Chen H.; Lei Y.; Zhang T.; Wang Y.; Jin P.; Lan J.; Zhou L.; Huang Z.; Li B.; Liu Y.; Gao W.; Xie K.; Zhou L.; Nice E. C.; Peng Y.; Cao Y.; Wei Y.; Wang K.; Huang C. Regorafenib induces lethal autophagy arrest by stabilizing PSAT1 in glioblastoma. Autophagy 2020, 16, 106–122. 10.1080/15548627.2019.1598752. PubMed DOI PMC
Johannessen T.-C.; Hasan-Olive M. M.; Zhu H.; Denisova O.; Grudic A.; Latif M. A.; Saed H.; Varughese J. K.; Rosland G. V.; Yang N.; Sundstrom T.; Nordal A.; Tronstad K. J.; Wang J.; Lund-Johansen M.; Simonsen A.; Janji B.; Westermarck J.; Bjerkvig R.; Prestegarden L. Thioridazine inhibits autophagy and sensitizes glioblastoma cells to Temozolomide. Int. J. Cancer 2019, 144, 1735–1745. 10.1002/ijc.31912. PubMed DOI
Palumbo P.; Lombardi F.; Augello F. R.; Giusti I.; Dolo V.; Leocata P.; Cifone M. G.; Cinque B. Biological effects of selective COX-2 inhibitor NS398 on human glioblastoma cell lines. Cancer Cell Int. 2020, 20, 167.10.1186/s12935-020-01250-7. PubMed DOI PMC
Matteoni S.; Matarrese P.; Ascione B.; Ricci-Vitiani L.; Pallini R.; Villani V.; Pace A.; Paggi M. G.; Abbruzzese C. Chlorpromazine induces cytotoxic autophagy in glioblastoma cells via endoplasmic reticulum stress and unfolded protein response. J. Exp. Clin. Cancer Res. 2021, 40, 347.10.1186/s13046-021-02144-w. PubMed DOI PMC
Liu T.; Li A.; Xu Y.; Xin Y. Momelotinib sensitizes glioblastoma cells to Temozolomide by enhancement of autophagy via JAK2/STAT3 inhibition. Oncol. Rep. 2019, 41, 1883–1892. 10.3892/or.2019.6970. PubMed DOI
Zielke S.; Meyer N.; Mari M.; Abou-El-Ardat K.; Reggiori F.; van Wijk S. J. L.; Kögel D.; Fulda S. Loperamide, pimozide, and STF-62247 trigger autophagy-dependent cell death in glioblastoma cells. Cell Death Dis. 2018, 9, 994.10.1038/s41419-018-1003-1. PubMed DOI PMC
Yuan B.; Shimada R.; Xu K.; Han L.; Si N.; Zhao H.; Bian B.; Hayashi H.; Okazaki M.; Takagi N. Multiple cytotoxic effects of gamabufotalin against human glioblastoma cell line U-87. Chem. Biol. Interact. 2019, 314, 108849.10.1016/j.cbi.2019.108849. PubMed DOI
Zhu Y.; Fang J.; Wang H.; Fei M.; Tang T.; Liu K.; Niu W.; Zhou Y. Baicalin suppresses proliferation, migration, and invasion in human glioblastoma cells via Ca(2+)-dependent pathway. Drug Des. Dev. Ther. 2018, 12, 3247–3261. 10.2147/DDDT.S176403. PubMed DOI PMC
Park K.-R.; Jeong Y. H.; Lee J. Y.; Kwon I. K.; Yun H.-M. Anti-tumor effects of jaceosidin on apoptosis, autophagy, and necroptosis in human glioblastoma multiforme. Am. J. Cancer Res. 2021, 11, 4919–4930. PubMed PMC
Lee J. E.; Yoon S. S.; Moon E. Y. Curcumin-Induced Autophagy Augments Its Antitumor Effect against A172 Human Glioblastoma Cells. Biomol. Ther. 2019, 27, 484–491. 10.4062/biomolther.2019.107. PubMed DOI PMC
Bai Z.-L.; Tay V.; Guo S.-Z.; Ren J.; Shu M.-G. Silibinin Induced Human Glioblastoma Cell Apoptosis Concomitant with Autophagy through Simultaneous Inhibition of mTOR and YAP. Biomed. Res. Int. 2018, 2018, 1–10. 10.1155/2018/6165192. PubMed DOI PMC
Taylor M. A.; Khathayer F.; Ray S. K. Quercetin and Sodium Butyrate Synergistically Increase Apoptosis in Rat C6 and Human T98G Glioblastoma Cells Through Inhibition of Autophagy. Neurochem. Res. 2019, 44, 1715–1725. 10.1007/s11064-019-02802-8. PubMed DOI
Silva V. A. O.; Rosa M. N.; Miranda-Gonçalves V.; Costa A. M.; Tansini A.; Evangelista A. F.; Martinho O.; Carloni A. C.; Jones C.; Lima J. P.; Pianowski L. F.; Reis R. M. Euphol, a tetracyclic triterpene, from Euphorbia tirucalli induces autophagy and sensitizes Temozolomide cytotoxicity on glioblastoma cells. Invest. New Drugs 2019, 37, 223–237. 10.1007/s10637-018-0620-y. PubMed DOI
Zhou N.; Wei Z.; Qi Z.; Chen L. Abscisic Acid-Induced Autophagy Selectively via MAPK/JNK Signalling Pathway in Glioblastoma. Cell. Mol. Neurobiol. 2021, 41, 813–826. 10.1007/s10571-020-00888-1. PubMed DOI PMC
Cheng Y.; Xie P. Ganoderic acid A holds promising cytotoxicity on human glioblastoma mediated by incurring apoptosis and autophagy and inactivating PI3K/AKT signaling pathway. J. Biochem. Mol. Toxicol. 2019, 33, e2239210.1002/jbt.22392. PubMed DOI
Qu H.; Song X.; Song Z.; Jiang X.; Gao X.; Bai L.; Wu J.; Na L.; Yao Z. Berberine reduces Temozolomide resistance by inducing autophagy via the ERK1/2 signaling pathway in glioblastoma. Cancer Cell Int. 2020, 20, 592.10.1186/s12935-020-01693-y. PubMed DOI PMC
Dong Q.; Wang D.; Li L.; Wang J.; Li Q.; Duan L.; Yin H.; Wang X.; Liu Y.; Yuan G.; Pan Y. Biochanin A Sensitizes Glioblastoma to Temozolomide by Inhibiting Autophagy. Mol. Neurobiol. 2022, 59, 1262–1272. 10.1007/s12035-021-02674-6. PubMed DOI
Baranyai Z.; Biri-Kovács B.; Krátký M.; Szeder B.; Debreczeni M. L.; Budai J.; Kovács B.; Horváth L.; Pári E.; Németh Z.; Cervenak L.; Zsila F.; Méhes E.; Kiss É.; Vinšová J.; Bősze S. Cellular Internalization and Inhibition Capacity of New Anti-Glioma Peptide Conjugates: Physicochemical Characterization and Evaluation on Various Monolayer- and 3D-Spheroid-Based in Vitro Platforms. J. Med. Chem. 2021, 64, 2982–3005. 10.1021/acs.jmedchem.0c01399. PubMed DOI
Waisser K.; Bures O.; Holy P.; Kunes J.; Oswald R.; Jiraskova L.; Pour M.; Klimesova V.; Kubicova L.; Kaustova J. Relationship between the structure and antimycobacterial activity of substituted salicylanilides. Arch. Pharm. 2003, 336, 53–71. 10.1002/ardp.200390004. PubMed DOI
Baranyai Z.; Kratky M.; Vinsova J.; Szabo N.; Senoner Z.; Horvati K.; Stolarikova J.; David S.; Bosze S. Combating highly resistant emerging pathogen Mycobacterium abscessus and Mycobacterium tuberculosis with novel salicylanilide esters and carbamates. Eur. J. Med. Chem. 2015, 101, 692–704. 10.1016/j.ejmech.2015.07.001. PubMed DOI
Lal J.; Kaul G.; Akhir A.; Ansari S. B.; Chopra S.; Reddy D. N. Bio-evaluation of fluoro and trifluoromethyl-substituted salicylanilides against multidrug-resistant S. aureus. Med. Chem. Res. 2021, 30, 2301–2315. 10.1007/s00044-021-02808-4. PubMed DOI PMC
Borbála Horváth L.; Krátký M.; Pflégr V.; Méhes E.; Gyulai G.; Kohut G.; Babiczky Á.; Biri-Kovács B.; Baranyai Z.; Vinšová J.; Bősze S. Host cell targeting of novel antimycobacterial 4-aminosalicylic acid derivatives with tuftsin carrier peptides. Eur. J. Pharm. Biopharm. 2022, 174, 111–130. 10.1016/j.ejpb.2022.03.009. PubMed DOI
Kratky M.; Vinsova J.; Buchta V. In vitro antibacterial and antifungal activity of salicylanilide benzoates. Sci. World J. 2012, 2012, 1–7. 10.1100/2012/290628. PubMed DOI PMC
Kratky M.; Vinsova J. Antiviral activity of substituted salicylanilides-a review. Mini Rev. Med. Chem. 2011, 11, 956–967. 10.2174/138955711797068382. PubMed DOI
Blake S.; Shaabani N.; Eubanks L. M.; Maruyama J.; Manning J. T.; Beutler N.; Paessler S.; Ji H.; Teijaro J. R.; Janda K. D. Salicylanilides Reduce SARS-CoV-2 Replication and Suppress Induction of Inflammatory Cytokines in a Rodent Model. ACS Infect. Dis. 2021, 7, 2229–2237. 10.1021/acsinfecdis.1c00253. PubMed DOI
Agrawal V. K.; Sharma S. Salicylanilides in the treatment of helminth diseases. Pharmazie 1984, 39, 373–378. PubMed
Li Y.; Li P.-K.; Roberts M. J.; Arend R. C.; Samant R. S.; Buchsbaum D. J. Multi-targeted therapy of cancer by niclosamide: A new application for an old drug. Cancer Lett. 2014, 349, 8–14. 10.1016/j.canlet.2014.04.003. PubMed DOI PMC
Moskaleva E. Y.; Perevozchikova V. G.; Zhirnik A. S.; Severin S. E. Molecular mechanisms of niclosamide antitumor activity. Biomed. Khim. 2015, 61, 680–693. 10.18097/PBMC20156106680. PubMed DOI
Kadri H.; Lambourne O. A.; Mehellou Y. Niclosamide, a Drug with Many (Re)purposes. ChemMedChem 2018, 13, 1088–1091. 10.1002/cmdc.201800100. PubMed DOI PMC
Chen W.; Mook R. A.; Premont R. T.; Wang J. Niclosamide: Beyond an antihelminthic drug. Cell Signaling 2018, 41, 89–96. 10.1016/j.cellsig.2017.04.001. PubMed DOI PMC
Barbosa E. J.; Löbenberg R.; de Araujo G. L. B.; Bou-Chacra N. A. Niclosamide repositioning for treating cancer: Challenges and nano-based drug delivery opportunities. Eur. J. Pharm. Biopharm. 2019, 141, 58–69. 10.1016/j.ejpb.2019.05.004. PubMed DOI
Zhou J.; Jin B.; Jin Y.; Liu Y.; Pan J. The antihelminthic drug niclosamide effectively inhibits the malignant phenotypes of uveal melanoma in vitro and in vivo. Theranostics 2017, 7, 1447–1462. 10.7150/thno.17451. PubMed DOI PMC
Li M.; Khambu B.; Zhang H.; Kang J.-H.; Chen X.; Chen D.; Vollmer L.; Liu P.-Q.; Vogt A.; Yin X.-M. Suppression of lysosome function induces autophagy via a feedback down-regulation of MTOR complex 1 (MTORC1) activity. J. Biol. Chem. 2013, 288, 35769–35780. 10.1074/jbc.M113.511212. PubMed DOI PMC
Liu Y.; Luo X.; Shan H.; Fu Y.; Gu Q.; Zheng X.; Dai Q.; Xia F.; Zheng Z.; Liu P.; Yin X.-M.; Hong L.; Li M. Niclosamide Triggers Non-Canonical LC3 Lipidation. Cells 2019, 8, 248.10.3390/cells8030248. PubMed DOI PMC
Balgi A. D.; Fonseca B. D.; Donohue E.; Tsang T. C.; Lajoie P.; Proud C. G.; Nabi I. R.; Roberge M. Screen for chemical modulators of autophagy reveals novel therapeutic inhibitors of mTORC1 signaling. PLoS One 2009, 4, e712410.1371/journal.pone.0007124. PubMed DOI PMC
Chai W. H.; Li Y. R.; Lin S. H.; Chao Y. H.; Chen C. H.; Chan P. C.; Lin C. H. Antihelminthic Niclosamide Induces Autophagy and Delayed Apoptosis in Human Non-small Lung Cancer Cells In Vitro and In Vivo. Anticancer Res. 2020, 40, 1405–1417. 10.21873/anticanres.14082. PubMed DOI
Park S. J.; Shin J. H.; Kang H.; Hwang J. J.; Cho D. H. Niclosamide induces mitochondria fragmentation and promotes both apoptotic and autophagic cell death. BMB Rep. 2011, 44, 517–522. 10.5483/BMBRep.2011.44.8.517. PubMed DOI
Cheng B.; Morales L. D.; Zhang Y.; Mito S.; Tsin A. Niclosamide induces protein ubiquitination and inhibits multiple pro-survival signaling pathways in the human glioblastoma U-87 MG cell line. PLoS One 2017, 12, e018432410.1371/journal.pone.0184324. PubMed DOI PMC
Wang J.; Ren X.-R.; Piao H.; Zhao S.; Osada T.; Premont R. T.; Mook R. A.; Morse M. A.; Lyerly H. K.; Chen W. Niclosamide-induced Wnt signaling inhibition in colorectal cancer is mediated by autophagy. Biochem. J. 2019, 476, 535–546. 10.1042/BCJ20180385. PubMed DOI PMC
Newton P. T. New insights into niclosamide action: autophagy activation in colorectal cancer. Biochem. J. 2019, 476, 779–781. 10.1042/BCJ20190020. PubMed DOI
Kaushal J. B.; Bhatia R.; Kanchan R. K.; Raut P.; Mallapragada S.; Ly Q. P.; Batra S. K.; Rachagani S. Repurposing Niclosamide for Targeting Pancreatic Cancer by Inhibiting Hh/Gli Non-Canonical Axis of Gsk3β. Cancers 2021, 13, 3105.10.3390/cancers13133105. PubMed DOI PMC
Wieland A.; Trageser D.; Gogolok S.; Reinartz R.; Hofer H.; Keller M.; Leinhaas A.; Schelle R.; Normann S.; Klaas L.; Waha A.; Koch P.; Fimmers R.; Pietsch T.; Yachnis A. T.; Pincus D. W.; Steindler D. A.; Brustle O.; Simon M.; Glas M.; Scheffler B. Anticancer effects of niclosamide in human glioblastoma. Clin. Cancer Res. 2013, 19, 4124–4136. 10.1158/1078-0432.CCR-12-2895. PubMed DOI
Bredel M.; Bredel C.; Juric D.; Duran G. E.; Yu R. X.; Harsh G. R.; Vogel H.; Recht L. D.; Scheck A. C.; Sikic B. I. Tumor Necrosis Factor-α–Induced Protein 3 As a Putative Regulator of Nuclear Factor-κB–Mediated Resistance to O6-Alkylating Agents in Human Glioblastomas. J. Clin. Oncol. 2006, 24, 274–287. 10.1200/jco.2005.02.9405. PubMed DOI
Mito S.; Cheng B.; Garcia B. A.; Gonzalez D.; Ooi X. Y.; Ruiz T. C.; Elisarraras F. X.; Tsin A.; Chew S. A.; Arriaga M. A. SAR study of niclosamide derivatives in the human glioblastoma U-87 MG cells. Med. Chem. Res. 2022, 31, 1313–1322. 10.1007/s00044-022-02907-w. DOI
Hu M.; Ye W.; Li J.; Zhong G.; He G.; Xu Q.; Zhang Y. Synthesis and evaluation of salicylanilide derivatives as potential epidermal growth factor receptor inhibitors. Chem. Biol. Drug Des. 2015, 85, 280–289. 10.1111/cbdd.12383. PubMed DOI
Zhu X.-F.; Wang J.-S.; Cai L.-L.; Zeng Y.-X.; Yang D. SUCI02 inhibits the erbB-2 tyrosine kinase receptor signaling pathway and arrests the cell cycle in G1 phase in breast cancer cells. Cancer Sci. 2006, 97, 84–89. 10.1111/j.1349-7006.2006.00143.x. PubMed DOI PMC
Liu J.-Z.; Hu Y.-L.; Feng Y.; Guo Y.-B.; Liu Y.-F.; Yang J.-L.; Mao Q.-S.; Xue W.-J. Rafoxanide promotes apoptosis and autophagy of gastric cancer cells by suppressing PI3K/Akt/mTOR pathway. Exp. Cell Res. 2019, 385, 111691.10.1016/j.yexcr.2019.111691. PubMed DOI
Wen Y.-T.; Wu A. T.; Bamodu O. A.; Wei L.; Lin C.-M.; Yen Y.; Chao T.-Y.; Mukhopadhyay D.; Hsiao M.; Huang H.-S. A Novel Multi-Target Small Molecule, LCC-09, Inhibits Stemness and Therapy-Resistant Phenotypes of Glioblastoma Cells by Increasing miR-34a and Deregulating the DRD4/Akt/mTOR Signaling Axis. Cancers 2019, 11, 1442.10.3390/cancers11101442. PubMed DOI PMC
Hsieh C.-L.; Huang H.-S.; Chen K.-C.; Saka T.; Chiang C.-Y.; Chung L. W. K.; Sung S.-Y. A Novel Salicylanilide Derivative Induces Autophagy Cell Death in Castration-Resistant Prostate Cancer via ER Stress-Activated PERK Signaling Pathway. Mol. Cancer Ther. 2020, 19, 101–111. 10.1158/1535-7163.MCT-19-0387. PubMed DOI
Imramovský A.; Jorda R.; Pauk K.; Řezníčková E.; Dušek J.; Hanusek J.; Kryštof V. Substituted 2-hydroxy-N-(arylalkyl)benzamides induce apoptosis in cancer cell lines. Eur. J. Med. Chem. 2013, 68, 253–259. 10.1016/j.ejmech.2013.08.009. PubMed DOI
Pachnikova G.; Uldrijan S.; Imramovsky A.; Krystof V.; Slaninova I. Substituted 2-hydroxy-N-(arylalkyl)benzamide sensitizes cancer cells to metabolic stress by disrupting actin cytoskeleton and inhibiting autophagic flux. Toxicol. In Vitro 2016, 37, 70–78. 10.1016/j.tiv.2016.09.006. PubMed DOI
Di Grazia A.; Laudisi F.; Di Fusco D.; Franzè E.; Ortenzi A.; Monteleone I.; Monteleone G.; Stolfi C. Rafoxanide Induces Immunogenic Death of Colorectal Cancer Cells. Cancers 2020, 12, 1314.10.3390/cancers12051314. PubMed DOI PMC
Grandclement C.; Borg C. Neuropilins: a new target for cancer therapy. Cancers 2011, 3, 1899–1928. 10.3390/cancers3021899. PubMed DOI PMC
Prud’homme G. J.; Glinka Y. Neuropilins are multifunctional coreceptors involved in tumor initiation, growth, metastasis and immunity. Oncotarget 2012, 3, 921–939. 10.18632/oncotarget.626. PubMed DOI PMC
Chaudhary B.; Khaled Y. S.; Ammori B. J.; Elkord E. Neuropilin 1: function and therapeutic potential in cancer. Cancer Immunol., Immunother. 2014, 63, 81–99. 10.1007/s00262-013-1500-0. PubMed DOI PMC
Guo H.-F.; Vander Kooi C. W. Neuropilin Functions as an Essential Cell Surface Receptor. J. Biol. Chem. 2015, 290, 29120–29126. 10.1074/jbc.R115.687327. PubMed DOI PMC
Kamarulzaman E. E.; Vanderesse R.; Gazzali A. M.; Barberi-Heyob M.; Boura C.; Frochot C.; Shawkataly O.; Aubry A.; Wahab H. A. Molecular modelling, synthesis and biological evaluation of peptide inhibitors as anti-angiogenic agent targeting neuropilin-1 for anticancer application. J. Biomol. Struct. Dyn. 2017, 35, 26–45. 10.1080/07391102.2015.1131196. PubMed DOI
Chen L.; Shi Y.; Qiu R. Neuropilin-1 (NRP-1), a Novel Molecular Target of Glioma. J. Nanosci. Nanotechnol. 2016, 16, 6657–6666. 10.1166/jnn.2016.11376. DOI
Lee J.; Kim E.; Ryu S. W.; Choi C.; Choi K. Combined inhibition of vascular endothelial growth factor receptor signaling with Temozolomide enhances cytotoxicity against human glioblastoma cells via downregulation of Neuropilin-1. J. Neuro-Oncol. 2016, 128, 29–34. 10.1007/s11060-016-2091-3. PubMed DOI
Sun S.; Lei Y.; Li Q.; Wu Y.; Zhang L.; Mu P. P.; Ji G. Q.; Tang C. X.; Wang Y. Q.; Gao J.; Gao J.; Li L.; Zhuo L.; Li Y. Q.; Gao D. S. Neuropilin-1 is a glial cell line-derived neurotrophic factor receptor in glioblastoma. Oncotarget 2017, 8, 74019–74035. 10.18632/oncotarget.18630. PubMed DOI PMC
Kwiatkowski S. C.; Guerrero P. A.; Hirota S.; Chen Z.; Morales J. E.; Aghi M.; McCarty J. H. Neuropilin-1 modulates TGFβ signaling to drive glioblastoma growth and recurrence after anti-angiogenic therapy. PLoS One 2017, 12, e018506510.1371/journal.pone.0185065. PubMed DOI PMC
Caponegro M. D.; Moffitt R. A.; Tsirka S. E. Expression of neuropilin-1 is linked to glioma associated microglia and macrophages and correlates with unfavorable prognosis in high grade gliomas. Oncotarget 2018, 9, 35655–35665. 10.18632/oncotarget.26273. PubMed DOI PMC
Angom R. S.; Mondal S. K.; Wang F.; Madamsetty V. S.; Wang E.; Dutta S. K.; Gulani Y.; Sarabia-Estrada R.; Sarkaria J. N.; Quinones-Hinojosa A.; Mukhopadhyay D. Ablation of neuropilin-1 improves the therapeutic response in conventional drug-resistant glioblastoma multiforme. Oncogene 2020, 39, 7114–7126. 10.1038/s41388-020-01462-1. PubMed DOI
Douyère M.; Chastagner P.; Boura C. Neuropilin-1: A Key Protein to Consider in the Progression of Pediatric Brain Tumors. Front. Oncol. 2021, 11, 665634.10.3389/fonc.2021.665634. PubMed DOI PMC
Zhao L.; Chen H.; Lu L.; Zhao C.; Malichewe C. V.; Wang L.; Guo X.; Zhang X. Design and screening of a novel neuropilin-1 targeted penetrating peptide for anti-angiogenic therapy in glioma. Life Sci. 2021, 270, 119113.10.1016/j.lfs.2021.119113. PubMed DOI
Bagnard D.Neuropilin: from nervous system to vascular and tumor biology; Advances in Experimental Medicine and Biology; Springer US, 2002; Vol. 515.
Dumond A.; Pages G. Neuropilins, as Relevant Oncology Target: Their Role in the Tumoral Microenvironment. Front. Cell Dev. Biol. 2020, 8, 662.10.3389/fcell.2020.00662. PubMed DOI PMC
von Wronski M. A.; Raju N.; Pillai R.; Bogdan N. J.; Marinelli E. R.; Nanjappan P.; Ramalingam K.; Arunachalam T.; Eaton S.; Linder K. E.; Yan F.; Pochon S.; Tweedle M. F.; Nunn A. D. Tuftsin binds neuropilin-1 through a sequence similar to that encoded by exon 8 of vascular endothelial growth factor. J. Biol. Chem. 2006, 281, 5702–5710. 10.1074/jbc.M511941200. PubMed DOI
Najjar V. A.; Nishioka K. ″Tuftsin″: a natural phagocytosis stimulating peptide. Nature 1970, 228, 672–673. 10.1038/228672a0. PubMed DOI
Najjar V. A. Tuftsin, A Natural Activator of Phagocyte Cells: An Overviewa. Ann. N.Y. Acad. Sci. 1983, 419, 1–11. 10.1111/j.1749-6632.1983.tb37086.x. PubMed DOI
Fridkin M.; Najjar V. A. Tuftsin: Its Chemistry, Biology, and Clinical Potentia. Crit. Rev. Biochem. Mol. Biol. 1989, 24, 1–40. 10.3109/10409238909082550. PubMed DOI
Siemion I. Z.; Kluczyk A. Tuftsin: on the 30-year anniversary of Victor Najjar’s discovery. Peptides 1999, 20, 645–674. 10.1016/S0196-9781(99)00019-4. PubMed DOI
Siebert A.; Gensicka-Kowalewska M.; Cholewinski G.; Dzierzbicka K. Tuftsin - Properties and Analogs. Curr. Med. Chem. 2017, 24, 3711–3727. 10.2174/0929867324666170725140826. PubMed DOI
Mezo G.; Kalaszi A.; Remenyi J.; Majer Z.; Hilbert A.; Lang O.; Kohidai L.; Barna K.; Gaal D.; Hudecz F. Synthesis, conformation, and immunoreactivity of new carrier molecules based on repeated tuftsin-like sequence. Biopolymers 2004, 73, 645–656. 10.1002/bip.20024. PubMed DOI
Bősze S.; Zsila F.; Biri-Kovacs B.; Szeder B.; Majer Z.; Hudecz F.; Uray K. Tailoring Uptake Efficacy of HSV-1 gD Tailoring Uptake Efficacy of Hsv-1 GD Derived Carrier Peptides. Biomolecules 2020, 10, 721.10.3390/biom10050721. PubMed DOI PMC
Kratky M.; Vinsova J. Salicylanilide ester prodrugs as potential antimicrobial agents-a review. Curr. Pharm. Des. 2011, 17, 3494–3505. 10.2174/138161211798194521. PubMed DOI
Krátký M.; Vinšová J.; Buchta V.; Horvati K.; Bösze S.; Stolaříková J. New amino acid esters of salicylanilides active against MDR-TB and other microbes. Eur. J. Med. Chem. 2010, 45, 6106–6113. 10.1016/j.ejmech.2010.09.040. PubMed DOI
Krátký M.; Vinšová J.; Novotná E.; Stolaříková J. Salicylanilide pyrazinoates inhibit in vitro multidrug-resistant Mycobacterium tuberculosis strains, atypical mycobacteria and isocitrate lyase. Eur. J. Pharm. Sci. 2014, 53, 1–9. 10.1016/j.ejps.2013.12.001. PubMed DOI
Baranyai Z.; Krátký M.; Vosátka R.; Szabó E.; Senoner Z.; Dávid S.; Stolaříková J.; Vinšová J.; Bősz S. In vitro biological evaluation of new antimycobacterial salicylanilide-tuftsin conjugates. Eur. J. Med. Chem. 2017, 133, 152–173. 10.1016/j.ejmech.2017.03.047. PubMed DOI
Sato N.; Arai S. Studies on pyrazines. 7. The synthesis of 5-chloropyrazinecarboxylic acid. J. Heterocycl. Chem. 1982, 19, 407–408. 10.1002/jhet.5570190238. DOI
Pontén J.; Macintyre E. H. Long term culture of normal and neoplastic human glia. Acta Pathol. Microbiol. Scand. 1968, 74, 465–486. 10.1111/j.1699-0463.1968.tb03502.x. PubMed DOI
Kapus A.; Grinstein S.; Wasan S.; Kandasamy R.; Orlowski J. Functional characterization of three isoforms of the Na+/H+ exchanger stably expressed in Chinese hamster ovary cells. ATP dependence, osmotic sensitivity, and role in cell proliferation. J. Biol. Chem. 1994, 269, 23544–23552. 10.1016/S0021-9258(17)31550-8. PubMed DOI
Schagger H. Tricine-SDS-PAGE. Nat. Protoc. 2006, 1, 16–22. 10.1038/nprot.2006.4. PubMed DOI
Itoh M.; Nagafuchi A.; Moroi S.; Tsukita S. Involvement of ZO-1 in Cadherin-based Cell Adhesion through Its Direct Binding to α Catenin and Actin Filaments. J. Cell Biol. 1997, 138, 181–192. 10.1083/jcb.138.1.181. PubMed DOI PMC
Méhes E.; Mornet D.; Jancsik V. Subcellular localization of components of the dystrophin glycoprotein complex in cultured retinal muller glial cells. Acta Biol. Hung. 2003, 54, 241–252. 10.1556/ABiol.54.2003.3-4.3. PubMed DOI
Mège R. M.; Ishiyama N. Integration of Cadherin Adhesion and Cytoskeleton at Adherens Junctions. Cold Spring Harbor Perspect. Biol. 2017, 9, a028738.10.1101/cshperspect.a028738. PubMed DOI PMC
Hou T. J.; Xia K.; Zhang W.; Xu X. J. ADME evaluation in drug discovery. 4. Prediction of aqueous solubility based on atom contribution approach. J. Chem. Inf. Comput. Sci. 2004, 44, 266–275. 10.1021/ci034184n. PubMed DOI
Shoghi E.; Fuguet E.; Bosch E.; Ràfols C. Solubility-pH profiles of some acidic, basic and amphoteric drugs. Eur. J. Pharm. Sci. 2013, 48, 291–300. 10.1016/j.ejps.2012.10.028. PubMed DOI
Horvati K.; Fodor K.; Palyi B.; Henczko J.; Balka G.; Gyulai G.; Kiss E.; Biri-Kovacs B.; Senoner Z.; Bosze S. Novel Assay Platform to Evaluate Intracellular Killing of Mycobacterium tuberculosis: In Vitro and In Vivo Validation. Front. Immunol. 2021, 12, 750496.10.3389/fimmu.2021.750496. PubMed DOI PMC
Dunn K. W.; Kamocka M. M.; McDonald J. H. A practical guide to evaluating colocalization in biological microscopy. Am. J. Physiol. Cell Physiol. 2011, 300, C723–C742. 10.1152/ajpcell.00462.2010. PubMed DOI PMC
Bolte S.; Cordelières F. P. A guided tour into subcellular colocalization analysis in light microscopy. J. Microsc. 2006, 224, 213–232. 10.1111/j.1365-2818.2006.01706.x. PubMed DOI
Polson H. E.; de Lartigue J.; Rigden D. J.; Reedijk M.; Urbe S.; Clague M. J.; Tooze S. A. Mammalian Atg18 (WIPI2) localizes to omegasome-anchored phagophores and positively regulates LC3 lipidation. Autophagy 2010, 6, 506–522. 10.4161/auto.6.4.11863. PubMed DOI