A harmonized database of European forest simulations under climate change
Status PubMed-not-MEDLINE Jazyk angličtina Země Nizozemsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
38646195
PubMed Central
PMC11033166
DOI
10.1016/j.dib.2024.110384
PII: S2352-3409(24)00353-6
Knihovny.cz E-zdroje
- Klíčová slova
- Europe's forests, Forest composition, Forest development, Forest functioning, Forest structure, Process-based models, Vegetation dynamics,
- Publikační typ
- časopisecké články MeSH
Process-based forest models combine biological, physical, and chemical process understanding to simulate forest dynamics as an emergent property of the system. As such, they are valuable tools to investigate the effects of climate change on forest ecosystems. Specifically, they allow testing of hypotheses regarding long-term ecosystem dynamics and provide means to assess the impacts of climate scenarios on future forest development. As a consequence, numerous local-scale simulation studies have been conducted over the past decades to assess the impacts of climate change on forests. These studies apply the best available models tailored to local conditions, parameterized and evaluated by local experts. However, this treasure trove of knowledge on climate change responses remains underexplored to date, as a consistent and harmonized dataset of local model simulations is missing. Here, our objectives were (i) to compile existing local simulations on forest development under climate change in Europe in a common database, (ii) to harmonize them to a common suite of output variables, and (iii) to provide a standardized vector of auxiliary environmental variables for each simulated location to aid subsequent investigations. Our dataset of European stand- and landscape-level forest simulations contains over 1.1 million simulation runs representing 135 million simulation years for more than 13,000 unique locations spread across Europe. The data were harmonized to consistently describe forest development in terms of stand structure (dominant height), composition (dominant species, admixed species), and functioning (leaf area index). Auxiliary variables provided include consistent daily climate information (temperature, precipitation, radiation, vapor pressure deficit) as well as information on local site conditions (soil depth, soil physical properties, soil water holding capacity, plant-available nitrogen). The present dataset facilitates analyses across models and locations, with the aim to better harness the valuable information contained in local simulations for large-scale policy support, and for fostering a deeper understanding of the effects of climate change on forest ecosystems in Europe.
AMAP INRAE CIRAD CNRS IRD Univ Montpellier 34398 Montpellier cedex 5 France
Bern University of Applied Sciences BFH HAFL Länggasse 85 3052 Zollikofen Switzerland
CREAF E08193 Bellaterra Catalonia Spain
CSIRO Environment GPO Box 1700 ACT 2601 Australia
European Forest Institute Platz der Vereinten Nationen 7 53113 Bonn Germany
Forest Science and Technology Center of Catalonia Crta de St Llorenç de Morunys 25280 Solsona Spain
Helmholtz Centre for Environmental Research UFZ Permoserstraße 15 04318 Leipzig Germany
Institute for Alpine Environment Eurac Research Via Alessandro Volta 13A 39100 Bolzano BZ Italy
KU Leuven Department of Earth and Environmental Sciences Celestijnenlaan 200E 3001 Leuven Belgium
National Biodiversity Future Center Piazza Marina 61 90133 Palermo Italy
Université Bordeaux Bordeaux Sciences Agro INRAE Biogeco 69 route d'Arcachon F 33612 Cestas France
Zobrazit více v PubMed
Bugmann H., Seidl R. The evolution, complexity and diversity of models of long-term forest dynamics. J. Ecol. 2022;110(10):2288–2307. PubMed PMC
Seidl R., Rammer W., Scheller R.M., Spies T.A. An individual-based process model to simulate landscape-scale forest ecosystem dynamics. Ecol. Modell. 2012;231:87–100.
Lasch-Born P., Suckow F., Reyer C.P., Gutsch M., Kollas C., Badeck F.W., Bugmann H.K., Grote R., Fürstenau C., Lindner M., Schaber J. Description and evaluation of the process-based forest model 4C v2. 2 at four European forest sites. Geosci. Model Dev. 2020;13(11):5311–5343.
De Cáceres M., Mencuccini M., Martin-StPaul N., Limousin J.M., Coll L., Poyatos R., Cabon A., Granda V., Forner A., Valladares F., Martínez-Vilalta J. Unravelling the effect of species mixing on water use and drought stress in Mediterranean forests: a modelling approach. Agric. For. Meteorol. 2021;296
Bugmann H.K. A simplified forest model to study species composition along climate gradients. Ecology. 1996;77(7):2055–2074.
Huber N., Bugmann H., Cailleret M., Bircher N., Lafond V. Stand-scale climate change impacts on forests over large areas: transient responses and projection uncertainties. Ecol. Appl. 2021;31(4):e02313. PubMed PMC
Smith B., Prentice I.C., Sykes M.T. Representation of vegetation dynamics in the modelling of terrestrial ecosystems: comparing two contrasting approaches within European climate space. Glob. Ecol. Biogeogr. 2001:621–637.
Morin X., Bugmann H., De Coligny F., Martin-StPaul N., Cailleret M., Limousin J.M., Ourcival J.M., Prevosto B., Simioni G., Toigo M., Vennetier M., Catteau E., Guillemot J. Beyond forest succession: a gap model to study ecosystem functioning and tree community composition under climate change. Funct. Ecol. 2021;35(4):955–975.
Lischke H., Zimmermann N.E., Bolliger J., Rickebusch S., Löffler T.J. TreeMig: a forest-landscape model for simulating spatio-temporal patterns from stand to landscape scale. Ecol. Modell. 2006;199(4):409–420.
Augustynczik A.L.D., Yousefpour R. Assessing the synergistic value of ecosystem services in European beech forests. Ecosyst. Serv. 2021;49
Fischer R., Bohn F., de Paula M.D., Dislich C., Groeneveld J., Gutiérrez A.G.…Huth A. Lessons learned from applying a forest gap model to understand ecosystem and carbon dynamics of complex tropical forests. Ecol. Modell. 2016;326:124–133.
Collalti A., Thornton P.E., Cescatti A., Rita A., Borghetti M., Nolè A., Matteucci G. The sensitivity of the forest carbon budget shifts across processes along with stand development and climate change. Ecol. Appl. 2019;29(2):e01837. PubMed PMC
Dalmonech D., Marano G., Amthor J.S., Cescatti A., Lindner M., Trotta C., Collalti A. Feasibility of enhancing carbon sequestration and stock capacity in temperate and boreal European forests via changes to management regimes. Agric. For. Meteorol. 2022;327
Nadal-Sala D., Sabaté S., Gracia C. GOTILWA+: un modelo de procesos que evalúa efectos del cambio climático en los bosques y explora alternativas de gestión para su mitigación. Ecosistemas. 2013;22(3):29–36.
Canham C.D., Murphy L.E., Papaik M.J. Institute of Ecosystem Studies. Millbrook; NY: 2005. SORTIE-ND: software for spatially-explicit simulation of forest dynamics.
Minunno F., Peltoniemi M., Härkönen S., Kalliokoski T., Makinen H., Mäkelä A. Bayesian calibration of a carbon balance model PREBAS using data from permanent growth experiments and national forest inventory. For. Ecol. Manag. 2019;440:208–257.
Forrester D.I., Tang X. Analysing the spatial and temporal dynamics of species interactions in mixed-species forests and the effects of stand density using the 3-PG model. Ecol. Modell. 2016;319:233–254.
Haas E., Klatt S., Fröhlich A., Kraft P., Werner C., Kiese R.…Butterbach-Bahl K. LandscapeDNDC: a process model for simulation of biosphere–atmosphere–hydrosphere exchange processes at site and regional scale. Landsc. Ecol. 2013;28(4):615–636.
Jonard M., André F., De Coligny F., De Wergifosse L., Beudez N., Davi H.…Vincke C. HETEROFOR 1.0: a spatially explicit model for exploring the response of structurally complex forests to uncertain future conditions–Part 1: carbon fluxes and tree dimensional growth. Geosci. Model Dev. 2020;13(3):905–935.
Gustafson E.J. When relationships estimated in the past cannot be used to predict the future: using mechanistic models to predict landscape ecological dynamics in a changing world. Landsc. Ecol. 2013;28:1429–1437.
Rammer W., Seidl R. A scalable model of vegetation transitions using deep neural networks. Methods Ecol. Evol. 2019;10(6):879–890. PubMed PMC
Kahn M. Modellierung der Höhenentwicklung ausgewählter Baumarten in Abhängigkeit bom Standort. Forstwissenschaftliche Fakultet der Universität der Universität München und Bayerische forstliche Versuchs-und Forschungsanstalt. 1994
Parding K.M., Dobler A., McSweeney C.F., Landgren O.A., Benestad R., Erlandsen H.B.…Loukos H. GCMeval–An interactive tool for evaluation and selection of climate model ensembles. Clim. Serv. 2020;18
Hiederer R. Luxembourg: Publications Office of the European Union –2013 –47pp. – EUR26082EN Scientific and Technical Research series; 2013. Mapping Soil Properties for Europe - Spatial Representation of Soil Database Attributes. ISSN 1831-9424. DOI
Fischer G., Nachtergaele F., Prieler S., van Velthuizen H.T., Verelst L., Wiberg D. 2008. Global Agro-ecological Zones Assessment for Agriculture (GAEZ 2008)
Hengl T., Mendes de Jesus J., Heuvelink G.B., Ruiperez Gonzalez M., Kilibarda M., Blagotić A.…Kempen B. SoilGrids250m: global gridded soil information based on machine learning. PLoS One. 2017;12(2) PubMed PMC
Karger D.N., Conrad O., Böhner J., Kawohl T., Kreft H., Soria-Auza R.W.…Kessler M. Climatologies at high resolution for the earth's land surface areas. Sci. Data. 2017;4(1):1–20. PubMed PMC